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Abstract—Localisation is one of the most important applica-
tions for wireless sensor networks since the locations of the sensor
nodes are critical to both network operations and most applica-
tion level tasks. Numerous techniques for localisation of sensor
nodes that make use of the Received Signal Strength Indicator
(RSSI) have been proposed because of the simplicity and low
cost of implementation. However, most of the research thus far
has regarded the RSSI technology as unsuitable for accurate
localisation due to the limited accuracy inherent to the current
ranging models. These models make the assumption that the
antenna radiation pattern is omnidirectional in order to simplify
the complexity of the algorithms. In this study, an accurate and
efficient localisation method that makes use of an improved RSSI
distance estimation model by including the antenna radiation
pattern as well as nodes orientations is presented. Mathematical
models for distance estimation, cost function and gradient of
cost function, that can be used in a distributed localisation
algorithm, are developed. This study also introduces a sensor data
fusion approach, combining accelerometer data, RSSI, antenna
radiation pattern and node orientation to reduce the computation
complexity during the tracking phase. The proposed algorithm
is implemented in Matlab. Simulation results show that the
proposed approach increases the accuracy of existing methods
using RSSI by up to 59%.

Index Terms—Antenna Radiation Pattern, Node Localisation,
Sensor Data Fusion, Gauss-Newton Optimisation Method.

I. INTRODUCTION

Determining the location of nodes is one key application of
Wireless Sensor Networks (WSN), for both civil and military
applications. A reliable positioning system is critical in many
WSN applications, especially for mobile ad-hoc networks.
During the last decade, most of the research efforts have
focussed on the improvement of the localisation accuracy and
complexity. Distributed approaches using complex filtering
and correction algorithms such as Kalman filters, Non Belief
Propagation as well as other radio mapping techniques
have been explored. Among these mapping techniques,
Multidimensional Scaling (MDS) and Curvilinear Component
analysis (CCA) are considered to be the most accurate and
efficient [1], [2]. Ranging methods play a primary role in
these localisation systems. The Received Signal Strength
Indicator (RSSI) based ranging technique have received
the most attraction. Specially designed antennas, filtering
algorithms and other techniques have been developed and
proposed in order to increase the localisation accuracy
[3]. More complex solutions including pattern recognition
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techniques have also been proposed [4]. However, none of
these methods have achieved a respectable accuracy when
using the RSSI ranging technique [5].

The most common sources of ranging errors using RSSI
include reflections on nearby objects, radio frequency noise,
and variable characteristics of the communication channel.
The biggest source for errors in distance estimation and hence
localisation error for most localisation algorithms based on
RSSI or Radio Frequency (RF) connectivity is the assumption
that the antenna radiation pattern is perfectly circular or
spherical in shape. It is therefore assumed that the formula
for RSSI attenuation over distance, as described by the Log-
Normal Shadowing Model (LNSM), is directly applicable.
Lymberopoulos et al. [6] provided a detailed characterisation
of signal strength properties and link asymmetries for the
CC2420 radio using a monopole antenna. They showed
that the antenna orientation effects are the dominant factor
of the signal strength sensitivity in 3-dimensional network
deployments.

However, in the real world, the pattern of radio transmitted
signal at the antenna is neither a circular nor a spherical
shape, and the path loss model is not valid due to problems
caused by the sensor mote and the environment of the
sensor field. A number of sensor systems are now deploying
directional antennas due to their advantages such as energy
conservation and better bandwidth utilisation.

Positioning systems are migrating towards hybridisation
where data coming from heterogeneous technologies are
fused to improve localisation accuracy and coverage. With
the advances in Microelectromechanical systems (MEMS)
technology, sensors such accelerometers and gyroscopes are
found in many devices and are easy and cheap to implement
in new designs.

