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Abstract Automatic speech recognition (ASR) technology has matured over the
past few decades and has made significant impacts in a variety of fields, from as-
sistive technologies to commercial products. However, ASR system development
is a resource intensive activity and requires language resources in the form of text
annotated audio recordings and pronunciation dictionaries. Unfortunately, many
languages found in the developing world fall into the resource-scarce category and
due to this resource scarcity the deployment of ASR systems in the developing
world is severely inhibited. One approach to assist with resource-scarce ASR sys-
tem development, is to select “useful” training samples which could reduce the
resources needed to collect new corpora.

In this work, we propose a new data selection framework which can be used to
design a speech recognition corpus. We show for limited data sets, independent of
language and bandwidth, the most effective strategy for data selection is frequency-
matched selection and that the widely-used maximum entropy methods generally
produced the least promising results. In our model, the frequency-matched se-
lection method corresponds to a logarithmic relationship between accuracy and
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corpus size; we also investigated other model relationships, and found that a hy-
perbolic relationship (as suggested from simple asymptotic arguments in learning
theory) may lead to somewhat better performance under certain conditions.

Keywords Resource-scarce - Data selection - Corpus design - Speech recognition

1 Introduction

Speech technologies are playing an increasingly important role in the daily lives of
many people. For instance, applications such as Google Voice Search (Erol et al,
2009) performing spoken web searches, telephone services using Automatic Speech
Recognition (ASR) to acquire account information (Rabiner, 1997), access control
systems utilising speaker recognition in a host of security checks (Reynolds, 2001)
and multi-lingual spoken dialogue systems employing Spoken Language Identi-
fication (SLID) (Navratil, 2001) have all made significant contributions to the
technology landscape. In some cases, these types of systems can perform their re-
lated tasks many times more cost efficiently than humans, and for limited domain
applications even achieve performance levels exceeding that of humans.

Given the variety of speech-based applications, it is generally the case that
an ASR system serves as the foundation whereupon applications are built and
specialized. Although ASR technologies have matured over recent years, ASR de-
velopment is still a resource intensive process. The process often requires large
volumes of language resources such as annotated audio corpora and pronuncia-
tion dictionaries. This large initial resource requirement places a constraint on the
development of ASR systems in the developing world, where most languages are
subject to a scarcity of resources and are often termed resource-scarce.

There are many approaches which can be followed to improve this situation
and support ASR deployment in the developing world. We suggest, however, that
there are three main domains which could contribute to significant progress in
promoting speech-based applications in the developing world — these are:

— Data harvesting — creating ASR corpora by harvesting readily available speech
resources.

— Rapid ASR system adaptation — rapidly adapting existing ASR system to new
applications.

— Training data selection — designing ASR corpora by making use of data selec-
tion methods to optimally select training examples which optimize the trade-off
between required resources and ASR system accuracy.

To our mind, the data harvesting and ASR adaptation domains have received
significant research focus but data selection, specifically for ASR corpora design,
has not received as much focus. Thus, for the work presented here we limit our
investigation to data selection for ASR corpus design.

A general ASR tenet is that the training of robust acoustic models, to achieve
high system accuracies, requires large training corpora. The reasoning is the fol-
lowing: to cover the variability present in speech, many training examples are
needed to properly estimate the model parameters. However, for a resource-scarce
language such corpora are generally not readily available, which often necessitates
the creation of a larger corpus by sourcing data from smaller similar corpora. In
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addition, it has been shown by (Wu et al, 2007) that large corpora contain redun-
dant information which implies that a smaller sub-corpus can be created which
contains sufficient examples to cover the variability. We therefore intend to answer
the following question: if it is feasible to collect a limited amount of data with a
focused corpus design, which data should be selected to aid in the collection or
design efficiency?

2 Background

Current state-of-the-art speech recognition systems use HMMs to model speech
acoustic event sequences. The models capture statistical information, which relates
the observed acoustic event sequences to hidden unit sequences such as words or
phones as well as temporal acoustic event structure. The statistical modelling by
the HMM makes it reliant on the observed data. It is generally assumed that large
amounts of audio data are needed to train truly robust acoustic models. But as
more data is added to large training sets, the observed gains in accuracy tend
to become smaller, which implies that the data contains redundant information
(Wu et al, 2007; Moore, 2003). Moore (2003) showed that, for HMM-based ASR
systems, there is a linear relationship between the word error rate (WER) and
the logarithm of the training data amount. In addition, different experimental
configurations influence the starting WER but not the slope of WER decreases
across training data amount. Based on the results, it would seem to show that
the vocabulary and language model used during the recognition phase play an
important role in determining the starting WER. Thus, the question on enough
data really depends at which WER level you would want to operate the ASR
system and the constraints on the resource investment. Using linear extrapolation
Moore (2003) showed hypothetically, that for a particular ASR system, training
data in the range of 3,000,0000 — 10,000,000 hours would produce an effective WER
of 0 %. Similarly, an ASR using another configuration would require 600,000 —
800,000 hours of speech data to achieve a 0% WER. Collecting such data amounts
does seem impractical and due to the logarithmic relationship between training
data amount and WER, simply adding more and more data does not seem to be
a plausible solution when trying to achieve lower WERs.

Wu, Zhang, and Rudnicky (2007) have shown, however, that it is possible
to select a smaller sub-corpus from a large corpus and train ASR models which
provide performance comparable to that of models train on all the data. Thus,
with proper data selection, a sub-corpus can be created which contains sufficient
data variation to produce robust ASR models. In their work, Wu, Zhang, and
Rudnicky (2007) proposed a maximum entropy principle data selection algorithm
that would select a sample of the data from a larger corpus, which was motivated to
reduce training time, but still provide robust ASR acoustic models. Their selection
criteria were based on sampling the data to create a corpus which approximately
contained uniform counts for either words, words plus characters or words plus
phones. The greedy selection algorithm was employed to select the units and used
a maximum entropy principle to guide the selection. Wu, Zhang, and Rudnicky
(2007) argued that this type of data selection produced an optimal acoustic model
training approach. Their results showed for 150 hours of data the random selection
obtained 25 % error rate while the uniform word plus phone selection achieved an
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error rate of 24.4 %. Interestingly, training on 840 hours only achieved an error
rate of 24.3 %. They also showed that selecting by word distributions at 30, 50,
and 100 hour training data intervals, the maximum entropy selection performed
on average better than a random selection.

