
Applied Mathematics and Computation 189 (2007) 1859–1883

www.elsevier.com/locate/amc
Locating multiple optima using particle swarm optimization

R. Brits a, A.P. Engelbrecht a,*, F. van den Bergh b

a Department of Computer Science, University of Pretoria, South Africa
b Meraka Institute, CSIR, Pretoria, South Africa
Abstract

Many scientific and engineering applications require optimization methods to find more than one solution to multi-
modal optimization problems. This paper presents a new particle swarm optimization (PSO) technique to locate and refine
multiple solutions to such problems. The technique, NichePSO, extends the inherent unimodal nature of the standard PSO
approach by growing multiple swarms from an initial particle population. Each subswarm represents a different solution or
niche; optimized individually. The outcome of the NichePSO algorithm is a set of particle swarms, each representing a
unique solution. Experimental results are provided to show that NichePSO can successfully locate all optima on a small
set of test functions. These results are compared with another PSO niching algorithm, lbest PSO, and two genetic algorithm
niching approaches. The influence of control parameters is investigated, including the relationship between the swarm size
and the number of solutions (niches). An initial scalability study is also done.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Particle swarm optimization; Niching; Speciation
1. Introduction

Function optimization is the process of finding an optimal solution to an objective function describing a
problem. Optimization can be either a minimization or maximization task. Optimization problems can be
broadly categorized into unimodal and multi-modal problems. Unimodal problems have a single global opti-
mum, x*, subject to (assuming minimization)
0096-3

doi:10.

* Co
E-m
f ðx�Þ 6 f ðxÞ 8x 2 Rn;
where f ðxÞ : Rn ! R is the objective function and n is the dimension of the search space. Multi-modal prob-
lems, on the other hand, have more than one optimum. These optima may all be global optima, or a mixture
of global and local optima. A local optimum, x�L, is subject to (assuming minimization)
f ðx�LÞ 6 f ðxÞ 8x 2 L;
where L � Rn.
003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

1016/j.amc.2006.12.066

rresponding author.
ail addresses: rbrits@cs.up.ac.za (R. Brits), engel@cs.up.ac.za (A.P. Engelbrecht), fvdbergh@csir.co.za (F. van den Bergh).

mailto:rbrits@cs.up.ac.za
mailto:engel@cs.up.ac.za
mailto:fvdbergh@csir.co.za

1860 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
Many scientific and engineering optimization problems have convoluted search spaces with large numbers
of optima. In the case of more than one global optimum, algorithms are needed to obtain all these solutions. It
may also be beneficial to locate all, or as many as possible, local optima.

Function optimization has received extensive research attention, and several machine learning techniques
such as neural networks [3,16], evolutionary algorithms [1], and swarm intelligence-based algorithms
[23,12,13], have been developed and applied successfully to solve a wide range of complex optimization prob-
lems. By far the largest part of this research concentrated on developing algorithms that can locate only a single
solution. However, evolutionary algorithms research has produced a number of approaches to find multiple
solutions [19,27,18]. These evolutionary algorithms are generally referred to as niching or speciation algorithms.
Each possible solution, known as a niche, is represented by a grouping of homogeneous GA individuals.

Eberhart and Kennedy recently introduced the particle swarm optimization (PSO) approach [22]. It is sim-
ilar to evolutionary algorithms in that it evolves a group of candidate solutions. PSO, however, allows each
individual to maintain a memory of the best solution that it has found and the best solution found in the indi-
vidual’s neighborhood. Each individual’s traversal of the search space is then influenced by its own memory of
best positions, with the individual moving towards a stochastically weighted average of these best positions
[38,41]. The PSO algorithm has been shown to successfully solve a variety of unimodal optimization problems
[35]. Several techniques have been proposed to improve the PSO algorithm’s traversal of the search space
[21,25,30,36,38,39].

Attempts have been made to solve multi-modal optimization problems with PSO, in the form of niching
techniques.

Parsopoulos and Vrahatis [31] proposed an extension to a PSO convergence rate improvement technique as
a sequential niching approach. The technique locates multiple optima by adapting the objective function’s fit-
ness landscape each time a new solution is located. The nbest PSO is a parallel niching technique used to locate
multiple solutions to simple systems of equations [4,5].

This paper presents and empirically analyses the niching particle swarm optimization algorithm, NichePSO.
NichePSO is aimed at locating multiple, optimal solutions to multi-modal optimization problems. Niches are
identified by monitoring the fitness of individual particles, and growing subswarms from the initial particle
swarm population. Using a global optimization strategy, subswarms then refine the solution represented by
the niche.

While the focus of this paper is on niching techniques for locating multiple solutions to multi-modal opti-
mization problems, niching techniques have also been used to solve multi-objective optimization problems. In
the case of multiple objectives, the objective function consists of K (possibly conflicting) sub-objectives, where
the task is to optimize these sub-objectives concurrently. The objective function, f, is expressed as
fðxÞ ¼ ff1ðxÞ; f2ðxÞ; . . . ; fKðxÞg. Multi-objective optimization algorithms find good trade-offs between conflict-
ing objectives rather than a single solution. A set of such solutions is referred to as the Pareto-optimal set.
Several evolutionary algorithm approaches to multi-objective optimization have been developed. For an
extensive treatment refer to [7,9]. Recently, PSO techniques have been developed for solving multi-objective
problems [7,8,15,20,32].

It is significant to make a clear distinction between multi-objective and multi-modal optimization problems:
Where solutions to multi-objective problems represent a combination of (possibly conflicting) solutions to
each of the subgoals fiðxÞ in f, solutions to multi-modal optimization problems represent possible values
for x under a single objective function f. This is the main focus of our study: niching algorithms for multi-
modal, single-objective problems.

The standard PSO algorithm and extensions toit as used within the NichePSO are discussed in Section 2.
Section 3 presents an introduction to niching and existing niching techniques, introduced both in the fields of
genetic algorithms and particle swarm optimizers. NichePSO is presented in Section 4, with experimental find-
ings reported in Section 5. Section 5 also includes an empirical comparison between niching algorithms.