In the algorithm proposed, orientation data, accelerometer
data as well as the RSSI data, coupled with the antenna
radiation patterns are proposed to provide an initial estimate
from which the final position can be refined in few steps using
an optimisation method such as the Gauss-Newton method.
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A. Problem Statement

The problem to be solved by this study may be considered
as follows. Given N wireless sensor network nodes deployed
randomly within a plane with some of them being mobile
and given the positions of a small number M of them that
are considered as Anchor Nodes (ANs) together with the
orientations of all the nodes and additional accelerometer mea-
surements, a localisation algorithm that improves the accuracy
of distance estimation using RSSI and efficiently finds the
accurate positions of all nodes at fixed intervals in time needs
to be developed.

II. RELATED WORK

While much attention has been paid to localisation accuracy
and computational effort, the impact of irregular antenna
radiation patterns have been often recognised with empirical
studies having been conducted [6], [7]. However, its inclusion
in the localisation algorithms considered were generally
dismissed for future study.

Some authors have exploited the directivity of the radiation
pattern as an approach for node localisation. In [8], the
described approach requires a modification of the antenna
and thereby its radiation pattern to ensure that the relative
angle, ¢,.;, obtained by pattern matching is unique and to
maximise the accuracy. One possible choice is a beam pattern
with one dominating lobe as used in [9], where the maximum
of radiation pattern is used to determine the bearing. Due to
the high noise of RSSI and a finite sampling angle interval,
this approach may not be optimal in terms of accuracy and
robustness. Another drawback is the significant reduction of
the communication range in the direction outside the main
lobe.

Attempts to model the radiation pattern described as Radio
Irregularity Model (RIM) has been presented in [10].

However, none of these studies have developed a
mathematical model or algorithm that includes the antenna
radiation pattern and node orientation in localising the sensor
nodes and no further research to include it in a localisation
algorithm has been conducted.

III. MATHEMATICAL MODELLING

The first step for determining the location of a node is to find
the distances between the respective nodes, which are assumed
to be mobile, and some other nodes, which are assumed to be
stationary. This is the so-called ranging phase.

A. Error Introduced By Radiation Pattern

From Fig. 1, the error introduced by the antenna radiation
patterns can be expressed as shown in equation (1).
RSSIij( = RSSIij (Actual)+AntETT (1)
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Fig. 1. Effect of Antenna Radiation Pattern

with
Antgyr = RadPatt;(p;) + RadPatt;(yp;) )

where RadPatt; and RadPatt; are antenna radiation patterns
(in dB) of node 7 and node j respectively. ¢; and ¢; represent
the actual node bearing in the same coordinate system as the
antenna radiation pattern.

B. Log-Distance Path Loss or Log-Normal Shadowing Model

The formula of the RSSI commonly used ranging method is
the Log-Normal Shadowing Model formula given in equation

(3).

‘ . dij
RSSI;; = Pry (j) — Pr,, (j) — 10nlog (dé) + X (o) 3)

where:

- Pr.(j) is the power of the transmitted signal (dBm);

- Pr_q0(j) the path loss at the reference distance dy (dB);

- dy is the reference distance (usually 1 m);

- d; is the distance between node ¢ and node j (m);

- n is the path loss exponent also known as propagation
index (unit-less);

- X (o) is a normal (or Gaussian) random variable with
zero mean, reflecting the attenuation (dB) caused by flat
fading.

This model does not take into account the effects of the
antenna radiation patterns and nodes’ orientations. This study
introduces these effect to obtain an improved RSSI model as
shown in equation (4).

C. Improved RSSI Ranging Model

The improved ranging model is obtained by including the
error introduced by the antenna radiation patterns to the value
of RSSI received by the node. Equation (4) describes the
improved model.

. . d;j
RSSIU = Pr, (])—PLdO (])—107]10g (d;) +Ant g, (4)
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Since the biggest source of error is the one caused by antenna
radiation pattern [6], X (o) found in equation (3) is assumed
to be negligible compared to Antg,.,. in this study as shown
in equation (5), therefore it does not appear in equation (4).

X(0) ~0 (5)

D. Optimisation Problem Formulation

The aim of the localisation approach is to match the
computed distances based on the node’s estimated positions
and the measured ones using the RSSI ranging technique.