An important concept for corpus design is coverage, highlighted by Santen and
Buchsbaum (1997), which plays a large role in determining the corpus suitability
for specific ASR applications. An ASR system will perform poorly if the training
and testing unit distributions are vastly different — for instance training a digit
recognition system to perform a proper name recognition task. The impact of unit
distribution dissimilarity can be overcome if one limits the training and evaluation
sets to be extracted from the same data source. It is to be expected that the
training and evaluation distributions should tend to be similar given large data
amounts. But if this is not possible a selection process is needed to reduce the
unit distribution differences. As highlighted in (Santen and Buchsbaum, 1997),
two possible selection criteria are to (1) cover all units or (2) base the coverage on
unit frequencies. Each has associated weaknesses: for full unit coverage, it becomes
difficult to limit the total size of the corpus while trying to include all rare units,
and for selection based on unit frequencies, unit frequencies for sub-domain texts
are typically quite varied.

Assuming one has a target unit distribution, Gouvéa and Davel (2011) showed
the importance of matching the training and evaluation distributions and that a
regularised KL-divergence metric is an effective data selection tool. In their ASR-
specific experiments, they designed a few target n-gram distributions (representing
target domains) by randomly selecting utterances from an evaluation dataset.
To generate a target n-gram distribution 500 utterances were selected evaluation
dataset that had similar n-gram distributions to the target. ASR systems were
developed on a 1000 utterances that were selected from a training dataset using
one of three selection criteria: (1) selecting to match the target distribution, (2)
uniform n-gram selection, and, (3) random selection. In addition, regularised KL-
divergence selection was performed on unigrams and trigrams. Their results showed
that the targeted distribution ASR systems performed better compared to random
and uniform selection and interestingly, the random selection performed better
than the uniform selection. Lastly, the trigram selection proved a better choice
compared to unigram selection.

3 Aim

As summarized in the previous section, Moore (2003) found that there is a loga-
rithmic relationship between WER and training data amount, which implies that
simply adding data at random is a slow method of increasing ASR system perfor-
mance and theoretically vast amounts data are needed to drastically reduce the
WER. Wu, Zhang, and Rudnicky (2007) showed that it is possible to select a sub-
set of the data to achieve ASR performance comparable to using all the data. A
uniform selection criterion (maximum entropy principle) can in some cases enable
ASR system performance comparable to that of systems trained on much larger
datasets. However, the uniform selection criterion is somewhat ad-hoc: it does not
take the data’s unit distributions into account and does not work in all situations
(as shown in (Gouvéa and Davel, 2011)). It is therefore doubtful that the training
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strategy proposed in (Wu et al, 2007) produces an optimal system performance in
general. Lastly, if one had access to a target unit distribution, the KL-divergence
metric could be used to select utterances from a larger corpus and create a training
distribution which matches the testing distribution (Gouvéa and Davel, 2011). In
practice, however, the test distribution is not known or is specialized to a specific
task which will not generalize well.

One aspect, however, shared by all ASR systems and independent of ASR
configuration, is the relationship between the occurrence of training units in a
training data set and the accuracy the unit achieves in the final evaluation. To
our knowledge no-one has based the selection criteria on the relationship between
units’ accuracies and their occurrence in the training data. From this, the goal of
our research is to

— Develop a theoretical framework which guides a unit selection process based
on the relationship between the number of training occurrences and resulting
accuracy with the goal of improving the final ASR performance.

— Create an implementation of the theory for validation purposes.

Thus the novelty of this work is to introduce an approach in which the selection
criterion is based on unit accuracies given the number of training examples, rather
than an approximation of the full-data statistics. The investigation will hopefully
help make clearer, whether it is possible to develop a data selection strategy that
selects a targeted dataset which maximises ASR system accuracy.

The main purpose of our work is corpus design. Creating a corpus from scratch
is a resource-intensive process, including such tasks as prompt design, data collec-
tion, validation, packaging and logistical management. Using data selection criteria
to improve ASR accuracy, can improve the effectiveness of the corpus design and
contribute to efficient data collection which is a necessity in resource constrained
environments. The ultimate goal is to provide a framework which can minimise
the amount of data that is required to obtain a specified level of accuracy, in order
to make the creation of speech corpora in under-resourced languages as efficient
as possible. However, for our initial investigation into optimal data selection we
will limit ourselves to the evaluation of proposed techniques on existing corpora
to establish the validity of the theory and implementation.

Section (4) describes the theoretical framework and implementation strategy.
The experimental corpora and setup are described in section (5). Our results are
provided in section (6) and final remarks are captured in section (8).

4 Framework

The fundamental modelling unit for current ASR systems are tied-state triphones.
Preliminary correlation investigations showed triphones are a good candidate unit
to model an ASR system’s performance since:

— a strong non-linear correlation exists between a triphone’s accuracy and the
number of times the triphone occurred in the training data, and,
— there is a weak to low correlation between adjacent triphones accuracies.

The weak to low correlation between adjacent triphones accuracies could be taken
into account for improved modelling, but for the development of our approach
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we assume triphone accuracy independence which should not severely impact the
triphone accuracy modelling. A last simplification made to the modelling process
is to ignore the non-linear effects of state-tying by treating the triphones as distinct
units and deriving the triphone counts from the training data.

Given our background investigation, the starting point of our approach is to
presume that the overall ASR system performance is related to the triphone recog-
nition accuracy — words are recognised from monophone sequences and monophone
sequences are extracted from recognised triphone sequences. Thus, word accura-
cies are related to monophone accuracies which are related to triphone accuracies.
Therefore, our first assumption is that the overall ASR system’s accuracy is related
to the individual triphone accuracies. Secondly, we assume that a triphone’s accu-
racy is primarily determined by the number of times it occurs in the training data
only and for the scope of this work we ignore adjacency effects. Given these two
assumptions, we can mathematically formulate the overall system performance as,

N
Atotal = szAz(nz)v (1)
i=1

where Aystq; i the overall system accuracy, p; is the probability of occurrence

for triphone i and A; is the i*" triphone accuracy dependent on the occurrence
count. Thus, equation (1) states that the overall system accuracy is given by the
sum over all individual triphone accuracies multiplied by the probabilities of their
occurrence.