2. Particle swarm optimizers

This section presents and discusses the original PSO algorithm. Modifications and improvements to the
PSO algorithm have been suggested by several authors. This section discusses PSO improvements used by

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1861
the NichePSO algorithm, as well as improvements which have influenced it. The section ends with a short dis-
cussion on the ability of the standard PSO to locate multiple solutions.

2.1. The standard PSO

Particle swarm optimizers are optimization algorithms modeled after the social behavior of birds in a flock
[22]. PSO is a population based search process where individuals, referred to as particles, are grouped into a
swarm. Each particle in a swarm represents a candidate solution to the optimization problem. In a PSO sys-
tem, each particle is ‘‘flown’’ through the multidimensional search space, adjusting its position in search space
according to its own experience and that of neighboring particles. A particle therefore makes use of the best
position encountered by itself and that of its neighbors to position itself toward an optimal solution. The effect
is that particles ‘‘fly’’ toward a minimum, while still searching a wide area around the best solution. The per-
formance of each particle (i.e.the ‘‘closeness’’ of a particle to the global optimum) is measured using a prede-
fined fitness function which encapsulates the characteristics of the optimization problem.

Each particle i maintain a current position, xi, current velocity, vi, and personal best position, yi. For the
purposes of this paper, xi represents a position in an unconstrained, continuous search space. The personal
best position associated with a particle i is the best position that the particle has visited thus far, i.e.a position
that yielded the highest fitness value for that particle. If f denotes the objective function to be minimized, then
the personal best of a particle at a time step t is updated as
yiðt þ 1Þ ¼
yiðtÞ if f ðxiðt þ 1ÞÞP f ðyiðtÞÞ;
xiðt þ 1Þ if f ðxiðt þ 1ÞÞ < f ðyiðtÞÞ:

�
ð1Þ
Different PSO models have been developed based on the neighborhood topology particles use to exchange
information about the search space [24]. In the gbest model, which is used in this paper, the best particle is
determined from the entire swarm and all other particles flock towards this particle. If the position of the best
particle is denoted by the vector ŷ, then
ŷðtÞ 2 fy0; y1; . . . ; ysgjf ðŷðtÞÞ ¼ minff ðy0ðtÞÞ; f ðy1ðtÞÞ; . . . ; f ðysðtÞÞg; ð2Þ

where s is the total number of particles in the swarm. For each iteration of a gbest PSO, the jth-dimension of
particle i’s velocity vector, vi, and its position vector, xi, is updated as follows:
vi;jðt þ 1Þ ¼ wvi;jðtÞ þ c1r1;jðtÞðyi;jðtÞ � xi;jðtÞÞ þ c2r2;jðtÞðŷi;jðtÞ � xi;jðtÞÞ; ð3Þ
xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ; ð4Þ
where w is the inertia weight, c1 and c2 are the acceleration constants and r1;jðtÞ; r2;jðtÞ � Uð0; 1Þ. Upper and
lower bounds are usually specified on vi to avoid too rapid movement of particles in the search space; that is,
vi;j is clamped to the range ½�vmax;j; vmax;j�. The inertia weight, w, was introduced by Shi and Eberhart [34] to
control the influence of the velocity vector on a particle’s position. Decreasing w from a relatively large value
to a small value over time, results in rapid initial exploration of the search space, and facilitates later explo-
ration. Small w-values result in small adaptations to particle positions, effectively yielding a local search.

The PSO algorithm performs repeated applications of the update equations until a specified number of iter-
ations has been exceeded, or until velocity updates are close to zero.

The reader is referred to [38,41] for a study of the relationship between the inertia weight and the acceler-
ation constants in order to select values that will ensure convergent behavior.

2.2. The guaranteed convergence particle swarm optimizer

The gbest algorithm exhibits an unwanted property: when xi ¼ yi ¼ ŷ (for any particle i), the velocity
update in Eq. (3) depends only on the wviðtÞ term. When a particle approaches the global best solution, its
velocity approaches zero, implying that eventually all particles will stop moving. This behavior does not guar-
antee convergence to a global best solution, or even a local best, only to a best position found thus far [38,41].
Van den Bergh et al. introduced a new algorithm, called the Guaranteed Convergence PSO (GCPSO) [38,40],

1862 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
to pro-actively counteract this behavior in a particle swarm. Let s be the index of the global best particle. The
velocity and position updates for the global best particle are then redefined to be
vs;jðt þ 1Þ ¼ �xs;jðtÞ þ ŷjðtÞ þ wvs;jðtÞ þ qðtÞð1� 2r2;jÞ; ð5Þ
xs;jðt þ 1Þ ¼ ŷjðtÞ þ wvs;jðtÞ þ qðtÞð1� 2r2;jÞ: ð6Þ
The term �xs ‘resets’ the particle’s position to the global best position ŷ; wvs signifies a search direction, and
qðtÞð1� 2r2ðtÞÞ adds a random search term to the equation. The parameter q(t) is dynamically adapted to con-
trol the size of the bounding box around ŷ within which a local search is conducted to force a change in the
value of ŷ, thereby preventing the above problem [38,40].

2.3. Niching ability of standard PSO

This section provides a short summary of [14], where it is shown that the standard gbest PSO cannot locate
multiple solutions, and that the standard lbest PSO is inefficient in doing so. For the gbest PSO, Van den Bergh
and Engelbrecht [38,41], and Clerc and Kennedy [6] formally proved that all particles converge on a single
attractor, which is a weighted average of the global best position and the personal best position of the particle.
These formal proofs clearly show that the gbest PSO cannot locate, in the same execution of the algorithm,
more than one solution. If the gbest PSO is executed a number of times, each time from different initial con-
ditions, it may be the case that more than one unique solution is found. However, there is no such guarantee.
In fact, there is not even a guarantee that the solution found is a local optimum, as proven in [38].

