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Abstract

We experimentally measured the “self-healing” of the spatially inhomogeneous states of polar-

ization of radial and azimuthal polarized vector Bessel beams. Radial and azimuthal polarized

vector Bessel beams were generated via a digital version of Durnin’s method, using a spatial light

modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and

spatially inhomogeneous states of polarization were measured using Stokes polarimetry as they

propagated through two disparate obstructions. It was found, similar to their intensities, the spa-

tially inhomogeneous states of polarization of a radial and azimuthal polarized vector Bessel beams

self-heal. Similar to scalar Bessel beams, the self-healing of vector Bessel beams can be understood

via geometric optics, i.e., the interference of the unobstructed conical rays in the shadow region

of the obstruction. The self-healing of vector Bessel beams may have applications in, for example,

optical trapping.
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A Bessel beam is a light beam that is a solution to the Helmholtz wave equation, existing

over a limited region of propagation, and experimentally generated by the interference of

conical rays [1, 2]. It possesses a property referred to as “self-healing,” i.e., its intensity

reappears after propagation through an obstruction. Self-healing can be simply understood

via geometric optics [3]. When a portion of a Bessel beam is obstructed in one plane, the

unobstructed conical rays interfere in its shadow region in another plane, as shown in Fig.

1(e). Due to this property, Bessel beams have been extensively studied and have been used

for a number of applications; for comprehensive reviews see [4–7]. For example, when using

a Bessel beam for optical trapping, it is possible to simultaneously trap multiple particles

in well separated planes [8], and make particle tractor beams [9–12].

A vector beam is a light beam possessing a spatially inhomogeneous state of polarization

such as radial or azimuthal polarization as shown in Fig. 2(b) and Fig. 2(c), respectively.

Vector beams have received significant interest [13, 14], due in great part to their ability

to produce stronger longitudinal field components [15, 16], and smaller spot sizes [17], as

compared to scalar light beams, upon focusing by high numerical aperture objectives. Also,

when using vector beams for optical trapping, it is possible to improve the axial and trans-

verse stiffness of the optical trap via radial and azimuthal polarization, respectively [18–20].

Most recently, vector beams have been used for optical communication [21].

Like any other light beam a Bessel beam can have a scalar (spatially homogeneous) or

vector (spatially inhomogeneous) state of polarization [22]. The great majority of exper-

imental investigations of Bessel beams concern scalar Bessel beams. Yet, a vector Bessel

beam possesses the properties of a Bessel beam and a vector beam, as described above, and

may be used in comparable applications. For example, it may be possible to improve the

axial and transverse stiffness of a tractor beam when using a vector Bessel beam. While

there are extensive studies on self-healing of scalar Bessel beams, there are limited studies

on self-healing of vector Bessel beams [23–26], particularly with respect to their spatially

inhomogeneous states of polarization. Previous work only measured the propagation and

self-healing of the intensities of vector Bessel beams.

In this work, we experimentally measured the “self-healing” of the spatially inhomoge-

neous states of polarization of radial and azimuthal polarized vector Bessel beams. Radial

and azimuthal polarized vector Bessel beams were generated via a digital version of Durnin’s

method, using a spatial light modulator in concert with a liquid crystal q-plate. As a proof
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of principle, their intensities and spatially inhomogeneous states of polarization were mea-

sured using Stokes polarimetry as they propagated through two disparate obstructions. It

was found, similar to their intensities, the spatially inhomogeneous states of polarization

of a radial and azimuthal polarized vector Bessel beams self-heal. Similar, to scalar Bessel

beams, the self-healing of vector Bessel beams can be understood via geometric optics, i.e.,

the interference of unobstructed conical rays in the shadow region of the obstruction. The

self-healing of vector Bessel beams may have applications in, for example, optical trapping.