When collecting data in resource-scarce environments, there are limited re-
sources with which to collect data. Thus, the collected corpus will contain a limited
amount of data determined by the resource investment. Therefore, to represent this
resource constraint we introduce a corpus design constraint, which limits the total
triphone count to a specified number. To enforce this constraint, we introduce a
Lagrange multiplier into equation (1) and rewrite it as,

Nbp Np
Aotal = ZpiAi(ni) + A(Z n; — N), (2)
i—1 i—1

where ) is the Lagrange multiplier, n; is the i*" triphone count, N is the total
triphone count in the training corpus and Np is total number of distinct triphones.
Given our equation that describes the ASR system accuracy we would like to find
the optimal assignment of triphone training counts which improves the ASR sys-
tem’s accuracy. In order to find the optimal triphone counts, we need to calculate
the first derivative of equation (2) and set it equal to zero,

8"L‘;total =0, (3)
Uz

which will provide the optimal assignment of the triphone counts and maximise
the overall system accuracy Aiotqr. Working through the derivation we obtain,

OArorar _ 0Ai(n;)
8ni P 8m
where p; is the probability of triphone occurring, is the derivative of
an individual triphone accuracy with respect to its training count and A is the
Lagrange multiplier introduced by the constraint 211\31 ni = N. %ﬁ?i) and \ are
unknown and need to be calculated.

+ A, (4)

OAi(ni)
on;
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Once these values have been calculated it becomes an easy task to solve for
the triphone counts n;. The most difficult part in solving the above equation (4) is
finding a suitable expression for the individual triphone accuracies A;(n;). Given
that we have to calculate the derivative of A;(n;), it would be convenient to find
a suitable functional form which would avoid the use of numerical derivative tech-
niques.

4.1 Selecting an accuracy function

In the previous section we have derived an expression for the optimal number of
triphones to include in a corpus in order to maximise an ASR system’s accuracy,
summarized in equation (4). To solve for the optimal triphone count we must
have a suitable triphone accuracy function which relates an individual triphone’s
accuracies to the number of times the triphone occurred in the training set. Here,
we consider two theoretical distributions as well as two empirical distributions, and
select a compromise that will allow us to investigate the potential of our approach.

— There are simple arguments from learning theory (Barnard, 1994) that suggest
an asymptotic functional relationship of the form

Any =8-S, )
n;

with B and C' again problem-specific and algorithm-specific parameters, and
with the relationship only expected to be valid for large n;. Figure 1 shows
a plot of equation (5) which relates triphone accuracy to triphone count and
where we have assigned the values B = 100, C' = 1000. As expected, a tri-
phone’s accuracy is initially low but increases rapidly as more data is added,
reaching a plateau when n; reaches the same order of magnitude as C. This
roughly coincides with ASR systems’ behaviour which generally shows a benefit
when data amount is steadily increased but eventually the observed improve-
ment diminishes.
Using equation (4), substituting the derivative of equation (5) and setting the
results to zero we can rearrange the equation to obtain an expression for the
triphone counts n;. The steps followed are,

aAAztotal p'LC
——rorar by 6
piC
A=
nZ + 0, (7)
piC
= _-. 8
ni= |25 ®)

It would be more convenient to calculate the triphone prior which will give
us a way of calculating the triphone counts independently of data size. Thus,
we can rewrite the triphone counts as a function of the total triphone count
as m; = ¢ N. Substituting this expression into equation (8), we obtain an
expression for the triphone prior,
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Triphone Accuracy versus Triphone Count
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Fig. 1 The hypothetical asymptotic accuracy function which describes the triphone accuracy
given the triphone count.

piC

N = )
q S (9)
g = K\/pi (10)

where K = %, / % To solve for the prior ¢;, which will be the optimal prior

set, we use the constraint that the sum of the prior must equal 1, ZfV:Dl qi =
1, which implies that K = —x~——. Finally, given the values of the initial

Np
Do VP
i=1
training set triphone prior, we can calculate the optimal prior by taking the
square root of the initial priors and then normalising their values such that
they sum to equal one.

— On the other hand, Moore (2003) produced a variety of evidence showing a
logarithmic relationship between the WER and the total amount of data used
to train an ASR system. If we assume that the same trend holds for individual
triphone accuracies, we obtain a relationship of the form

Ai(n;) = B+ Clogn;, (11)

with B and C parameters that describe the details of the logarithmic improve-
ments suggested by Moore. Following the same steps as above, we find that
this assumption requires that

qi = Pi (12)
in order to optimize ASR accuracy.

Thus, these two functional forms lead to data-selection approaches that range
between “natural” selection (i.e. the selected triphone frequencies should match
those that occur in the reference data) to “compressed” selection, where the se-
lected frequencies are proportional to the square root of the occurrence frequencies.
Which of these forms is most appropriate for speech data is an empirical question,
and we investigate evidence from a few widely-studied corpora below.
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4.2 Triphone accuracy function: empirical evidence

In order to gain a better understanding of the relationship between accuracy and
frequency, triphone accuracies were measured for the WSJ (Paul and Baker, 1992)
and BN corpora (Graff et al, 1997). The ASR system configuration is detailed
in section (5.5). Triphone accuracies were calculated from deletion and insertion
balanced phone-level recognition outputs. The BN-trained system was used to
recognise all the WSJ data and similarly the WSJ-trained system was used to
recognise all the BN audio data. The phone outputs were expanded to triphones
and all silence models were removed — silence and short-pause. The alignments
had to be processed further by altering triphone contexts around silence markers
which did not occur at the start and end of an utterance. This involved removing
the silence markers from the triphone name and inserting the appropriate phone
name. To calculate the triphone accuracies, a pooling strategy was used with all
alignment being ignored. If a triphone was found in the reference and recognition
outputs then the triphone was counted as correct. All triphones not common to
both outputs were marked as incorrect. To calculate the final triphone accuracy,
the final correct accumulators were divided by the sum of the final total and final
error accumulators for a specific triphone.

Figure 2 (A) shows the average triphone accuracy as a function of triphone
training occurrence estimated using a BN trained ASR system and recognising
WSJ data, and figure 2 (B) shows the number of distinct triphones used to average
the triphone accuracies. Similarly, figure 3 (A) shows the average triphone accuracy
as a function of triphone training occurrence estimated using a WSJ trained ASR
system and recognising BN data, and figure 3 (B) shows the number of triphones
used to average the triphone accuracies. The average triphone accuracy figures
(A) both show a logarithmic-style relationship between the triphone accuracy and
the number of triphone training examples — ever increasing amounts of data are
needed to improve the accuracy. These figures are relatively smooth to triphone
counts of around 100, but start to fluctuate after this point. The fluctuation can
largely be put down to the limited number of examples that are used to average
the accuracies as shown in the (B) figures — the triphones which have high training
counts usually only have one example with which to calculate an average accuracy.
Hence, factors other than the triphone count (e.g. the inherent variability of a
particular triphone) are excessively influential in those accuracies.

