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INTRODUCTION 
 
Seismicity poses a serious risk to workers in deep and 
overstressed mines, such as the gold mines in the 
Witwatersrand basin of South Africa, as well as 
inhabitants of earthquake-prone regions such as Japan. 
A 5-year collaborative project entitled "Observational 
studies in South African mines to mitigate seismic risks" 
was launched in 2010 to address these risks, drawing on 
over a century of South African and Japanese research 
experience with respect to mining-related and tectonic 
earthquakes, respectively (Ogasawara et al., 2009; 
Durrheim, 2010 Durrheim et al., 2010; Utsu, 2003). 
Here we report on the progress that has been achieved 
since the last report at a SAGA meeting, Geosynthesis 
2011 in Cape Town. 
 
The project has three main aims (see Figure 1):  

1. To learn more about earthquake preparation and 
triggering mechanisms by deploying arrays of 
sensitive sensors within rock volumes where 
mining is likely to induce seismic activity.  

2. To learn more about earthquake rupture and 
rockburst damage phenomena by deploying robust 
strong ground motion sensors close to potential 
fault zones and on stope hangingwalls.  

3. To upgrade the South African surface national 
seismic network in the mining districts.  

 

 
Figure 1. Schematic illustration of the research 
design. Jpn - Japanese researchers; CSIR - Council 
for Scientific and Industrial Research; CGS - 
Council for Geoscience 
 
The knowledge gained during the course of the project 
and the new infrastructure installed will improve 
seismic hazard assessment methods in mines and 
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mitigate the risk of rockbursts. It is also anticipated that 
new knowledge of earthquake physics will mitigate the 
risks posed by tectonic earthquakes.  
 
METHODOLOGY 
 
Research sites have been established at mines operated 
by Gold One (Cooke #4 Shaft), Anglogold Ashanti 
(Moab-Khotsong) and Sibanye Gold (Hlanganani Shaft) 
(Durrheim et al., 2012). Boreholes were drilled to locate 
faults that are considered likely to become seismically 
active as a result of mining activity. Acoustic emission 
sensors, strain- and tilt meters, and controlled seismic 
sources were installed to monitor the deformation of the 
rock mass, the accumulation of damage during the 
earthquake preparation phase, and changes in dynamic 
stress produced by the propagation of the rupture front 
(see Figure 1 and Table 1). The suite of sensors has 
greater sensitivity and dynamic range than those 
typically used in civil or mining engineering 
applications, making it possible to record very small 
changes in stress and strain as well as violent rock mass 
deformation associated with large seismic events. These 
data will be integrated with measurements of stope 
closure, stope strong motion, seismic data recorded by 
the mine-wide network, and stress modelling. The 
Council for Geoscience deployed 10 surface seismic 
stations in the Far West Rand district and installed the 
Antelope Seismic Processing System to handle the large 
volume of data. 
 
ROCK PROPERTIES 
 
By March 2013, more than 70 boreholes (totalling more 
than 2.8 km in length) had been drilled at project sites to 
locate fault zones accurately and to deploy sensors. The 
tensile strength, uniaxial and triaxial compressive 
strength, Young’s modulus and Poisson’s ratio of the 
strata surrounding the research sites are being measured 
using the rock testing machines in the School of Mining 
Engineering, University of the Witwatersrand. 
 
IN-STOPE GEOTECHNICAL MAPPING 
 
Stopes near to the instrumented target faults are 
surveyed from time to time to provide baseline data that 
can be used to assess the quasistatic and dynamic 
response of the rock mass to mining. A tape measure is 
laid along the face, and the face, hanging- and footwall 
and installed support are mapped at ca. 5 m intervals 
(Figure 2). Rock types, joints, faults, veins and stress-
induced fractures are recorded (Figure 3), as well as the 
installed support units. Any anomalies between the 
observation points (e.g. faults, dykes, brows) are 
mapped, as well as any falls-of-ground. 
 
New technologies that are being developed for in-stope 
mapping at CSIR include an electronic sounding device 
and thermal camera to map loose hangingwall slabs, a 
sonic closure meter, a strong ground motion sensor, and 

an autonomous robotic platform (Durrheim et al., 2013). 
The ultimate objective of this work is to improve our 
understanding of the factors that affect the vulnerability 
of a stope to seismic shaking, and to develop practical 
systems to map the stope and guide proactive 
interventions that will reduce the rockburst risk. 