The proof of convergence to the weighted average of personal best and global best positions have been done
with respect to gbest PSO, and cannot be directly applied to lbest PSO. Based on this proof, the only thing that
can be said is that for each neighborhood, a particle converges to a weighted average of its personal best and
neighborhood best solutions. Since neighborhoods are constructed based on particles indices with some over-
lap between neighborhoods, it is intuitively expected that the neighborhoods (and therefore all particles), will
eventually converge on the same point. However, no such proof exist. Engelbrecht et al. [14] empirically
showed that, for the lbest PSO, particles do form subgroups, which can be perceived as niches. Even if these
subgroups can be considered as niches, it was shown in [14] that only a small number of solutions are found,
and only when large swarm sizes are used. The conclusion from [14] is that the standard lbest PSO is inefficient
in locating multiple solutions. For sake of completeness, Section 5 summarizes the results from [14] in com-
parison with the results of NichePSO.

The inability of gbest PSO and the inefficiency of lbest PSO in locating multiple solutions motivates
research in the modification of the standard PSO to promote niching within a single swarm.

3. Niching techniques

A number of algorithms have been suggested to find multiple solutions to multi-modal optimization prob-
lems using genetic algorithms, and to a lesser extend, PSOs. In GA parlance, optimization techniques that
locate multiple optima in multi-modal function optimization problems are known as niching techniques. Both
GAs and PSOs use a population of ‘agents’ (individuals, particles) partitioned in some way to focus on and
locate different possible solutions in a single search space. Each subgroup in the partitioned population is
known as a species. The behavioral pattern of individuals competing for the use of a resource in a subgroup
and between elements in a subgroup, is known as speciation.

Section 3.1 defines niching, while the remainder of this section summarizes only those niching methods
from which NichePSO borrowed concepts, and those methods used in the empirical analysis done for this
paper.

3.1. What is niching?

In an environment where a large number of individuals compete for the use of available resources, behav-
ioral patterns emerge where individuals are organized into subgroups based on their resource requirements.
Horn defines niching as a ‘‘form of cooperation around finite, limited resources, resulting in the lack of compe-

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1863
tition between such areas, and causing the formation of species for each niche’’ [19]. Niches are thus partitions of
an environment, and species are partitions of a population competing within the environment. Localization of
competition is introduced by simply sharing resources among individuals competing for it. The terms niche

and species can be used interchangeably. As an example, a school of fish that live in a certain part of the ocean
compete with each other for access to a potentially limited food supply. Food may not be available everywhere
in their environment. Certain fish may learn to live in a small area around a food source, while others may
learn to roam their environment and only feed when they require nourishment. If there was to be a single food
source, it is a reasonable expectation that all fish would eventually exhibit similar behavior. They would all be
required to find food in the same place, and encounter the same resistance from other fish.

The social interaction and adaptation of individuals in an environment around multiple resources form the
basis for the study of niching techniques with evolutionary optimization algorithms. In the evolutionary con-
text, Horn defines implicit niching as the sharing of resources, and explicit niching as the sharing of fitness.

Niching methods can be categorized as either being sequential or parallel:

• Sequential niching (or temporal niching) techniques develop niches sequentially over time. As niches are dis-
covered, the search space of a problem is adapted to repel other individuals from traversing the area around
the recently located solution. The search is repetitively applied to the adapted search space in order to focus
on unexplored areas [2].

• Parallel niching forms and maintains several different niches simultaneously. The search space is not mod-
ified. Parallel niching techniques therefore not only depend on finding a good measure to locate possible
solutions, but also need to organize individuals in a way that maintains their organization in the search
space over time, to populate locations around solutions [27,17,19,29].

Regardless of the way in which niches are found (i.e. in parallel or sequentially), the distribution of indi-
viduals can be formalized in a number of ways, according to their speciation behavior [27]:

• Sympatric speciation occurs when individuals form species that coexist in the same search space, but evolve
to exploit different resources (or more formally, different ecological niches).

• Allopatric speciation differentiates between individuals based on spatial isolation in a search space. No inter-
species communication takes place, and subspecies can develop only through deviation from the available
‘genetic’ information.

• Parapatric speciation allows new species to form as a result of segregated species sharing a common border.
Communication between the initial species may not have been encouraged or intended.

The PSO niching approach presented in Section 4 may be classified as using an allopatric speciation
approach. Allopatric speciation will therefore be a more prevalent issue of discussion, as it defines the goals
of multi-modal function optimization.

3.2. Fitness sharing

Fitness sharing is one of the earliest GA niching techniques, originally introduced as a population diversity
maintenance technique [17]. It is a parallel, explicit niching approach. The algorithm regards each niche as a
finite resource, and shares this resource among all individuals in the niche. Individuals are encouraged to pop-
ulate a particular area of the search space by adapting their fitness based on the number of other individuals
that populate the same area. The fitness fi of individual i is adapted to its shared fitness:
f 0i ¼
fiP

jshðdi;jÞ
:

A common sharing function is
shðdÞ ¼
1� ðd=rshareÞa if d < rshare

0 otherwise:

�

1864 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
The symbol d represents a distance calculated between individuals i and j. The distance measure may be geno-
typic or phenotypic, depending on the optimization problem at hand. If the sharing function finds that di;j is
less than rshare, it returns a value in the range [0,1], which increases as di;j decreases. The more similar i and j,
the lower their individual fitnesses will become. Sharing assumes that the number of niches can be estimated,
i.e. it must be known prior to the application of the algorithm how many niches there are. It is also assumed
that niches occur at least a minimum distance, 2rshare, from each other.