The triphone accuracy graphs shown in figures 2 (A) and 3 (A) are quite noisy
and it is difficult to get a sense of what the underlying trends are above the 100
triphone training count. Therefore, to obtain a set of smooth figures a simple
smoothing technique was employed — a moving average filter using 100 samples
either side of each data point was used to calculate the smoothed accuracies. Figure
4 shows the smoothed graphs for the triphone accuracies as a function of triphone
training count for both the BN and WSJ systems. Besides the artefact at the
end of the graphs, where the triphone accuracies decrease, the general trend is a
gentle increase in accuracies from counts 1 to about 20, then a rapid increase in
accuracies from about 30 to 750 triphone count, and, finally a diminishing of the
accuracy improvements above a count of 750.

These graphs are roughly compatible with both of the functional forms in the
previous section, but in the large-n region, where we would hope to understand
their differences in most detail, the graphs are too noisy for useful conclusions
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Average BN ASR System Triphone Accuracies
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Fig. 2 Graph (A) shows BN-derived triphone accuracy as a function of triphone training
count using the WSJ corpus as an evaluation set. Graph (B) shows the number of examples
used to average the triphone accuracies.

Average WSJ ASR System Triphone Accuracies
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Fig. 3 Graph (A) shows WSJ-derived triphone accuracy as a function of triphone training
count using the BN corpus as an evaluation set. Graph (B) shows the number of examples
used to average the triphone accuracies.

to be made. Fortunately, we can smoothly change from one form to the other by
adjusting the exponent of p; that is proportional to ¢;: if it is 1.0, we obtain the
optimal distribution for the logarithmic relationship, an exponent of 0.5 is optimal
for the relationship derived from learning theory, and intermediate values of the
exponent presumably correspond to intermediate relationships between accuracy

and training count.
Thus, we will set

L (13)

ST



Efficient data selection for ASR 11

Triphone Accuracy versus Triphone Training Occurrence
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Fig. 4 Smoothed graphs showing triphone accuracy as a function of triphone training count
for the BN and WSJ experiments.

where r is the compression factor. To obtain the target total number of training
triphones, the compressed and normalised probabilities of occurrence are multi-
plied by the total target count and rounded to remove fractional components.

4.3 Greedy Unit Selection

To select the target triphone count distribution we used a data selection approach
similar to the regularised Kullback-Leibler divergence-based data selection pro-
posed by Gouvéa and Davel (2011). The regularisation is controlled by a user-
specified constant. In their approach, the main goal was to select a set number
of utterances (N), from a larger dataset (T), to match a target distribution of
n-grams. The algorithm initialises a candidate subset by randomly selecting N
utterances. For all utterances which are left in dataset T, an utterance (U) is
selected and used to substitute, one at a time, all the utterances found in the
candidate subset. For each substitution, the change in KL-divergence is measured.
Once all possible substitutions have been made for the candidate subset utterances,
the substitution which gives the greatest decrease in regularised KL-divergence is
made.

Our data selection requires selecting a number of utterances which will produce
the desired distribution and limit the number of training triphones to a set amount.
Thus, we modified the Gouvéa and Davel (2011) approach in a number of ways.
Our algorithm steps are:

— Initialisation Stage: The candidate subset is created by randomly selecting
utterances and limiting the number of utterances by the number of training
triphones instead of a set utterance count.

— Main Stage: The main stage of the algorithm implemented an iterative two-
phase selection process.
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— Phase One Addition: For the first phase, on a per utterance basis, each
remaining training set utterance is added to the candidate subset, the KL-
divergence measured, and then removed from the candidate subset. The
utterance which results in the largest decrease in KL-divergence is added
to the candidate subset.

— Phase Two Remowal: For the second phase, on a per utterance basis, each
utterance in the candidate subset is removed, KL-divergence measured and
the utterance placed back into the candidate subset. The utterance which
results in the largest decrease in KL-divergence is removed.

— Correction Phase: The correction phase ensures that the candidate subset has
the correct number of target triphones.

— If the training triphone count is too high then, utterances are removed
from the candidate subset, via Phase Two Removal, until the target count
is reached.

— If the training triphone count is too low, utterances are added from the
training set, via Phase One Addition, until the target count is reached.

5 Experimental Setup

This section describes the corpora used in our investigations, data selections and
experimental setups.

5.1 Corpora
5.1.1 TIMIT

The TIMIT (Fisher et al, 1986) corpus contains read-speech American English
high-bandwidth audio recordings. The corpus contains 6300 utterances collected
from 630 speakers each contributing 10 utterances. The speakers were selected
from eight distinct dialect regions. The corpus has a 70-30 percent male-female
gender split. The text prompts consisted of dialect, phonetically-compact and
phonetically-diverse sentences. Two dialect sentences were read by all speakers
and used to measure dialect differences. The phonetically-compact sentences were
designed to cover phonetic pairs and each speaker spoke five sentences with seven
speakers reading the same sentences. The phonetically-diverse sentences added
phonetic diversity and were selected to maximise allophonic contexts. Each speaker
read three phonetically-diverse sentences — unique to the specific speaker.

For our TIMIT experiments we removed the sentences read by all speakers,
as their high frequency severely biases the corpus distribution and thus biases
the results. Table 1 shows statistics for the reduced TIMIT corpus training and
evaluation sets.

5.2 Wall Street Journal

The Wall Street Journal (WSJ) (Paul and Baker, 1992) corpus is a large American
English corpus built to meet a few design criteria. The entire corpus contains a
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Table 1 TIMIT corpus statistics with the dialect sentences removed.

Training | Evaluation
# utterances 3696 1344
# speakers 462 168
Duration (hours) 3.14 1.15

variety of audio and text, which accommodates various vocabulary sizes, language
model perplexities, variable sized speaker-dependent and -independent training
data amounts, read and spontaneous speech, verbalised and non-verbalised punc-
tuations and differing recording environments. For our experiments we chose the
speaker-independent read-speech training corpus with high-quality recordings, and
the 5k vocabulary evaluation corpus. The text prompts were chosen from news-
paper text. Similar to TIMIT we removed the speaker adaptation sentences. We
only sourced WSJ data from “The Continuous Speech Recognition Wall Street
Journal Phase I” corpus. Table 2 shows statistics for the WSJ corpus training and
evaluation sets, with the speaker-adaptation utterances removed.

Table 2 WSJ corpus statistics with the speaker-adaptation sentences removed.