E. Cost function
For the M pairs of nodes that are in range of each other:

M
=y
k=1

i (k) = iy (k)| ©®)

where:

dij(k) = \/(xi(k) —2j0)° + Wiy —viw)” (D

and

(PTx(k)—PL 10 ()= RSSI;;(k)+Ant .. (k) )
rt 107
' 3)

dij(k) = 10
F. Constraints

The equality constraints are imposed by the values of the
positions of the anchor nodes as well as localised nodes. Let
k represent the ID of the anchor nodes or localised nodes.
Therefore,

AeqX = beq 9

with Aeq(n, k) =1 and b = [xg, yx]
for
- k=1: P, P being the number of anchors or reference

points in the cluster;
- n € {anchor_IDs} and length(anchor_IDs) = M.

G. Optimisation Method

A gradient based optimisation method is used to calculate
the position of the nodes. Newton’s optimisation method uses
the gradient and the Hessian matrix of second derivatives
of the function to be minimised. Unlike Newton’s method,
the Gauss-Newton method has the advantage that second
derivatives, which can be challenging to compute, are not
required. However, it can only be used to minimise a sum of
squared function values, which is the case for the localisation
problem formulation this study attempts to solve. The Gauss-
Newton algorithm iteratively finds the minimum of the sum of
squares. The update mechanism is described in equation (10).

-1
Xir1 =Xy, = (Ji J) Ji & (10)

where Jj, is the Jacobian matrix(gradient) of the cost function
estimated at X — k and & is the residual error matrix form
by the individual terms of the cost function computed as will
be shown in equation (17).

H. Distributed and Cooperative Localisation Based on Anchor
Node Position Propagation

In this study, a distributed approach is proposed in which
each cluster head node estimates locally the positions of the
cluster members based on range measurements obtained from
neighbours and some prior information, such as positions of
other anchor nodes in the cluster, if available.

IV. ALGORITHM DESIGN AND IMPLEMENTATION

To ensure that the proposed algorithm takes the antenna
radiation pattern into account, the orientations of the antenna
of each sensor node must be known. An earth magnetic
sensor is used for this effect. To further improve the accuracy
and computational speed, accelerometer data are fused RSSI
and antenna orientation measurements. To achieve these
objectives, this study uses the LSM303DLHSS sensor from
ST Microelectronics. This MEMS sensor chip integrates a
tri-axial magnetic sensor and a tri-axial accelerometer.

The node positions are arranged in a matrix X in 2-D plan,
with indices corresponding to the indices of the corresponding
node in the cluster vector X. The set of measured distances be-
tween node ¢ and the neighbouring node j are given by d; ; and
the Euclidean distance between the same nodes is given by d;;.
The algorithm for localising the neighbouring nodes at the
distributed (local) level from only the anchor node position is
derived from graph theory and is designed using the following
steps:

A. Step I : Pre-computing

Create a cluster of nodes in its immediate neighbourhood
(N nodes). Only M pairs can communicate between them.
For each pair {s(k),r(k)}, where s(k) is the k;h sending
node and r(k) is the k,h receiving node, only the directed
connection between two nodes starting from s(k) and ending
at (k) are considered. From the connectivity graph, with
k = 1: M, the connectivity matrix also known as incidence
matrix can be calculated

1) Connectivity Matrix:
CH 012 Clk CVlN
021 022 Czk CZN
¢= Ci Ci .. G
Cu1 Cur Cur Cun
where
+1 if 1= s(k)
Cir =4 —1 if i=r(k) (11

0  otherwise
2) Radiation patterns of nodes j in (dB):

Patrn;(k,:) = 10log (RadPattern (r(k))) (12)
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B. Step 1I: Computation of the Cost Function

To calculate the cost function as defined in equation (6), the
following terms must be computed as shown in the following
steps, where k =1: M.