3.3. Sequential niching

Sequential niching (SN), introduced by Beasley et al. [2], identifies multiple solutions by adapting an opti-
mization problem’s objective function’s fitness landscape through the application of a derating function at a
position where a potential solution was found. A derating function is designed to lower the fitness appeal of
previously located solutions. By repeatedly running the algorithm, all optima are removed from the fitness
landscape. Sample derating functions, for a previous maximum x*, include
G1ðx; x�Þ ¼
kx�x�k

r

� �a
if kx� x�k < r

1 otherwise

(

and
G2ðx; x�Þ ¼
elog mr�kx�x�k

r if kx� x�k < r

1 otherwise;

(
ð7Þ
where r is the radius of the derating function’s effect. In G1, a determines whether the derating function is con-
cave (a > 1) or convex (a < 1). For a = 1, G1 is a linear function. For G2, m determines ‘concavity’. Noting that
limx!0 logðxÞ ¼ �1, m must always be larger than 0. Smaller values for m result in a more concave derating
function. The fitness function f(x) is then redefined to be
Mnþ1ðxÞ � MnðxÞ � Gðx; snÞ;

where M0ðxÞ � f ðxÞ and sn is the best individual found during run n of the algorithm. G can be any derating
function, such as G1 and G2.

3.4. Crowding

Crowding (or the crowding factor model), as introduced by de Jong [10], was originally devised as a diver-
sity preservation technique. Crowding is inspired by a naturally occurring phenomenon in ecologies, namely
competition amongst similar individuals for limited resources. Similar individuals compete to occupy the same
ecological niche, while dissimilar individuals do not compete, as they do not occupy the same ecological niche.
When a niche has reached its carrying capacity (i.e. being occupied by the maximum number of individuals
that can exist within it) older individuals are replaced by newer (younger) individuals. The carrying capacity
of the niche does not change, so the population size will remain constant.

For a genetic algorithm, crowding is performed as follows: It is assumed that a population of GA individ-
uals evolve over several generational steps. At each step, the crowding algorithm selects only a portion of the
current generation to reproduce. The selection strategy is fitness proportionate, i.e. more fit individuals are
more likely to be chosen. After the selected individuals have reproduced, individuals in the current population
are replaced by their offspring. For each offspring, a random sample is taken from the current generation, and
the most similar individual is replaced by the offspring individual.

Deterministic crowding (DC) is based on de Jong’s crowding technique, but with the following improve-
ments as suggested by Mahfoud [27]:

– Phenotypic similarity measures are used instead of genotypic measures. Phenotypic metrics embody domain
specific knowledge that is most useful in multi-modal optimization, as several different spatial positions can
contain equally optimal solutions.

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1865
– It was shown that there exists a high probability that the most similar individuals to an offspring are its
parents. Therefore, DC compares an offspring only to its parents and not to a random sample of the
population.

– Random selection is used to select individuals for reproduction. Offspring replace parents only if the off-
spring perform better than the parents.

3.5. Objective function stretching

Objective function stretching [30] was applied as a sequential PSO niching technique [31], similar to that of
Beasley et al. [2]. A particle swarm is trained using the gbest algorithm. Once the PSO has identified a local
minimum f ðx�Þ, through comparing particle fitnesses to a performance threshold value, the objective function
is stretched such that for each point x, where f ðxÞ < f ðx�Þ, x is unaffected. All other points, such that
f ðxÞP f ðx�Þ holds, are stretched so that x* becomes a local maximum. All particles are then repositioned
randomly. The fitness function f(x) is redefined as H(x), where
HðxÞ ¼ GðxÞ þ c2

signðf ðxÞ � f ðx�ÞÞ þ 1Þ
2 tanhðlðGðxÞ � Gðx�ÞÞÞ
and
GðxÞ ¼ f ðxÞ þ c1

kx� x�kðsignðf ðxÞ � f ðx�ÞÞ þ 1Þ
2

:

For a minimization problem, the sign(Æ) function is defined as
signðxÞ ¼
þ1; x > 0;

0; x ¼ 0;

�1; x < 0;

8><
>:
where x is a scalar value. Stretching of f(x) to H(x) ensures that subsequent iterations of the PSO algorithm
does not focus on previously located solutions.

Although effective in global optimization and to a lesser extent in multi-modal optimization, the stretching
technique introduces the following problems:

• If multiple acceptable solutions are located close to each other, the effect of G(x) may cause these alternative
solutions never to be detected.

• The adaptation of f(x) close to x leads to the introduction of ‘trenches’ in f around remaining potential
solutions with fitness similar to that of x [4].

• For some combinations of c1, c2l, new local optima are introduced [38].

3.6. The nbest particle swarm optimizer

The nbest PSO was developed to solve unconstrained systems of equations (SEs) [5]. Solving SEs here spe-
cifically refer to the process of finding points of intersection between the individual equations making up a
SEs. Standard PSO techniques, such as gbest and lbest can quickly and accurately solve SEs that have a single
solution. However, it is frequently the case that complex SEs have multiple solutions. Such problems can be
classified as multi-modal problems. Solutions to the SEs all have optimal fitness, and the fitness of any other
potential, non-optimal solution, depends on its proximity to one of the optimal solutions.

For a potential solution xi, the fitness function for solving a SE can in general be written as
f ðxiÞ ¼
XK

k¼1

jzkðxiÞj;

1866 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
where zkðxiÞ represents each one of the K equations in the SE; each equation is algebraically rewritten to be
equal to zero. While this fitness function works well when an unique solution exists, it fails for multiple solu-
tions. For example, consider the following SE:
y ¼ 2x� 3;

y ¼ �3x� 1;

y ¼ �xþ 1:
The SE has three solutions (i.e. there are three intersections between the solutions). To find them all, the fitness
function should consider a particle’s relative distance to a possible solution. Thus, to evaluate the fitness of x

for this SE, the fitness function is redefined as
fABCðxÞ ¼ minffAB;ACðxÞ; fBA;BCðxÞ; fCB;CAðxÞg;
where

fAB;ACðxÞ is the fitness of particle x with respect to equations y ¼ 2x� 3 and y ¼ �3xþ 1,
fBA;BCðxÞ is the fitness of particle x with respect to equations y ¼ �3xþ 1 and y ¼ �xþ 1,
fCB;CAðxÞ is the fitness of particle x with respect to equations y ¼ �xþ 1 and y ¼ 2x� 3.

This formulation of the fitness function implicitly assumes that all the lines in the system of equations actually
intersect, and rewards a particle for being close to one of the solutions, and does not penalize it if the particle is
still far from the global best particle.