Training | Evaluation
# utterances 8734 1858
# speakers 101 8
Duration (hours) 18.76 4.38

5.2.1 Lwazi

The Lwazi (Barnard et al, 2009) corpus contains telephone quality recordings
and their associated transcriptions covering the eleven official languages of South
Africa. The read and elicited speech data was collected from approximately 200
speakers per language with each speaker contributing 30 utterances. A portion of
the utterances were randomly selected from a phonetically balanced corpus and
the remainder are words or short phrases. For our experiments we limited ourselves
to the IsiZulu language spoken by the majority of South Africans. As the corpus
does not contain dedicated training and evaluation sets, we split the corpus into
ten folds. The folds were created by randomly partitioning the speakers into ten
mutually exclusive sub-corpora, which served as the evaluation sets. The training
sets were created by cycling through the evaluation folds and assigning all folds
to the training set except for the current evaluation fold. Table 3 shows some
statistics for the Lwazi IsiZulu sub-corpus by fold.

5.3 Data Selection

In section (4.1) we propose that the optimal data selection approach depends on
the relationship between the unit’s accuracy and count. To investigate our ap-
proach we define three optimal distributions: (1) “natural” selection (based on the
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Table 3 Corpus statistics for the ten randomly selected folds for the IsiZulu Lwazi corpus.

Training Evaluation
Fold | # utterances | # speakers | Duration (hours) | # utterances | #speakers | Duration (hours)
1 5189 179 8.29 596 20 0.88
2 5229 179 8.34 556 20 0.84
3 5189 179 8.22 596 20 0.95
4 5196 179 8.14 589 20 1.03
5 5228 179 8.30 557 20 0.88
6 5203 179 8.20 582 20 0.97
7 5213 179 8.23 572 20 0.94
8 5197 179 8.33 588 20 0.84
9 5203 179 8.23 582 20 0.94
10 5218 180 8.32 567 19 0.86

logarithmic relationship), (2) “compressed” selection (based on learning theory)
and (3) a combination of the two (“intermediate”).

To produce an optimal distribution for the “natural” selection we choose ut-
terances at random until a specified target total training triphone count was
achieved. Throughout this volume “natural” represents a random selection.

The optimal “compressed” distribution was created by:

Estimating the triphone counts from a training utterance set.

Calculating the triphone distribution by normalising the sum of the triphone
counts to one.

— Applying the square-root operator to the triphone probabilities.
Re-normalising the transformed triphone probabilities so that they sum to one.
Multiplying the triphone probabilities by a target training triphone count and
further normalising by rounding to the nearest integer.

— Using the KL-divergence selection algorithm (see section 4.3) to select the
target distribution from the entire training utterance set.

To produce the “intermediate” optimal distribution, the steps which produce
an optimal “compressed” distribution were followed, except the triphone proba-
bilities are raised to a power of 0.75 instead of applying the square-root operator.
It was found that the TIMIT, WSJ and Lwazi training corpora contained many
utterance repetitions. Table 4 shows the number of utterances and unique utter-
ances found in the TIMIT, WSJ and Lwazi training sets. Therefore, an additional
investigation was performed to determine the effect of estimating the triphone
distributions on the unique sentences only but still selecting from all the training
utterances to achieve the target training triphone distributions.

Table 4 The total number of utterances and unique utterances found in the TIMIT, WSJ
and Lwazi training sets.

Corpus | # utterances | # unique utterances
TIMIT 3696 1731
WSJ 8734 5028
Lwazi 5786 3917

Lastly, to compare our data selection results with current selection techniques,
the maximum entropy principle (max-entropy) selection was also used. We fol-
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lowed the max-entropy selection algorithm outlined in Wu, Zhang, and Rudnicky
(2007) and selected either word or triphone units. Their proposed greedy selection
algorithm efficiently selects the required number of utterances by analysing the
change in entropy if an utterance is added to the training pool: if the increase is
above a certain threshold then the utterance is included in the training set. The
chosen threshold determines the final size of the training set.

To distinguish amongst the various data selection methods, the following keys
will be used henceforth:

— Natural - “natural” data selection (random)

— Sqrt - “compressed” data selection

— 0.75 - “intermediate” data selection

— MaxEnt Tri - max-entropy selection based on triphone units

— MaxEnt Wrd - max-entropy selection based on word units

— Uniq Sqrt - “compressed” data selection using the unique utterance triphone
distribution

— Uniq 0.75 - “intermediate” data selection using the unique utterance triphone
distribution

5.4 Matched-Pairs Significance Test

To determine the statistical significance of the performance differences measured,
we employed a matched-pairs statistical significance test described by Gillick and
Cox (1989). Initially, the speech stream is partitioned into statistically independent
segments where the segment can be sentences, speech occurring between speaker
pauses or entire utterances. For our purposes we chose the entire utterance as the
segments. Next, we count the number of errors, per segment, made by the two
algorithms to be compared, Nj,,o, where i is the segment number. In an ASR
setup, the error is given by the sum of deletion, insertion and substitution errors.
Given the error counts, we define a variable Z* = N — Ni,i = 1,2,...,n, to be
the difference in errors made in a segment and n is the total number of segments.
If the algorithms perform similarly, the average difference in the number of errors
made in a segment, pu. would be close to zero, thus we would like to ascertain
whether or not p, = 0. If n is large, we can make the assumption that test
statistic will approximately be normally distributed with unit variance. To set
up the significance test, we define the null hypothesis as Ho : g = 0 and the
alternative hypothesis is defined as Hi : u, # 0. To test the validity of the null
hypothesis, we perform a two-tailed test by computing the P-Value.

5.5 ASR systems

For all experiments we trained standard HMM-based ASR systems. Three state
left-to-right HMMs (beginning and ending non-emitting states not counted) were
used to model tied-state cross-word context-dependent triphones. Each HMM state
contained eight mixture Gaussian models which modelled the state distributions.
The state-tying questions were generated by creating left and right questions for
each individual phone. The audio was encoded into Mel-Frequency Cepstral Co-
efficients (MFCC) vectors using a 25 ms window and shifting the window by 10
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ms after encoding a frame. The MFCC vectors were 39 dimensional and were
constructed by appending 13 static, 13 first derivative and 13 second derivative
components. Speaker-based Cepstral Mean Normalisation (CMN) was applied to
each utterance. This standard HMM-based ASR setup was used throughout our
experiments. The acoustic models were trained on audio data sourced either from
the training corpus or the relevant cross-validation folds (for the Lwazi IsiZulu
corpus).

