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 ABSTRACT  

Swamp and mangrove forests are some of the most threatened forest types in the world. In 

Africa, these forests are essential in providing food, construction material and medicine to people. 

These forest types have not sufficiently been mapped and changes in the extent or quality of these 

habitats can therefore not be effectively monitored. Compared to traditional surveying methods, 

remote sensing can be used to map these inaccessible areas over regional extents. This study 

investigated which season would provide the best discrimination of six evergreen tree species, 

associated with swamp (Ficus Trichopoda), mangrove (Avicennia marina, Bruguiera gymnorrhiza, 

Hibiscus tiliaceus), wetlands in adjacent woodlands (Syzygium cordatum) and coastal floodplain 

systems (Ficus sycomorus), using leaf-level hyperspectral data.  Leaf spectra were collected from 113 

trees for the winter, spring, summer and autumn months between the years of 2011-2012 in the 

subtropical estuarine system of the uMfolozi, uMsunduzi and St Lucia Rivers, on the east coast of 

KwaZulu-Natal, South Africa. The classification accuracy for each season was evaluated in the WEKA 

software using the Random Forest classification algorithm. When the data was upscaled to canopy-

level, the results showed that all four seasons produced overall accuracies of > 90%. Spring, summer 

and autumn produced the highest overall accuracy of 94.7%, whereas the overall accuracy for winter 

was 89.5%. The results of the leaf-level analysis showed a decrease in accuracy of between 4 – 11% 

for the four seasons. Similar to other studies, our results showed that the simulated object-oriented 

approach showed a higher level in accuracy compared to the pixel-level approach. The results of this 

study showed that evergreen tree species around the uMfolozi, uMsunduzi and St Lucia Rivers in 

KwaZulu-Natal, South Africa, is highly separable over all four seasons. Further analysis will be done to 

assess whether the accuracies can be improved for certain species, for example Ficus trichopoda. 

Similar tests should be done on other tropical and subtropical regions of Africa, to assess whether 

these trends prevail for other species and regions. 
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INTRODUCTION  

 

Mangrove swamp forests are considered to be one of the most threatened forest types in the 

world (Valiela et al. 2001). The exact percentage loss of mangrove forests over the past 50 years is 

globally estimated to range between 25% and 50% (Alongi 2002; Spalding et al. 2010). Losses are 

largely attributed to the clearance of forests for aquaculture and agricultural, and to a lesser degree 

to the impacts of climate change including sea-level rise, nitrification and drought (Alongi 2002; 

Mucina and Rutherford 2006). In Sub-Saharan Africa, where more than 48% of people live below the 

poverty line (http://data.worldbank.org/topic/poverty), mangrove forests provide essential 

ecosystem services, including livelihood resources such as construction material, fuel, food and 

medicine (Alongi 2002; Mucina and Rutherford 2006). Along other coastal, estuarine and riverine 

forests, mangroves also provide inter alia watershed protection, coastal erosion control, and habitats 

for some rare and endangered animal species (Alongi 2002). The World Atlas of Mangroves shows 

the extent and diversity of mangrove across the globe (Spalding et al. 2010). However, further work 

is required to acquire and monitor the distribution of other coastal forest types, which often co-occur 

alongside mangrove species in estuarine systems.  

Coastal forests, such as mangrove and swamp forests, are however often difficult to access for 

traditional vegetation mapping surveys, owing to being waterlogged or occupied by dangerous 

animals (United States Department of Energy (US DOE) 2012). Remote sensing provides an 

alternative method to map these species at regional level and particularly for inaccessible areas. The 

advances of new sensors, such as RapidEye, Sentinel-2 and WorldView-2 and -3, offer increased 

spatial resolution to a level where individual tree canopies can be mapped. These satellite images 

remain expensive, particularly for developing countries, hence choosing the best season to 

discriminate between tree species associated with the different forest types, can allow for cost 

savings while enabling effective monitoring.  