If there are no intersections between lines in a system of equations, and therefore no solution to the sys-
tem of equations, particles will eventually settle on locations where lines in the system are the closest to each
other.

The lbest model’s neighborhood definition is motivated by the fact that it tries to promote the spread of
information regarding good solutions to all particles, without considering a particle’s current position. When
searching for a single optimum solution, this model is appropriate as it allows for efficient evaluation of the
search space while avoiding premature convergence. However, when searching for multiple possible solutions,
lbest is biased towards finding a single optimum solution in the search space due to overlapping neighbor-
hoods. It has been experimentally shown that it is possible for index-based particle neighborhoods to emerge
for relatively high iterations of the lbest algorithm (see results presented in Section 5.5). The propagation of
information about a local best solution within an index-based neighborhood, where neighborhoods are unique
to particles, also hampers convergence. Neighborhoods constantly change as particles do not pursue a com-
mon goal. nbest PSO however attempts to compensate for this deficiency.

For nbest PSO, a neighborhood best, ŷi, is defined for each particle, xi, as the center of mass of the positions
of all the particles in the topological neighborhood of xi. The topological neighborhood is defined as the ni

closest particles to xi, where the closest particles are found by calculating the Euclidean distance between xi

and all other particles in the swarm. Formally, for each particle define the set Bi, where Bi consists of the k
closest particles to xi at any given time step t; ŷi is then
ŷi ¼
1

k

Xk

j¼1

Bij;
where Bij is the current position of the jth particle in neighborhood Bi of particle xi at time t; k is a user defined
parameter. Considering the above formulation of ŷi, k should not be too small, as it will force a particle to
blindly trail its closest neighbor. Also, if k is too large, it would yield an algorithm similar to gbest, but where
the goal position would be an average particle position conveying no information about a possible good result.
Particle updates are done as for normal gbest PSO, but with the difference that the position of the global best
particle, ŷ, is replaced with ŷi, which represents the average of the best positions of particles in the topological
neighborhood of particle xi.

Experimental results showed that nbest successfully locates multiple solutions to SEs [5,4].

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1867
4. The niching particle swarm optimization algorithm

The NichePSO algorithm is a PSO based niching technique. Niches are identified by monitoring changes in
the fitness of individual particles in a swarm. The initial swarm is known as the ‘main’ swarm. When a particle
representing a candidate solution is found, a subswarm is created with this particle and its closest neighbor.
Subswarms are grown from the ‘main’ swarm. When all particles from the main swarm have been depleted, no
further subswarms can be created. Subswarms that occupy regions in the search space that may represent the
same niche are merged. To avoid this problem, any particle that occupies a position that can be considered to
fall within an existing swarm (discussed next) is also added to the swarm.

Fig. 1 summarizes the NichePSO algorithm. A number of issues relating to the algorithm are now
discussed:

Initialization: The general location of potential solutions in a search space may not always be known in
advance. It is therefore a good policy to distribute particles uniformly throughout the search space before
learning commences. To ensure a uniform distribution, Faure-sequences are used to generate initial particle
positions (as described in [37]). Faure-sequences are distributed with high uniformity within a n-dimensional
unit cube. Other pseudo-random uniform number generators, such as Sobol-sequences [33], may also be
used.
Main swarm training: In the nbest algorithm, overlapping particle neighborhoods discourage convergence
on local optima [4]. To this end, NichePSO uses a technique that frees a particle from the influence of a
neighborhood or global best term in the velocity update equation. When a particle considers only its
own ‘history and experiences’ in the form of a personal best, it can converge on a local optimum as it is
not drawn to a position in the search space that has better fitness as a result of the traversal of other par-
ticles. This search approach has been previously investigated [21]. Kennedy referred to it as the cognition

only model, in recognition of the fact that only a conscience factor, in the form of the personal best yi,
is used in the update. No social information, such as the global best solution in the gbest and lbest algo-
rithms, will influence position updates. This arrangement allows each particle to perform a local search.
Identification of niches: A fundamental question when searching for different niches is how to identify them.
Parsopoulos et al. (see Section 3.5) used a threshold value � such that when f ðxiÞ < � for particle i, the par-
ticle is removed from the swarm and labelled as a potential global solution. The objective function’s land-
scape is then stretched to keep other particles from exploring this area in the search space. If the isolated
particle’s fitness is not close to a desired level, the solution can be refined by searching the surrounding
Fig. 1. NichePSO algorithm.

1868 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
function landscape with the addition of more particles. This approach proves to be effective when consid-
ering Parsopoulos et al.’s results. This threshold parameter � is however subject to fine tuning, and locating
good solutions with it depends strongly on the objective function’s landscape and dimensionality. To avoid
the use of this tunable parameter, NichePSO uses a similar approach that monitors changes in the fitness of
a particle. If a particle’s fitness showed very little change over a small number of iterations of the learning
algorithm, a subswarm is created with the particle and its closest topological neighbor. More formally, the
standard deviation in particle i’s fitness, ri, is tracked over a number of iterations, er, where er was set to 3
in our experiments. When ri < d, a subswarm may be created with xi. The threshold d is a much more intu-
itive parameter than �. To avoid problem dependence, ri is normalized according to xmin and xmax. It is
possible that this approach can find local minima, satisfying ri < d. If local minima are undesired, the fit-
ness of a particle can be compared to a threshold to ensure that the solution meets a minimum fitness cri-
terion. The ‘closest neighbor’ to particle xi is simply the particle xk where

xk ¼ arg minxkfkxi � xkkg;
where k is the index of any particle in the main swarm, with k 6¼ i.
Absorption of particles into a subswarm: When a particle is still a member of the main swarm, it has no
knowledge of subswarms that may have been created during the execution of the NichePSO learning algo-
rithm. It is therefore quite likely that a particle may venture into an area of the search space that is being
independently optimized by a subswarm. Such particles are merged with the corresponding subswarm,
based on the following suppositions:
• Including a particle traversing the search space of an existing subswarm, may expand the diversity of the

subswarm, thereby more rapidly leading to solutions with better fitness.
• An individual particle moving towards a solution on which a subswarm is working, will make much

slower progress than what would have been the case had social information been available to ensure that
position updates move towards the particle’s known favorable solution.