5.6 Training corpora

To test the various data selection approaches, we partitioned the various training
corpora into fractional subsets and trained ASR systems on these sub-corpora. The
data-selected fractional training sub-corpora were generated by selecting a subset
of training utterances which produced a specified percentage of the total number of
triphones which made up the entire training set. The percentages used were 20%,
40%, 60%, and 80% e.g if a training corpus contained 100000 training triphones,
then four sub-corpora were created that contained roughly 20000, 40000, 60000
and 80000 training triphones. In addition, for the “natural” and max-entropy
selections, a growing selection strategy was utilised, which meant that the larger
sub-corpora were created by using the previous smaller sub-corpus as a starting
point and adding utterances to meet the larger training triphone counts i.e. 80%
contains all 60% utterances, 60% contains all 40% utterances and 40% contains
all 20% utterances. The TIMIT, WSJ and 10-fold Lwazi corpora training sets will
be used to create the various sub-corpora.

5.7 Performance measures

The performance of the different ASR systems was measured using the word ac-
curacy (Word Acc %) percentages defined in (Young et al, 2009). To measure the
word accuracies, the evaluation sets were recognised using the acoustic models
trained on the various data selections. The decoding network was built using a flat
word-loop grammar and contained only the words which occurred in the evaluation
set. To evaluate the statistical significance of the performance, the matched-pairs
significance test was used as described in section (5.4). The “natural” results will
serve as reference for the statistical significance tests and a significance level of
0.001 is chosen. The statistical signification values will be converted to common
logarithm equivalents, thus the significance level becomes —3 and any value be-
low this indicates a significant result — significant improvements are prepended by
an asterisk (*). In addition, all results where an improvement was observed are
marked in blue while degradations are marked in red.

To verify any improvements brought about by the use of data selection meth-
ods were not merely achieved by matching training and evaluation distributions,
independent evaluation corpora are used. This will ensure different triphone dis-
tributions for the training and evaluation sets. Specifically, the WSJ evaluation
set will be used to validate TIMIT data selections, the TIMIT evaluation set will
be used to validate WSJ data selections.
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As our theory makes the assumption that the overall ASR system accuracy is
given by a weighted sum of individual triphone accuracies we will also report tri-
phone accuracy values as well as their statistical significance. The triphone results
are derived from the word recognition outputs which are expanded to phone-level
transcriptions which are further processed to form triphone labels.

6 Results

In this section we present data selection results on three significantly different
corpora: American English TIMIT, American English WSJ and IsiZulu Lwazi.

6.1 TIMIT

Figure 5 shows word accuracies for TIMIT trained and evaluated systems devel-
oped using various data selection methods and amounts of training data. Both
max-entropy selection methods produce consistently worse performances as com-
pared to the Natural data selection approach. The word-based max-entropy se-
lection, however, performs better compared to the triphone-based max-entropy
selection for all data amounts. The remaining data selection methods all achieved
higher accuracies except for 0.75 method at 80% — using the Natural as a baseline
measure. The Sqrt approach provides slightly higher accuracies compared to the
0.75 across data amounts. The unique variates produce the same trend for the
20 % and 40 % data amounts but at 60 % and 80 % Uniq 0.75 produces better
performances over the Uniq Sqrt method. At the 60% and 80% data amounts,
Sqrt achieves higher accuracies compared to its unique variant.

54

Word Accuracy (%)

Natural —+—
MaxEnt Tri -=-X---
B MaxEnt Wrd ---%:--
L Sqrt i
i 0.75 --m--
’ Unig Sqrt --o--
Un‘iq 0.75 - -®

36 I I I I
20 30 40 50 60 70 80

Percentage Training Data (%)

Fig. 5 Word accuracies for TIMIT trained and evaluated systems for various training data
percentages and data selections methods.
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Table 5 captures the statistical significance of the results shown in Figure 5.
Three word accuracies produced by the triphone-based max-entropy selection are
significantly worse while only a single word-based max-entropy result is signifi-
cantly worse. The 0.75 method managed a single significant improvement while
the remaining techniques (Uniq Sqrt and Uniq 0.75) achieved two significant im-
provements each.

Table 5 Logarithmic P-Values of results produced by different systems and training data
amounts for the TIMIT train and evaluation scenario.

Percentage Selection Type

MaxEnt Tri | MaxEnt Wrd Sqrt 0.75 Uniq Sqrt | Uniq 0.75
20 % *.8.48 *-5.48 -1.35 -1.13 *-4.18 -1.32
40 % -1.87 -0.85 *-6.98 | *-4.35 *-14.70 *-11.05
60 % *-7.49 -0.73 *.3.91 | -1.81 -2.54 *-4.94
80 % *-3.98 -0.26 -0.47 -0.24 -0.23 -0.89

The results in figure 5 show, for the TIMIT training and evaluation scenario,
moving from a “compressed” to “intermediate” data selection approach produces
the best performance.

Figure 6 shows the word accuracies produced by various TIMIT trained systems
evaluated using the WSJ corpus developed on differing training data amounts and
data selection approaches. As with the TIMIT only results, both max-entropy data
selection methods deliver performances that are worse compared to the Natural
approach. The remaining data selection techniques produce better accuracies but
the order of the best result is dependent on the training data amount — 20 % 0.75,
40 % Uniq Sqrt, 60 % Sart and 80 % Uniq 0.75. There is no clear pattern on
which data selection method to choose when moving from lower to higher data
amounts — except any selection of “compressed” or “intermediate” is better than
choosing at random.

Table 6 shows logarithmic P-values statistical significance tests for ASR system
results, developed on the TIMIT corpus and evaluated on the WSJ corpus. The
max-entropy selections methods produce significantly worse results for the 20 %
and 40% data amounts and at 60% for the word-based max-entropy selection.
At the 20% data percentage 0.75 delivered a significantly better result. For the
40% and 60% data intervals the data selection approaches, Sqrt, 0.75, Uniq Sqrt
and Uniq 0.75 all produced significantly better accuracies. Lastly, at the 80%
data percentage the Sqrt, Uniq Sqrt and Uniq 0.75 obtained significantly better
results.

Table 6 Logarithmic P-Values for results obtained using TIMIT trained and WSJ evaluated
ASR systems.

Percentage Selection Type

MaxEnt Tri | MaxEnt Wrd Sqrt 0.75 Uniq Sqrt | Uniq 0.75
20 % *-15.00 *-8.51 -1.23 *.3.63 -2.15 -0.71
40 % *.8.12 *.12.99 *.Inf *.6.34 *-Inf *.8.90
60 % *Inf -2.35 *.7.63 | *-5.16 *-4.83 *-4.19
80 % -0.41 -0.02 *-10.02 -1.83 *.3.14 *.13.89
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Fig. 6 Word accuracies produced by ASR systems trained on TIMIT corpus and evaluated
using the WSJ corpus using different training data amounts and data selection methods.