A schematic of the experimental setup is shown in Fig. 1. First, a scalar Bessel beam

was generated following Durnin’s method. In Durnin’s method, an annular slit is placed in

the back focal plane of a lens and illuminated with a collimated light beam resulting in an

annular ring of light. Each point along the annular ring acts as a point source which the

lens transforms into a good approximation to a Bessel beam in its focal region [1, 2]. A

digital method of Durnin’s method was implemented [27]. An annular slit, additionally su-

perimposed with a linear grating, was created using a computer generated hologram (CGH)

displayed on a reflective phase only spatial light modulator (SLM) (HoloEye) as shown in

Fig. 1(a). A linear polarized HeNe laser beam (λ ∼ 633 nm) was spatially filtered by a single

mode optical fiber (SMF), expanded, collimated by a lens (L1), and then illuminated the

SLM. The light at the plane of the SLM was then spatially filtered by an aperture (A) in

the first diffraction order of a 4f imaging system (L2 and L3), imaged onto the back focal

plane of a 10 cm focal length lens (LB), resulting in the linear polarized annular ring of light

shown in Fig. 1(b). A good approximation to a scalar (linearly polarized) Bessel beam was

formed in the focal region of lens LB.

Next, the scalar (linearly polarized) Bessel beam was converted into a vector Bessel beam.

There are many methods to generate vector beams including the use of metasurfaces and

optical fibers [28–31]. Here, we use a q-plate [32]. A q-plate is a liquid crystal technology

comprising of a thin layer of liquid crystal molecules in-between two thin glass plates. The

orientation of the liquid crystal molecules is described by qφ, where φ is the azimuthal

coordinate, and q is a half integer. A q = 1/2 q-plate is schematically shown in Fig. 1(c).

Effectively, a q-plate is a half wave plate with an azimuthally varying fast axis that can be
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FIG. 1. Experimental setup: (a) Computer generated hologram (CGH) of an annular slit addi-

tionally superimposed with a linear grating displayed on spatial light modulator( SLM). (b) Linear

polarized annular ring of light before q-plate. (c) Schematic of q = 1/2 q-plate (d) Radial polar-

ized annular ring of light after q-plate. (e) Schematic of vector Bessel beam propagation though

an obstruction in the focal region of LB. The intensity of the vector Bessel beam is shown at a

propagation distance of roughly (I) 64 mm (unobstructed), (II) 82 mm (obstructed), (III) 118 mm

(semi-healed) and (IV) 136 mm (self-healed) after the Fourier transforming lens LB.

represented by the Jones matrix [33]:

Q̂ =
⎛

⎜

⎝

cos 2qφ sin 2qφ

sin 2qφ − cos 2qφ

⎞

⎟

⎠

. (1)

Using Jones calculus, it can be easily shown, for a q = 1/2 q-plate, horizontal (vertical)
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FIG. 2. Experimentally measured intensity of scalar (linearly polarized) and vector Bessel beams.

(a) (first row) Scalar Bessel beam. (b) (second row) Radial polarization. (c) (third row) Azimuthal

polarization. The columns show I0 (second column), I45 (third column), I90 (fourth column), I135

(fifth column) or each Bessel beam as described in the text.

polarization can be converted into radial (azimuthal) polarization [34]. In general, a q-

plate converts any state of polarization on the Poincare sphere to a higher-order state of

polarization on the higher-order Poincare sphere [35, 36]. The q-plate is also “tunable”; the

amount of the incident light’s power converted to radial or azimuthal polarization is directly

controlled, i.e., tuned, via a voltage over the q-plate. For λ ∼ 633nm, when the voltage over

the q-plate is Vo ∼5 volts, no light will be converted to radial (azimuthal) polarization, i.e.,

the light remains linear polarized. When the voltage over the q-plate is Vv ∼2.3 volts, all of

the incident light’s power will be converted to radial (azimuthal) polarization [37, 38].

The q-plate was placed close to the back focal plane of lens LB. A linear polarizer (Pol)

was placed just before the q-plate to ensure the incident light was completely linear polarized.

A half wave plate (HWP) was used to rotate the light’s polarization horizontal (vertical). A

signal generator generating a 1kHz square wave was used to apply a voltage over the q-plate.

When the voltage was Vo, a good approximation to a scalar (linearly polarized) Bessel beam

was generated in the focal region of lens LB, as shown in Fig. 2(a). When the voltage was
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Vv, and the light’s polarization was rotated horizontal (vertical), a good approximation to

a radial (azimuthal) polarized vector Bessel beam was generated in the focal region of lens

LB, as shown in Fig. 2(b) (Fig. 2(c)). A 10X microscope objective was used to image each

Bessel beam in the focal region of lens LB onto a CCD camera.