To facilitate merging, particles are absorbed into a subswarm when they move ‘into’ the subswarm. That is,
a particle i will be absorbed into a subswarm Sj when
kxi � ŷSjk 6 Rj; ð8Þ
where Rj signifies the radius of subswarm Sj, and is defined as
Rj ¼ maxfkŷSj � xSj;ikg: ð9Þ
xSj;i represents all particles in Sj subject to i 6¼ g; ŷSj represents the global best particle in Sj. Generally,
subswarms have small radii due to the homogeneous nature of the positions represented by their particles.
Therefore, when a particle i moves into the hyper-sphere defined by a subswarm’s global best particle and
radius, it is unlikely that it would move away from the possible solution maintained by the subswarm. If the
absorption step was absent from the algorithm, i will first have to be considered for a subswarm and suc-
cessfully made part of one, before it can merge with Sj. If no other particles occur in the same portion of the
search space, a subswarm containing i will never be created, and the potential solution it represents will
never be considered. If i is merged with a particle in a similar situation, but which occurs in a vastly different
position in the search space, the algorithm’s convergence would be impaired.
Merging subswarms: A subswarm is created by removing a particle that represents an acceptable candidate
solution from the main swarm, as well as a particle that lies closest to it in the search space, and to group
these into a subswarm. From this rule, it follows that particles in subswarms all represent similar solutions.
This can lead to subswarms with radii that are very small, and even radii approximating zero. Conse-
quently, when a particle approaches a potential solution it may not necessarily be absorbed into a sub-
swarm already optimizing the particular solution. If the particle has an acceptable fitness, another
subswarm will be created at its position in the search space. If two solutions are very similar, a single sub-
swarm will be created to optimize both solutions. Eventually, only one of these solutions will be main-
tained. This introduces a dilemma, as multiple swarms will attempt to optimize the same solution. To
alleviate this situation, subswarms may be merged when the hyper-space defined by their particle positions
and radii intersect in the search space. When swarms are merged, the newly created swarm benefits from the

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1869
extensive social information present in the parent swarms. Accordingly, superfluous local traversal of the
search space is avoided. Formally, two subswarms Sj1

and Sj2
intersect, when

kŷSj1
� ŷSj2

k < ðRj1
þ Rj2

Þ: ð10Þ

When Rj ¼ 0 holds for subswarm Sj, all particles in Sj represent the same candidate solution. If this con-
dition holds for both swarms under consideration, Eq. (10) fails to detect the presence of multiple subsw-
arms in the same niche. Consequently, when two swarms, Sj1

and Sj2
do not satisfy Eq. (10), because

Rj1
¼ Rj2

¼ 0,1 the subswarms can be merged when
1 Sin
kŷSj1
� ŷSj2

k < l: ð11Þ
As with d, l can be an appreciably small number, such as 10�3, to ensure that two swarms are sufficiently
similar. To avoid having to tune l over the range of the search space under consideration, kŷSj1

� ŷSj2
k is

normalized to the interval [0,1]. Sj1
and Sj2

are merged by creating a new subswarm consisting of all Sj1
and

Sj2
’s particles. The influence of different l values are discussed in Section 5.3.1. An upper bound on l is

empirically derived.
The GCPSO algorithm (refer to Section 2.2):
Subswarms created by the NichePSO algorithm initially always consist of two particles. Utilizing the gbest

algorithm, especially when these particles are topologically similar, may lead to swarm stagnation, forcing
the subswarm to converge on a sub-optimal solution. GCPSO puts measures in place to ensure that a swarm
does not stagnate. Performance differences between these two algorithms are discussed in Section 5.3.3.
Stopping criteria: When each individual subswarm has located a solution and stably maintained it for a
number of training iterations, the NichePSO may be considered to have converged. Each swarm must con-
verge on a unique solution. Typically, a subswarm is considered to have converged when its global best
solution’s fitness is either above or below a threshold value, depending on whether the fitness function
describes a maximization or minimization problem. Fitness threshold criteria can not, however, detect
acceptable solutions in a multi-modal fitness function where local and global maxima exist. Local maxima
are never considered to be acceptable solutions, as their fitness do not necessarily adhere to possibly strict
threshold values. Any algorithm that therefore depends solely on threshold values will fail to converge.
Therefore, the change in particle positions are tracked over a number of iterations. If no significant change
occurs in their positions, such as may be detected by considering their variance over a small number of
training iterations, the subswarm may be considered to have converged. The algorithm may also be stopped
after a maximum number of training iterations.

5. Experimental results

This section presents results obtained by applying NichePSO to find multiple solutions to a set of
multi-modal problems. The performance of NichePSO is compared to that of nbest PSO, lbest PSO, sequential
niching and deterministic crowding. The influence of different control parameter values for NichePSO is also
investigated, and an initial scalability study is included.
5.1. Test functions

NichePSO is tested on a number of multi-modal functions, where the goal is to identify all optima. These
functions were originally introduced by Goldberg and Richardson to test fitness sharing [17] and have also
been used by Beasley et al. to evaluate the sequential niching algorithm [2]. Functions F1–F4 are defined
as (refer to Fig. 2):
ce position updates in PSO is a stochastic process, it is practically safer to consider the situation where Rj1
	 0 and Rj2

	 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
1(

x)

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
2(

x)

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
3(

x)

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
4(

x)

x

-5

0

5x -5

0

5

y

0

50

100

150

200

F5(x,y)

Fig. 2. Test functions: (a) function F1, (b) function F2, (c) function F3, (d) function F4 and (e) function F5.