6.2 WSJ

Figure 7 shows word accuracies for WSJ trained and evaluated systems using dif-
ferent training data amounts selected with various data selection techniques. At
the 20% data percentage only the 0.75 produces the best accuracy while the re-
maining techniques perform worse compared to the Natural approach. For the
40% data interval, the Uniq Sqrt, Uniq 0.75 and MaxEnt Wrd approaches showed
an improvement, while techniques Sqrt, 0.75 and MaxEnt Tri obtained decreased
accuracies when compared to Natural. At 60% only the 0.75 and Uniq 0.75 ap-
proaches produced improved accuracies. Lastly, at the 80% data amount the Uniq
0.75 and Sqrt provided an improvement compared to the Natural data selection.
The results show, moving from lower to higher data amounts, that selecting the
0.75 at 20% and Uniq 0.75 for the remaining data percentages will provide an
improvement in word accuracies over the natural selection. This is in contrast to
the TIMIT results which favoured a move from “compressed” to “intermediate”
data selections which may be down to different corpus-specific distributions.

Table 7 shows statistical significance test logarithmic P-values for the WSJ
developed and evaluated systems. The only significant results are at the 20% data
percentage for the max-entropy data selection methods which produced lower
accuracies compared to the Natural data selection. The observed accuracy im-
provements obtained using 0.75 and Uniq 0.75 data selection approaches are not
statistically significant.

Figure 8 shows word accuracies for ASR systems trained on WSJ and evalu-
ated with TIMIT using different data selection methods and percentages of total
training data. Besides at the 40% training data percentage where word-based max-
entropy data selection approach achieved a better result compared to the Natural,
for all other data percentages the max-entropy methods perform worse compared
to the other data selection methods. For all training percentages, the Sqrt and
Uniq Sqrt achieve better accuracies compared to the remaining data selections ap-
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Fig. 7 Word accuracies for WSJ developed and evaluated systems using various data selection
techniques and data training percentages.

Table 7 Logarithmic P-Value results for WSJ trained and evaluated ASR systems using
different data selection methods and percentages of the total training data.

Percentage Selection Type

MaxEnt Tri | MaxEnt Wrd | Sqrt 0.75 | Uniq Sqrt | Uniq 0.75
20 % *.7.45 *.3.42 -0.06 | -0.63 -0.03 -0.79
40 % -0.09 -0.85 -0.27 | -0.13 -0.42 -0.87
60 % -1.55 -0.71 -0.87 | -0.23 -0.16 -0.94
80 % -1.19 -2.39 -0.20 | -0.08 -0.36 -0.92

proaches, however, the best results depend on the specific data percentage — 20 %
Uniq Sqrt, 40% Sqrt, 60 % Uniq Sqrt and Sqrt. The Uniqg 0.75 produces accura-
cies above the Natural and below the “compressed” data selection methods except
at the 80 % training percentage where the performance is worse compared to the
random selection. The 0.75 data selection approach managed to improve the word
accuracies for the 20% and 40% percentages compared to the Natural selection
but no improvement was seen for the remaining training intervals. Only at the 20%
data training percentage did 0.75 improve upon the Uniq 0.75 approach. From
this, the results would suggest that for the cross-corpus case of developing models
on WSJ and evaluating using the TIMIT corpus that using the “compressed” data
selection methods to choose the training data affords a slight improvement in the
word accuracies. This at odds with both TIMIT experiments (“compressed” to
“intermediate”) and the WSJ only experiments (“intermediate”).

Table 8 shows statistical significant test logarithmic P-values for the word accu-
racies obtained on systems developed on WSJ data and evaluated using the TIMIT
corpus. The vast majority of the results are not statistically significant besides the
max-entropy results at 20% and 60% where significant decreases in performance
are seen. Even though the Sqrt and Uniq Sqrt produce word accuracy improve-
ments these are not significant compared to the Natural data selection approach.
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Fig. 8 Word accuracies obtained on systems developed on WSJ and evaluated on TIMIT
using various training data percentages selected with different data selection approaches.

Table 8 Logarithmic P-Value results for WSJ trained and TIMIT evaluated ASR systems
using different data selection methods and percentages of the total training data.

Percentage Selection Type
MaxEnt Tri | MaxEnt Wrd | Sqrt 0.75 Uniq Sqrt | Uniq 0.75
20 % *.8.77 *-3.01 -0.89 | -0.36 -1.47 -0.80
40 % -2.45 -0.08 -0.88 | -0.31 -0.73 -0.17
60 % *-3.24 *-5.20 -0.68 | -0.13 -1.14 -0.33
80 % -1.74 -2.19 -0.39 | -0.18 -0.19 -0.20
6.3 Lwazi

Figure 9 shows word accuracies for ASR systems developed and evaluated on Lwazi
at different training data percentages and using various data selections methods.
The word-based max-entropy data selection method consistently produces worse
accuracies compared to the Natural selection. The remaining data selection meth-
ods also achieved decreased performances at 20%, 40% and 60% data intervals. At
the 80% training data percentage, however, the “compressed” and “intermediate”
data selections methods managed to improve the word accuracies with the order
(worse to best): Sqrt, Uniq Sqrt, 0.75 and Uniq 0.75.

The statistical significant test logarithmic P-values, captured in Table 9, show
that none of the improvements at the 80% data interval are statistically signifi-
cant. At the 20% data percentage all but the 0.75 approach showed a significant
decrease in performance. For the 40% training interval, systems developed on data
selections methods MaxEnt Wrd, Uniq Sqrt and Uniq 0.75 all produce word ac-
curacies which were significantly degraded. Lastly, at the 60% interval only the
MaxEnt Wrd delivered significantly poorer word accuracies.

If one compares the TIMIT, WSJ and Lwazi word accuracies, the Lwazi sys-
tems produced the highest errors. This might be explained by the telephony col-
lection channel for the Lwazi data and that the utterances were collected in a more
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Fig. 9 Word accuracies for Lwazi developed and evaluated systems using various data selec-
tion techniques and data training percentages.

Table 9 Logarithmic P-Value results for Lwazi trained and evaluated ASR systems using
different data selection methods and percentages of the total training data.

Percentage Selection Type

MaxEnt Wrd Sqrt 0.75 | Uniq Sqrt | Uniq 0.75
20 % *-Inf *-5.96 | -0.39 *-10.77 *-3.44
40 % *-Inf -3.00 | -2.10 *-3.79 *-3.05
60 % *.7.12 -1.00 -1.11 -0.82 -0.94
80 % -0.06 -0.24 | -1.55 -0.75 -2.05

natural way with less stringent collection process as compared to the strict TIMIT
and WSJ collection setups.