This study investigated which season, amongst winter, spring, summer and autumn, would 

provide the best discrimination of six evergreen tree species, associated with swamp (Ficus 

Trichopoda), mangrove (Avicennia marina, Bruguiera gymnorrhiza, Hibiscus tiliaceus), wetlands in 

adjacent woodlands (Syzygium cordatum) and coastal floodplain systems (Ficus sycomorus), using 

leaf-level hyperspectral data. Species discrimination was assessed at leaf level, which is comparable 

to a per-pixel classification of an image, as well as at canopy level, which is similar to the object-

orientation classification of tree species at image level. Leaf spectra were collected from 113 trees 

for the winter, spring, summer and autumn between 2011-2012 in the subtropical estuarine systems 

of the uMfolozi, uMsunduzi and St Lucia Rivers, on the east coast of KwaZulu-Natal, South Africa. The 

Random Forest (RF) classification algorithm has been proven successful in tree species classification 

(Adelabu and Dube 2014; Naidoo et al. 2012), and was therefore applied to assess the best season 

for discriminating amongst the six species. 
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MATERIALS AND METHODS 

Study area 

The iSimangaliso Wetland Park (28°S, 32°30’E) is situated in a sub-tropical climate zone on the 

east coast of South Africa in the KwaZulu-Natal province. Mean Annual Precipitation (MAP) ranges 

between 1 000 – 1 500 mm on the coast (Middleton and Bailey 2008). The mean temperatures in 

summer range between 23 – 30°C and are approximately 10°C in winter (Sokolic 2006). The channel 

of the uMfolozi have been artificially joined to the uMsunduzi Rivers, close to its estuary, while the St 

Lucia River estuary are located about 1 km north of the estuary of the other two Rivers (Figure 1). 

 

 

Figure 1: The estuaries of the St Lucia, uMfolozi and uMsundizu are located within 1 km of each 
other, and situated within the iSimangaliso Wetland Park on the east coast of South Africa. 

 

A number of indigenous forest patches are found around the estuaries. To the south of the 

uMfolozi and uMsunduzi estuaries are coastal dune forests stretching north-south along the coast. 

Ficus sycomorus is found on the floodplain system of the uMfolozi and uMsunduzi Rivers to the west 

of the estuaries as remnants between the sugarcane farms. Dryland coastal forests are situated near 

the St Lucia town with the largest patch remaining at the DukuDuku forest southwest of Khula 

village. In the swamp forests, located between the uMfolozi and uMsunduzi Rivers, Ficus trichopoda 

and Barringtonia racemosa species are found, whereas two mangrove species (Avicenna marina & 

Bruguiera gymnorrhiza), Hibiscus tiliaceus and Syzyguim cordatum is primarily found along the 

channels of the estuarine systems (Figure 2).  
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Figure 2: Distribution of coastal and inland indigenous forests, as well as other land uses, near the 
three estuaries of the St Lucia, uMfolozi and uMsunduzi Rivers (SANSA 2011). 

Data collection 

Six evergreen tree species, associated with the estuarine system, were sampled (Table 1) over 

four seasons (winter, spring, summer and autumn) between 2011 and 2012. Five green and fully 

expanded leaves were collected from across sun-exposed canopies of mature trees. The leaves were 

placed in zip-lock bags in a cooled container and transported back to the laboratory. One spectral 

measurement was recorded of the adiaxal surface of each of the five leaves using the leaf-clip device 

of an Analytical Spectral Device spectroradiometer (FieldSpec Pro FR, Analytical Spectral Device, Inc, 

USA.) within 3 to 5 hours of collection. The ASD covers the spectral range between 350 to 2500 nm 

with a 1.4 nm sampling interval between 350-1050 nm range, and a ±2 nm between 1 050 – 2 500 

nm. Radiance was converted to reflectance against the scans of a spectralon reference panel. The 

reflectance spectra of the five leaves were averaged to a single reflectance signature per tree. 
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Table 1. Number of tree species sampled for each season. The number of trees is derived as 

the average of the number of usable leave spectra in brackets. 