1870 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
F1ðxÞ ¼ sin6ð5pxÞ;

F2ðxÞ ¼ e�2 logð2Þ� x�0:1
0:8ð Þ2

� �
� sin6ð5pxÞ;

F 3ðxÞ ¼ sin6ð5pðx3=4 � 0:05ÞÞ;

F 4ðxÞ ¼ e�2 logð2Þ� x�0:08
0:854ð Þ2

� �
� sin6ð5pðx3=4 � 0:05ÞÞ:
Functions F1 and F3 both have five maxima with a function value of 1.0. In F1, maxima are evenly spaced,
while in F3 maxima are unevenly spaced. In F2 and F4, local and global peaks exist at the same x-positions as

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1871
in F1 and F3, but their fitness magnitudes decrease exponentially. Functions F1–F4 are investigated in the
range x 2 ½0; 1�. For F1 and F2, maxima are located at x ¼ 0:1; x ¼ 0:3; x ¼ 0:5; x ¼ 0:7 and x ¼ 0:9. For F3
and F4, maxima are located at x ¼ 0:08; x ¼ 0:25; x ¼ 0:45; x ¼ 0:68 and x ¼ 0:93.

Function F5, the modified Himmelblau function (see Fig. 2(e)), is defined as
Table
Param

Functi

F1
F2
F3
F4
F5

Table
Perfor

Functi

F1
F2
F3
F4
F5
F5ðx; yÞ ¼ 200� ðx2 þ y � 11Þ2 � ðxþ y2 � 7Þ2: ð12Þ

F5 has four equal maxima with F5ðx; yÞ ¼ 200. Maxima are located at A ¼ ð3:0; 2:0Þ;B ¼ ð�3:78;�3:28Þ;
C ¼ ð3:58;�1:85Þ and D ¼ ð�2:81; 3:13Þ.

5.2. Preliminary results

For each of the five test functions, 30 experiments were done with the NichePSO algorithm with
c1 ¼ c2 ¼ 1:2. The inertia weight w was scaled linearly from 0.7 to 0.2 over a maximum of 2000 iterations
of the algorithm. These parameters were chosen to ensure convergent trajectories [41]. A single NichePSO iter-
ation is defined as performing steps 2–8 in Fig. 1 once. Table 1 reports further parameter settings, where jSj
denotes the initial number of particles in the main swarm before any niche subswarms are created, l is the
subswarm merging threshold, and d is the subswarm creation threshold. A maximum velocity equal to the
maximum range, xmax, was used. For functions F1 to F4, a particle consists simply of a potential x value.
For function F5, a particle represents an x,y) position.

NichePSO is evaluated according to

• Accuracy: how close the discovered optima are to the actual solutions; and
• Success consistency: the proportion of the experiments that found all optima.

The parameter values for d and l presented in Table 1 have been experimentally found to be effective.
Table 2 reports the mean and standard deviation of fitness of all particles in all subswarms. %Converged

signifies the percentage of experiments that successfully located all the maxima. NichePSO successfully located
all global maxima of all the functions tested. For functions F2 and F4, NichePSO located the global maximum
in all cases, but did not find all local maxima for all experiments. This explains the relatively large difference in
fitness between functions F1 and F3, and functions F2 and F4. Beasley et al. reported similar results for func-
tions F1–F4, and only found all maxima in 76% of the experiments done for F5 [2].
1
eter settings

on d l jSj xmin xmax

10�4 10�3 30 0.0 1.0
10�4 10�3 30 0.0 1.0
10�4 10�3 30 0.0 1.0
10�4 10�3 30 0.0 1.0
10�4 10�3 20 �5.0 5.0

2
mance results

on Fitness Deviation % Converged

7.68E�05 2.20E�04 100
9.12E�02 6.43E�02 93
5.95E�06 4.86E�05 100
8.07E�02 6.68E�02 93
4.78E�06 1.03E�05 100

1872 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
5.3. Discussion

Unimodal optimization techniques, such as the standard PSO and GAs, fail to efficiently locate multiple
solutions to multi-modal problems because of their inherent unimodal optimization nature. These algorithms
need to be extended to facilitate niching and speciation abstractions. NichePSO is no exception – although the
essence of the original PSO is retained, a number of extensions were made. The motivations and reasoning
behind these extensions are presented, justified and investigated in this section. The following issues are
considered:

• the algorithm’s sensitivity to the niching parameters, l and d,
• the performance of GCPSO compared to gbest when used in step 4(a) of the algorithm given in Fig. 1,
• the relationship between the initial swarm size and the number of solutions in a multi-modal fitness func-

tion, and
• scalability of the algorithm on highly multi-modal functions.
5.3.1. Sensitivity to changes in l
Each subswarm created by the NichePSO algorithm can be seen as a hyper-sphere in a search space. The

hyper-sphere’s radius is determined by the Euclidean distance between the swarm’s global best position and
the particle in the swarm that lies furthest from it. Two subswarms are merged when the two conceptual
hyper-spheres represented by them overlap. When all particles in a swarm have converged on a single solution,
a swarm will have an effective radius of zero. In such a situation, Eq. (10) fails to allow similar swarms to be
merged. Therefore, the use of the l parameter was introduced in Eq. (11). l allows virtually identical swarms
to be merged when they occupy positions that are almost equal. Large l values allow swarms that settle on
different solutions to merge. If two swarms that correctly represent different solutions are merged, the newly
created swarm eventually converges on only one of the possible solutions, because of the subswarm optimi-
zation technique. The GCPSO algorithm searches for a single, global solution.

In Table 3, the normalized distances between the known solutions for function F5 are given. Symbols A–D
correspond to the solutions listed in Section 5.1. For l = 0.5, the NichePSO algorithm failed to locate all
the maxima for function F5. The normalized distance between solutions A and D is 0.493. Swarms that
represented solutions A and D were therefore merged, as their inter-niche solution distance was less than
the threshold value l. For l-values less than 0.5, the algorithm successfully located all solutions. For extremely
small l-values, NichePSO still successfully located all solutions, but not all swarms positioned around the
same solutions were merged. Swarms congregated around the solutions, but due to the ‘strict’ merging thresh-
old, they could only be merged when virtually identical. Fig. 6a and b plot the mean number of solutions
found by NichePSO for F5, F1 and F3 respectively, for different l values. For function F1, NichePSO located
all solutions when l < 0.2 (see Fig. 6b). For F3, all solutions were only located for l 6 0:1. These results can
easily be verified by inspecting the inter-solution distances for functions F1 and F3.