1) Euclidean distances:
Let 0., be the matrix containing the differences
[(z;—x5), (yi—y;)], where i = s(k), j =r(k)and k =1: N

Ti(1) — Tj(1) Yi(1) — Y50

0wy = | Ti(k) = Tj(k)  Yilk) ~ Yi(k) (13)
TiMm) — Tj)  Yi(m) — Yj(M)
02y can be obtained in as shown in equation (14).
6oy = C % X (14)
2) Vector of euclidean distances:
dij(1)
diy= | dig(k) | =\[sum(< bry00>.2)  (15)
dij (M)
3) Vector of Estimated distances:
dij (k) = 10.E2p() (16)
where
P r P _RSSImeasure A t rr k
E.’L'p(k’):( T Lao d+ Antg ( ))

107

4) Sign vector of the cost function:
The cost function is made up of the sum of residual errors
expressed in equation (17).

diljl - Jiljl
f = dikjk - &ikjk a7
diMjM - CZiMjM

The terms of the vector ¢ are not always all positive.
Therefore the absolute values of the terms of vector £ must
be considered when calculating the cost function. Consider a
vector S¢ as being the vector sign of £. The absolute value
||€|| would be obtained as a dot product multiplication of the
vectors £ and Se¢. Therefore,

Se = €. /abs (&)

where ”./” represents a dot division sign.

5) Cost function:
The cost function is calculated by summing up the absolute
values of the residual errors computed in equation (17).
Therefore,

(18)

M
F=> g (19)
k=1

C. Step Il : Computation of the Gradient of the Cost function

The gradient of the function is required when using Newton
and quasi-Newton optimisation methods.The vector S¢ com-
puted in equation (18) is used to correctly affect the sign
of terms during the computation of the gradient of the cost
function.

Vf = S * (le-j - vciij) (20)
The computation of equation (20) is divided into the following
steps:

1) Computation of Vd;;:

Ti(1) ~Ti(1) Yi() —Yi)
di;(1) di;(1)
. _ T Ti(k) ~Tj(k) Yi(k) ~Yj(k)
Vd;; = C a0 4500 @D
fI"i(Iw);mj(lw) ZM(M)—.Z/J'(M)
dij (M) di; (M)
Therefore
2) Computation of VJij.'
For the pairs kK = 1 : M of nodes, we have:
0 - 0
L di(k) = (10.’“?(“) 23
and
0 = 0
T k) = = (10.’3”’(’“)) 2
yi ]( ) 0yi @)

Where i = 1 : N. By developing the equations(23) and (24),
we obtain:
log,(10)

vjij =—f_ % CT * (vtp(AntErr[xa y]))

0 (25)

where :

V(Antgrr) = (V(Ant;(p;)) — V(Anti(¢:))) -
The gradient of the cost function is obtained by substituting
the Equations (25) and (22) in equation (20).

D. Initial Position

Locating initial positions in the convex hull to not only
reduces the number of iterations of the process of localising
the nodes, it also avoids flip ambiguities of the localised
nodes. The efficient computation of the convex hull requires a
Minimum Spanning Tree (MST) as a starting point. There are
simple, elegant, fast algorithms to find them. In this study, the
Dijkstra-Jarnk-Prim algorithm for the MST and the Graham’s
Scan Algorithm for the Convex Hull are used as illustrated in
Fig. 2.
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MST

Jarnik-Prim algorithm

Convex Hull

Graham’s Scan Algorithm

Computational Complexity : O(NiogN)

Fig. 2. Illustration of The Convex Hull Method

E. Position Tracking

Dead reckoning is exploited to estimate the position of
a mobile device by using the previous inertial values. The
kinetic model uses inertial measurements originating from
accelerometers for each of the three space axes. However,
the accelerometer data used to compute a node position, is
affected by noise from the sensors themselves as well as the
measurement process. An additional error to the estimated
positions is induced by numerical computation.

Therefore, the estimated positions are only used as a
starting point in the localisation algorithm developed in the
section describing the mathematical modelling discussed
earlier.

To find the position signal given an acceleration signal,
integration must be performed twice on the acceleration
signal. Therefore, for a double integration to be performed on
acceleration, the two initial conditions (velocity and position)
must be known to avoid integration errors. However, the
only way to get these initial conditions is through direct
measurement, which is often unobtainable. Therefore, the
previously obtained positions and velocities through the
localisation algorithm using RSSI are used.