Tree species Common name Acronym 
Winter 

(n) 

Spring 

(n) 

Summer 

(n) 

Autumn 

(n) 

Total number 

per species (n) 

Avicennia marina 
White 

mangrove 
AM 

21 21 21 21 84 

(105) (104) (104) (105) (418) 

Bruguiera 

gymnorrhiza 

Black 

mangrove 
BG 

19 19 19 19 76 

(95) (94) (95) (94) (378) 

Ficus sycamores Sycamore fig FSYC 
15 15 15 15 60 

(75) (75) (75) (75) (300) 

Ficus trichopoda Swamp fig 
FT 11 11 11 11 44 

 (55) (55) (55) (55) (220) 

Hibiscus tiliaceus 
Lagoon 

hibiscus 
HT 

30 30 30 30 120 

(150) (150) (150) (150) (600) 

Syzigium 

cordatum 
Waterberry SC 

17 17 17 17 68 

(85) (85) (85) (85) (340) 

Total per season:  113 113 113 113 452 

  (565) (563) (564) (564) (2 256) 

Statistical Analysis 

In order to establish the applicability of parametric methods for modelling the relevant spectra, the 

distribution assumptions of the spectra were assessed using a variety of tools.  Firstly, graphical 

methods such as histograms and quantile-quantile (Q-Q) plots were used and showed departures 

from normality.  Further, numeric tools including Mardia’s and Henze-Zirkler’s tests were also 

performed and indicated that the relevant spectra did not meet the multivariate normality 

assumption. Therefore, a non-parametric classifier, Random Forest (RF) (Breiman 2001), which has 

been proven successful in handling a large number of factors for classification, has therefore been 

chosen to assess the species separability (Grossmann et al. 2010; Prasad et al. 2006). For each 

season, the dataset was split into 66% training (2/3rds of the data) and 34% validation (1/3rd of the 

data) for the leaf-level classification, using the WEKA software (Waikato Environment for Knowledge 

Analysis v 3.6.11, 1999-2014, The University of Waikato, New Zealand, available from 

http://www.cs.waikato.ac.nz/~ml/weka/). The default settings of WEKA were maintained in the 

analysis for the number of trees (10) and features (12). Thereafter, the average of the five leaves was 

calculated to simulate canopy level, and classification repeated in a similar manner. The overall 

classification accuracy, kappa statistic and user’s and producer’s accuracies were calculated for each 

species in each season.  

RESULTS 

The results of the leaf-level assessment showed that all four seasons produced overall accuracies 

of > 84% (Table 2). In spring the classification accuracy was the highest (88%), compared to the 

summer season which had the lowest accuracy (83%). The producer’s and user’s accuracy for all 

species in spring was > 78%, whereas the other three seasons had accuracies below 75%. In summer, 

Ficus trihopoda was also classified as Hibiscus tiliaceus and Syzygium cordatum (results are not 

shown), resulting in producer’s and user’s accuracy of 47%. A large number of Ficus trihopoda was 

incorrectly classified as Hibiscus tiliaceus in autumn too (producer’s accuracy = 54%). 

Syzygium cordatum also had producer’s accuracies between 63-65% in winter, and a user accuracy of 

63% in summer. 

http://www.cs.waikato.ac.nz/~ml/weka/
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Table 2: Classification accuracies of the six evergreen tree species at leaf-level.  

 
 Winter Spring Summer Autumn 

Overall 
accuracy (%) 

85.4 88.0 83.3 86.5 

Kappa 
statistic 

0.82 0.85 0.80 0.83 

Accuracy (%) Producer User Producer User Producer User Producer User 
Avicennia 

marina 
89.1 97.6 81.1 90.9 91.1 100.0 95.2 97.6 

Bruguiera 

gymnorrhiza 
95.8 79.3 100.0 88.9 97.1 97.1 94.3 97.1 

Ficus 

sycamores 
95.8 95.8 85.7 94.7 77.8 87.5 90.5 79.2 

Ficus 

trichopoda 
75.0 75.0 78.6 91.7 47.1 47.1 54.2 76.5 

Hibiscus 

tiliaceus 
87.0 87.0 91.7 84.6 87.0 81.6 85.4 83.7 

Syzigium 

cordatum 
62.5 65.2 88.0 81.5 73.9 63.0 90.9 74.1 

 

In comparison to the leaf-level results, the upscaled canopy-level results showed an overall 

improvement in accuracy by 5% (Table 3). The spring, summer and autumn seasons also produced a 

much higher overall accuracy of 94.7%, compared to the varying results of the leaf-level analysis (83-