Stokes polarimetry was used to measure the state of polarization of each Bessel beam [39,

40]. In Stokes polarimetry, the Stokes parameters are measured via intensity measurements

and used to calculate the polarization orientation and polarization ellipticity at every spatial

point of a light beam. The first three Stokes parameters are given by [39, 40]:

S0(r, φ) = I0(r, φ) + I90(r, φ), (2)

S1(r, φ) = I0(r, φ) − I90(r, φ), (3)

S2(r, φ) = I45(r, φ) − I135(r, φ), (4)

where I0(r, φ), I45(r, φ), I90(r, φ), and I135(r, φ) are the intensity of the light beam, at every

spatial point, measured after a linear polarizer whose transmission axis is rotated 0○, 45○,

90○, 135○, respectively. (r, φ) are cylindrical coordinates. The total intensity of the light

beam is given by S0(r, φ) and the orientation of the state of polarization is given by [39, 40]:

ψ(r, φ) =
1

2
tan−1 (

S2(r, φ)

S1(r, φ)
). (5)

A linear polarizer (Pol) was placed just before the CCD camera in the experimental setup

described above. The linear polarizer was used to measure I0(r, φ), I45(r, φ), I90(r, φ), and

I135(r, φ) for each Bessel beam as shown in the respective columns of Fig. 2. While the

third Stokes parameter, S3, and therefore the polarization ellipticity, was not measured, as

shown in the experimental results, it is qualitatively enough to visualize the self-healing

of the spatially inhomogeneous state of polarization of each vector Bessel beam via the

polarization orientation.

Finally, each Bessel beam was made to propagate through an obstruction. The results are

shown in Fig. 3. The obstruction was created by placing a pitted glass slide possessing mul-

tiple, random, speckled, and opaque obstructions in the path of the Bessel beam. The slide’s

position was adjusted until an isolated and appropriately sized obstruction was found. The

size and position of the obstruction was chosen such that it obstructed approximately a small

portion of the Bessel beam near its center. The obstruction is outlined by a dashed white

line in Fig. 3. The intensities and states of polarization of each Bessel beam were measured
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via Stokes polarimetry, as described above, at four propagation distances as they propagated

through the obstruction. The four propagation distances are schematically shown in Fig.

1(e): (I) unobstructed (II) obstructed (III) semi-healed (IV) self-healed. S0(r, φ) is overlaid

with ψ(r, φ) such that any change in intensity and orientation of the state of polarization

as the Bessel beam propagates through the obstruction can be visualized simultaneously;

S0(r, φ) is encoded by relative contrast, i.e., bright to dark, and ψ(r, φ) is encoded by color.

First, the self-healing of the intensity and spatially inhomogeneous state of polarization

of the scalar (linear polarized) Bessel beam was experimentally measured as it propagated

through the obstruction. The results are shown in the first row of Fig. 3(a). As can be

seen, as the scalar Bessel beam propagated through the obstruction from (I) to (IV), its

intensity self-heals as is expected [4–7]. Next, the self-healing of the intensities and spatially

inhomogeneous states of polarizations of the radial and azimuthal polarized vector Bessel

beams were experimentally measured as they propagated through the obstruction. The

results are shown in the second and third rows of Fig. 3(a), respectively. As the radial

and azimuthal polarized vector Bessel beam propagated through the obstruction from (I)

to (IV), their intensities self-healed similar to the scalar Bessel beam. A video of a vector

Bessel beam self-healing is provided online. As can be seen, similar to their intensities, the

spatially inhomogeneous states of polarization of the radial and azimuthal polarized vector

Bessel beams also self-healed. This is the salient result of this Letter. There is qualitative

agreement between the spatially inhomogeneous states of polarization of the vector Bessel

beams when they are unobstructed at (I) and when they self-heal at (IV).

Also, the self-healing of the intensities and spatially inhomogeneous states of polarization

of the radial and azimuthal polarized vector Bessel beams were experimentally measured

as they propagated through a disparate obstruction. The results are shown in Fig. 3(b).