F. Numerical Integration Methods

The simplest way to perform numerical integration is to
use the rectangular integration method. This method uses an
accumulator to sum all past sampled inputs and the current
input sample and divide it by the sampling rate. Rectangular
integration is represented by the difference equation expressed
in equation (26).
n

Y(n):fi X(n—k):Y(n—l)—f—fiX(n) 26)
k=0

S

where z is the integrand, Y is the output of the integrator, and
fs is the sampling frequency. Another numerical integration
method uses the trapezoidal rule. The results are more accurate
with this method than with the rectangular method. The
difference equation for trapezoidal integration is shown in
equation (27).

Y(n)=Y(n-1)+ X(n—1)+X(n)],n>0 (27)

1
2fs

There is another method of integrating that uses the Simpsons
rule. Unlike the other methods, this approach requires a future
sample of the integrand, X, to get the current sample of
the integrated signal, Y, so it cannot be performed in real
time. For all these reasons explored above, this study used the
trapezoidal integration method.

V. SIMULATION RESULTS

The Gauss-Markov mobility model was used to simulate a
realistic mobile network and to generate accelerometer data.
Corresponding data (RSSI, Acceleration) were also updated
accordingly. The Gauss-Markov model was implemented using
the following Equations (28) and (29).

Up = avp_1 + (1 — )0+ /(1 — a?)oy, (28)
0, = b, 1+ (1 —a)f++/(1—-a2)o, (29)

where v, and 0,, represent the velocity (speed) and direction
(heading) at stage n of the model , v and 6 represent the
average speed and heading respectively and o, a random
number from a Gaussian distribution with zero mean and
variance «. « is a parameter used to fine tune the Gauss-
Markov mobility model.

The radiation pattern can be found in the data sheet of the
sensor node’s radio module or can be measured, as explained
in the experiment below.

Only 36 measurements were taken and considered in the
determination of the radiation pattern . A coarse radiation pat-
tern was obtained from the measurements. After interpolation,
a more refined radiation pattern was obtained with a resolution
of 1° as depicted in Fig. 3.

Measured Data Points Interpolated Data Ponts

0

~3

Fig. 3. Coarse Radiation Pattern from RSSI Measurements

Fig. 4 shows the localisation result of the algorithm applied
to 50 nodes randomly deployed. Fig. 5 outlines the accuracy
of the developed algorithm by comparing its localisation
errors to the approach that does not make use of the antenna
radiation pattern, both using the Gauss Newton optimisation
method.

The algorithm was tested for fidelity with a performance
metric found in literature.

The precision of the localisation methods consisted of
repeating a number of times the localisation process for ran-
domly deployed nodes and comparing the average localisation
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Localisation of 50 Nodes With and Without Radiation Pattern
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error.
The algorithm developed in this study was shown to be
accurate as shown in the results presented in Fig. 6. The

Precision of the Localisation Algorithm

From 10 Experiments:

TTNAL

Average Error :

- Absolute

(

Mean = 2.7718m
STD =0.263m

- Relative

Mean = 3.16%

STD = 0.299%

Average Loaalsation Error (m)

Precision = 90.511%
0s

[ 2 4 6 8 10 12

Simulation Experiment No

Fig. 6. Localisation precision of 50 Nodes with Antenna Radiation Pattern

scalability of the proposed approached was demonstrated by
considering a thousand nodes randomly deployed and the
result can be seen in the results shown in Fig. 7.
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Fig. 7. Scalability of the localisation algorithm

VI. CONCLUSION AND FUTURE WORK

This paper has considered the development of a framework
to include a mathematical model of the antenna radiation
pattern in a WSN node localisation algorithm. The paper has
demonstrated a successful implementation of the algorithm us-
ing a Gauss-Newton optimisation method. Simulations results
show that the model improves the accuracy of localisation
by 59%. The model was developed for a 2-D plan. It is
proposed that future studies consider the implementation of
the developed model in other localisation methods and that it
be extended to 3-D model.
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