Taken together, our experiments on these three corpora suggest that the Natural
data selection strategy generally performs very well, but that the “compressed”
and “intermediate” methods may also be useful in appropriate circumstances. The
relative under-performance of max-entropy based data selection can be understood
by reference to the analysis of Section 4 — from that analysis, it is clear that more
training samples should be devoted to the more common acoustic units, since
those units will have a greater influence on the overall accuracy. The relative per-
formance of other three approaches, however, is not as straightforward; we believe
that the out-performance of “compressed” and “intermediate” on the TIMIT data
set results from the more skewed distribution of triphones which results from the
design of that corpus. Hence, the benefit of emphasizing more common triphones
during selection becomes more pronounced.

7 The relationship between train-test divergence and accuracy
One possible explanation for the observed word accuracies, presented in Section

6, is the difference in distribution between the training and evaluation sets. To
investigate this possibility the Kullback-Leibler divergence metric was used to
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measure the difference between the two distributions. The full set of results can
be found in Kleynhans (2013); a summarised version is presented in this section.
Table 10 shows best word accuracies and the lowest KL-divergence for various
data selection methods and training and evaluation corpora. The main conclusion
which can be made from the work presented in Kleynhans (2013) is: on average the
divergences between the training and evaluation corpora were indeed negatively
correlated with the accuracy achieved — the lower the KL-divergence measures
the higher the accuracies. The correlation was measured across all experiments.
From table 10, however, there is not a single case where the lowest KL-divergence
achieved the best word accuracy — therefore this does not seem to be the only
factor that influences the achieved accuracy.

Table 10 The data selection methods which produced the best word accuracies and lowest
KL-divergence for the various training sets, evaluation sets and data percentages.

Training | Evaluation Data Best Word Lowest KL-
Corpus Corpus Percentage | Accuracy Method divergence Method
TIMIT TIMIT 20 Uniq Sqrt Uniq 0.75
TIMIT TIMIT 40 Uniq Sqrt Uniq 0.75
TIMIT WSJ 20 0.75 Uniq 0.75
TIMIT WSJ 40 Uniq Sqrt Uniq 0.75
TIMIT WSJ 60 Sqrt Uniq 0.75

WSJ WSJ 20 0.75 Natural / Uniq 0.75

WSJ WSJ 40 MaxEnt Wrd Natural

WSJ WSJ 60 Uniq 0.75 Natural

WSJ WSJ 80 Uniq 0.75 Natural

WSJ TIMIT 20 Uniq Sqrt Sqrt

WSJ TIMIT 60 Uniq Sqrt Sqrt

Lwazi Lwazi 20 Natural 0.75

Lwazi Lwazi 40 Natural 0.75

Lwazi Lwazi 60 Natural 0.75

8 Conclusion

The work presented here outlines a new data selection theory which provides a
mechanism for choosing units based on criteria for boosting the system’s overall
accuracy. Contrary to other unit selection methods our approach takes into consid-
eration the relationship between a unit’s accuracy and its frequency of occurrence.
In our theoretical framework we showed that the optimal distribution is dependent
on the assumed relationships between the triphone frequency and accuracy. Based
on theoretical and empirical evidence, the two relationships we investigated were
logarithmic and hyperbolic. The hyperbolic relationship leads to a unit selection
strategy in which the selected frequencies are proportional to the square root of the
occurrence frequencies, while the logarithmic relationship leads to selected units
which match the reference set i.e. units selected at random. A number of data se-
lection experiments were performed to investigate the relationships and compare
our approach with commonly used methods. From these we may conclude:

— In the vast majority of cases the max-entropy based data selection consistently
produced the lowest performing systems and word-based max-entropy selection
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is superior to triphone-based unit selection. These results are consistent with
results presented by Gouvéa and Davel (2011).

— Using our experimental setup and choosing smaller sub-corpora, the “natural”
selection (random choice) is an effective strategy and is difficult to outperform
in a consistent manner.

— For the TIMIT trained ASR systems;

— The “compressed” and “intermediate” data selection methods have the
ability to produce improved accuracies, however, not all were significantly
better when compared to “natural” selection.

— On average estimating the triphone distribution from unique utterances
and then performing data selection gave slightly better system accuracies
when compared with systems which estimated triphone distributions using
all the data.

— For the WSJ trained ASR systems; The “compressed” and “intermediate” data
selection methods performed comparably to the “natural” selection method for
both WSJ and TIMIT evaluations. None of the observed performance gains
were statistically significant.

— For the Lwazi trained ASR systems; On average, the “compressed” and “in-
termediate” data selection methods performed comparably to the “natural”
selection method.

Based on the results we can see that for the majority of experiments the “com-
pressed” and “intermediate” data selection methods achieved results comparable
to that of the “natural” selection. Only for the TIMIT experiments did we see an
improvement but the TIMIT corpus is somewhat artificial as the prompt selection
was heavily engineered. Fully understanding why the TIMIT results required non-
uniform sampling is likely to provide additional insights, that may be useful for
the creation of specialized corpora. The WSJ and Lwazi corpora are more typical
of ASR data collections which showed no significant performance gains using a
variety of data selection approaches. The max-entropy based selections did not
show any promising results which is in line with findings presented by Gouvéa and
Davel (2011).

The main conclusion, thus is that for any data selection, matching the “nat-
ural” distribution is a competitive strategy. There are indications that the “com-
pressed” and “intermediate” data selection methods may be useful under specific
circumstances, and it is worthwhile investigating whether those methods may be
preferable to “natural” selection in other practical situations. Given a new corpus,
however, an initial random selection, to match the “natural distribution”, would
be a good approach to select a subset of the data.

In section (7) we showed that there was a negative correlation between the
accuracy and training and evaluation KL-divergence, but from table 10 we also
showed that the best KL-divergence did not produce the best result. This implies
that merely matching the training and evaluation distributions is not the only
factor which influences the resulting accuracy. Therefore using KL-divergence as a
selection criterion improves the results to a point before other factors start affecting
the system accuracy.

Finally, it should be noted that some of the effects observed in our studies
are not only statistically significant, but also have substantial potential impact.
For example, in tables 5 and 6 (TIMIT experiments), all the “compression” and
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“intermediate” methods obtain similar or better accuracies at 60% corpus size
to what the Natural method obtains at 80% corpus size, implying that similar
performance could be achieved with only 60/80 = 75% of the collection effort.
Such savings should be quite useful in practice.
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