 

 

Figure 2. Mapping joints and fractures in a stope in 
Cooke #4 Shaft Pillar 

ACOUSTIC EMISSION MONITORING 
 
Masao Nakatani and his team have installed a large 
number of acoustic emission (AE) sensors in a volume 
spanning 95 m (N-S) x 50 m (E-W) x 30 m (depth) at a 
depth of about 1 km at Cooke #4 mine (Table 1; Figure 
4) (Naoi et al. 2012; Moriya et al. 2012). The 50 kHz 
AE sensors are installed in 60 mm diameter boreholes. 
In the period from 30 September to 5 October in 2011 
the monitoring system automatically located 40,555 AE, 
some of which were located by Moriya et al. (2012) 
using the joint hypocenter location method (Figure 3).  

Figure 3. A plan view of the Cook #4 research site 
showing AE sensors (squares), epicentres of 8273 AE 
events that occurred from 30 September to 5 
October 2011 (red dots), condition number (black 
contours), tunnels and the mining front (after 
Moriya et al. 2012).  

Moriya et al. (2012) confirmed that the condition 
number (a measure of the location error, Lee and 
Stewart, 1981) is low enough for the location to be 
useful over a sufficiently wide area (see the extent with 
condition number < 200 in Figure 3). Moriya et al. 
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(2012) also applied the multiplet and the double-
difference analysis to the selected multiplets, 
successfully delineating multiple planar structures. A 
similar AE network is being completed at Moab 
Khotsong mine. 
 
STRESS MEASUREMENTS 
 
Reliable evaluations of seismic hazard depend on a 
reasonably accurate description of the initial stress 
conditions, either as an input to numerical modelling of 
the stress field, or as in-situ stress information. 
However, stress measurements are rarely carried out in 
South African mines. One of the main reasons is that the 
drilling diameter required for overcoring (76 mm NX) is 
much larger than the diameters used for regular 
geological drilling, typically AX (48mm) or BX 
(60mm). The drilling of large diameter holes is slower 
and more expensive. A single overcoring measurement 
often takes several days to perform. 
 
The compact conical-ended borehole overcoring 
(CCBO) technique determines the 3D stress tensor by a 
single overcoring of a strain cell consisting of 16 or 24 
strain gauges (Sugawara and Obara, 1999). However, 
CCBO was designed for NX holes. Ogasawara et al. 
(2012) reduced the overcoring and associated tools to 
BX size while keeping the aspect ratio unchanged so 
that the published strain coefficients could be used. This 
modified method was tested at 3 km depth at Moab 
Khotsong, and, after further improvements, at 3 km at 
TauTona and 3.4 km at Mponeng It was demonstrated 
that three overcoring measurements can be made within 
two shifts (Ogasawara et al., 2013).  
 
CONCLUSIONS 
 
The mid-point of the 5-year project has passed. Most 
instruments have been deployed and we are now 
entering a period of intense monitoring. Important new 
observations of stress and the response of the rock mass 
to mining have been made, and many more are expected 
in the next two years as the mining front sweeps through 
the monitoring arrays. Ultimately we hope that this 
project will produce knowledge and technology that will 
reduce the risk posed by earthquakes. 
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Table 1: The project status as at the end of March 2013. *Installation not yet completed, # not yet procured 

Owner                                              
(Shaft)

Gold One                            
(Cooke #4)

Anglogold Ashanti 
(Moab-Khotsong)

Sibanye Gold 
(Hlanganani)

Ore body at experimental site Several reef packages 
 10s of metres thick

Single thin tabular reef 
 (<2 m), many faults

Single thin tabular reef
 (<2 m), few faults

Mining scenario Extraction of shaft 
pillar, 400 m dia.

Extensive scattered 
mining

Sequential grid mining 

Depth About 1 km About 3 km About 3 km
Concern Instability of faults

 in the shaft pillar
Instability of large faults Instability of dip pillar

Fault characteristics Fault gouge 
 a few 10s of cm thick 

Fault zone 
 a few 10s of m thick

Fault gouge
 a few cm thick 

Applicability of research to 
mining

Final stage mining 
 e.g. shaft pillars

Mining in highly faulted 
districts

Sequential grid mining
 at depth

Acoustic emission A few tens of sensors Installed 75% of a few 
tens of sensors

-

Strain 2 strainmeters Installed 3 strainmeters 3 strainmeters
Velocity & attenuation 1 Tx, 3 Rx 2 Tx, 3 Rx* -
Rupture dynamic stress 3 instruments near fault - 4 instruments near fault
Slow fault slip 1 sensor 2 sensors*
Stress Planned Completed Planned

Borehole radar - Survey completed -
Tilt - Procured 2 tilt meters; 

Installed 1 tiltmeter
Installed 2 tilt meters

Stope closure - 1 set# 1 set#

Stope ground motion - 1 set accelerometers# 1 set accelerometers#

Surface ground motion Completed JICA New network* Completed JICA 
Status on February 2013 Have accumulated

 underground data
 for about two years

Completed drilling and
 80% of underground
 installation

Completed Japanese
 installation

Japanese Contributions

South African Contributions

 