As shown in Fig. 3(b), the size and position of this obstruction was chosen such that it

obstructed a larger portion of the vector Bessel beams near their center. The obstruction

is outlined by a dashed white line. As can be seen, the intensities and the spatially inho-

mogeneous states of polarization of the radial and azimuthal polarized vector Bessel beams

again self-heal in the presence of the larger obstruction. Similar to the first obstruction,

there is qualitative agreement between the spatially inhomogeneous states of polarization of

the vector Bessel beams when they are unobstructed at (I) and when they self-heal at (IV).
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Similar, to scalar Bessel beams, the self-healing of vector Bessel beams can be under-

stood via geometric optics, i.e., the interference of conical rays in the shadow region of the

obstruction, as shown in Fig. 1(e). It is a well-known that the distance in which a Bessel

beam is able to reform is given by [3]:

zmin ≈
ak

2kz
(6)

where a is the width of the obstruction and k and kz are the wave-vector and longitudinal

wave-vector, respectively. Eq. 6 illustrates that the distance in which a Bessel beam self-

heals is dependent on the size and position of the obstruction as well as the opening angle of

the cone on which the wave-vectors of the Bessel beam propagate. Here it is assumed that

the input field is larger than the obstruction.

There is a relationship between light’s space and polarization degrees of freedom when

light is scattered by an obstruction, e.g. Rayleigh or Mie particles[41]. There are comparable

relationships in multimode optical fiber [42, 43]. In this respect, a more detailed theoretical

analysis of self-healing of the spatially inhomogeneous states of polarization of radial and

azimuthal polarized vector Bessel beams, analogous to that of scalar Bessel beams [3], is the

subject of future work. Nonetheless, as vector Bessel beams possess the properties of Bessel

beams and a vector beams, they may have applications in, for example, optical trapping,

where self-healing and “vectorness” are both needed, e.g. it may be possible to the improve

the axial and transverse stiffness of a tractor beam when using a vector Bessel beam.

In conclusion, we experimentally measured the self-healing of the spatially inhomogeneous

states of polarization of radial and azimuthal polarized vector Bessel beams. Radial and

azimuthal polarized vector Bessel beams were generated via a digital version of Durnins

method, using an SLM in concert with a liquid crystal q-plate. As a proof of principle, their

intensities and spatially inhomogeneous states of polarization were measured using Stokes

polarimetry as they propagated through two disparate obstructions. It was found, similar to

their intensities, the spatially inhomogeneous states of polarization of a radial and azimuthal

polarized vector Bessel beams self-heal. Similar, to scalar Bessel beams, the self-healing of

vector Bessel beams can be understood via geometric optics, i.e., the interference of conical

rays in the shadow region of the obstruction. The self-healing of vector Bessel beams may

have applications in, for example, optical trapping.

While there are extensive studies on self-healing of scalar Bessel beams[4–7], there are
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limited studies on self-healing of vector Bessel beams [23–26], particularly with respect

to their spatially inhomogeneous states of polarization. Previous work only measured the

propagation and self-healing of the intensities of vector Bessel beams. To our knowledge,

this is the first experimental measurement of the self-healing of the spatially inhomogeneous

states of polarization of radial and azimuthal polarized vector Bessel beams. Future work

includes experimentally measuring the self-healing of the spatially inhomogeneous states of

polarization of other types of vector Bessel beams such as Full Poincare beams [44]. In

contrast to radial and azimuthal polarized light beams, Full Poincare beams experience

non-trivial dynamics as they propagate [45, 46].
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FIG. 3. Experimentally measured intensities and spatially inhomogeneous states of polarization

of scalar (linearly polarized) and vector Bessel beams as they propagated through two different

obstructions at four different propagation distances. The obstruction is outlined by a white dashed

line. (column I) Unobstructed. (column II) Obstructed. (column III) Semi-healed. (column

IV) Self-healed. The Bessel beams’ total intensities, S0(r, φ), are encoded by relative contrast,

and overlaid with the orientation of their states of polarization, ψ(r, φ), encoded by color. (a)

First obstruction (first row) Scalar Bessel beam. (second row) Radial polarization (third row)

Azimuthal polarization. (b) Second obstruction (first row) Radial polarization. (second row)

Azimuthal polarization.
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