88%). The canopy-level results also indicated that the winter season had the lowest overall accuracy 

(90%) of all four seasons, whereas the season with the lowest overall accuracy for the leaf-level 

results was in summer. Most species showed producer’s and user’s accuracies above 75% at the 

canopy-level analysis, except for Ficus sycamorus in spring, where the producer’s accuracy was 

66.7%. Ficus trihopoda showed the lowest user’s accuracies for winter, spring and autumn at 50%. A 

small number of Ficus sycamores have been misclassified as Ficus trichopoda in spring (results are 

not shown), resulting in a producer’s accuracy of 67%. 
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Table 3: Classification accuracies of the six evergreen tree species at canopy level. 

 
 Winter Spring Summer Autumn 

Overall 
accuracy (%) 

89.5 94.7 94.7 94.7 

Kappa 
statistic 

0.87 0.94 0.94 0.94 

Accuracy (%) Producer User Producer User Producer User Producer User 
Avicennia 

marina 
88.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Bruguiera 

gymnorrhiza 
100.0 85.7 100.0 100.0 100.0 100.0 100.0 100.0 

Ficus 

sycamores 
100.0 75.0 66.7 100.0 75.0 75.0 80.0 100.0 

Ficus 

trichopoda 
100.0 50.0 100.0 50.0 80.0 100.0 100.0 50.0 

Hibiscus 

tiliaceus 
83.3 100.0 100.0 100.0 100.0 90.0 100.0 100.0 

Syzigium 

cordatum 
83.3 100.0 100.0 100.0 100.0 100.0 83.3 100.0 

DISCUSSION 

A number of studies used multispectral Landsat and SPOT imagery to map mangrove species in 

Africa: in Ghana (Mensah 2013), Kenya (Brakel 1984; Gang and Agatsiva 1992), Senegal (Conchedda 

et al. 2008) and Tanzania (Wang et al. 2003). We could not find published work on hyperspectral 

studies done in Africa in species discrimination of mangrove or estuarine tree species. Hyperspectral 

species discrimination studies done in Africa included those on other wetland vegetation (Adam and 

Mutanga 2009; Mafuratidze 2010) or savanna trees (Naidoo et al. 2012).  

This study is the first study which assessed the separability of evergreen tree species associated 

with estuarine systems on the east coast of South Africa, in the KwaZulu-Natal province. The selected 

tree species are associated with mangroves, swamps, floodplain and other estuarine species. The 

results of this study showed that evergreen tree species around the uMfolozi, uMsunduzi and St 

Lucia Rivers in KwaZulu-Natal, South Africa, is highly separable at leaf spectral level over all four 

seasons (>89%). At canopy level the accuracy of classification increased by 5% for the spring, summer 

and autumn seasons (95%), compared to the winter season (90%).  

The upscaled canopy-level analysis produced higher accuracies across all seasons, improving the 

classification between 4 – 11%. The canopy-level results also showed fewer accuracies below 75%, 

and none < 50%. These findings concur with the findings of other species discrimination studies 

where improvement in accuracies was found at object level, compared to the individual pixel-level 

classification (Kamal and Phinn 2011). The use of object-oriented classification of mangroves using 

SPOT imagery also resulted in accuracies > 75% (Conchedda et al. 2008; Vo et al. 2013). 

Further analysis can include the assessment of specific regions of the spectrum which contributed 

significantly to the classification, and assessing whether the classification accuracy remains high if 

degraded to the spectral resolution of the bands of commercially available space-borne sensors. This 

study will also be extended in future to assess whether these species are separable using RapidEye 

images for four seasons. The work can also be extended to include more tree species of this 

estuarine environment and elsewhere in Africa. 
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CONCLUSIONS 

This study found that six evergreen tree species, associated with estuarine forests in the east 

coast of South Africa, were highly separable at individual canopy level (95%) over three of the four 

seasons (spring, summer and autumn). The accuracy of the classification was slightly less in the 

winter (90%). The results of the leaf-level analysis showed a decrease in accuracy of between 4 – 11% 

for the four seasons. Similar to other studies, our results showed that the canopy-level analysis, 

which is comparable to an object-oriented approach, showed a higher level in accuracy compared to 

the pixel-level approach. 
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