From Fig. 6, an upper bound on l can be derived: l should not be greater than the lowest inter-niche dis-
tance. The upper bound is similar to the assumptions made about the inter-niche distance, 2rsh, in Goldberg’s
fitness sharing technique [17], and the niche radius r in Beasley et al.’s SN technique [2].

5.3.2. Sensitivity to changes in d
To identify new potential solutions, the NichePSO algorithm monitors changes in the main particle swarm.

If any particle exhibits very little change in its position over a number of iterations of the algorithm, the par-
Table 3
Normalized inter-solution distances for function F5

Solutions involved Distance between solutions

kA� Bk 0.714
kB� Ck 0.622
kC�Dk 0.675
kA�Dk 0.493

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1873
ticle may have approached an optimum position. The optimum may be a local or global optimum. An effective
measure to detect small changes in a particle i’s position is to monitor the standard deviation ri in particle i’s
fitness over a number of training iterations, er. When particle i’s fitness becomes less than a threshold value d,
a new subswarm is created using particle i and its closest neighbor. A particle exhibits this behavior only when
it is approaching a solution and has a low velocity, or when it is oscillating around a potential solution.
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

y

x

A (0.4, -2.2)

B (-1, 2)

C (4/3,-1/3)

y = 2x - 3
y =-3x - 1
y = -x + 1

0

1

2

3

4

5

6

7

8

9

10

-6 -4 -2 0 2 4 6

y

x

A

B
x^2

y = 2x + 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10

y

x

cos(x)ln(x)
tan(x)

a b

c

Fig. 3. Example systems of equations: (a) S1, (b) S2 and (c) S3.

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

y

x

1-dimensional Griewank function

0
5

10
15

20
25

30 0
5

10
15

20
25

30

-3

-2

-1

0

y

ba

Fig. 4. Griewank function: (a) one-dimensional and (b) two-dimensional.

0

10

20

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

1-dimensional Rastrigin function

-1.5
-1

-0.5
0

0.5
1

1.5 -1.5
-1

-0.5
0

0.5
1

1.5

-30

-20

-10

0

y

a b

Fig. 5. Rastrigin function: (a) one-dimensional and (b) two-dimensional.

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

ol
ut

io
ns

μ μ

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

ol
ut

io
ns

Function F1
Function F3

a b

Fig. 6. Effect of changes in l: (a) number of solutions vs. l for function F5 and (b) number of solutions vs. l for function F1 and F3.

1874 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
Different d values were tested for functions F1, F3 and F5. Fig. 7 plots the mean number of fitness function
evaluations over 30 experiments against different d settings. An experiment was considered to have converged
when all its subswarms had a fitness less than 10�4. For relatively large d values (d > 0.1), NichePSO initially
easily created subswarms with any particle that remotely exhibited stagnation behavior. In this context, ‘stag-
nation behavior’ indicates that a particle slowed down, and that it occupied similar positions in the search
space over consecutive algorithm iterations. For small d values (d < 0.1), particles were required to be more
stationary before being considered for a subswarm. A different interpretation is that particles had to be very
sure of a solution, before a subswarm was created. As indicated in Fig. 7, smaller d values effected a slight
increase in the number of fitness function evaluations required before the algorithm converged.

Fig. 7 illustrates that NichePSO is not dependent on a finely tuned d. Fervent subswarm creation with a
‘high’ d value will be negated by the merging of similar swarms. Very small d values (d < 0.01) leads to a minor
performance penalty, but when compared to NichePSO’s performance on higher d values, the cost is low.
Without exception, NichePSO successfully located all solutions to the test functions for all d values used.

5.3.3. The subswarm optimization technique

The NichePSO algorithm uses the GCPSO technique (refer to Section 2.2) as subswarm optimization tech-
nique. This section elucidates the use of GCPSO where gbest would be expected to perform adequately.

When considering the particle velocity update given in Eq. (3), it is clear that when, for a particle i, its posi-
tion xiðtÞ at time step t becomes close to its personal best position yiðtÞ and the global best position ŷðtÞ, the

1000

1500

2000

2500

0 0.1 0.2 0.3

M
ea

n
nu

m
be

r
of

 fi
tn

es
s

fu
nc

tio
n

ev
al

ua
tio

ns

Function F1
Function F3
Function F5

δ

Fig. 7. Mean number of fitness function evaluations required for different d values.

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1875
velocity update for the next iteration of the algorithm, viðt þ 1Þ depends only on previous velocity values and
the inertia weight w. A small viðt þ 1Þ dictates negligible change in a particle’s position. The particle will there-
fore stagnate on its current position; ŷðtÞ does not necessarily represent an optimum, but only the best solution
found thus far by all particles in the search space. When a particle swarm consists of only two particles, as is
frequently the case when subswarms are created with NichePSO, it may occur that these swarms almost imme-
diately stagnate. The situation can be explained as follows:

With two particles, p and q, in a newly created subswarm, one of these particles, say p, immediately repre-
sents the global best position of the swarm. It also holds that the personal best position yp of particle p is equal
to the swarm’s global best.This is an obvious assumption when considering that the global best position is
identified as a personal best position of one of the particles in the swarm. With xp ¼ yp ¼ ŷ, particle p’s initial
velocity update is then effectively reduced to
vpðt þ 1Þ ¼ wvpðtÞ: ð13Þ

Particle p’s initial traversal of the search space therefore solely depends on its velocity vector vpð0Þ and the
value of the inertia weight w. When a subswarm is created, each particle in the new swarm not only retains
its position vector, as this was the basis for its selection, but also its velocity vector. This ensures that the par-
ticle continues on its path to a local optimum. If the particle was already close to a potential solution, its veloc-
ity vector would be a value close to zero. Particle p will therefore not easily move around in search space.
Particle q was chosen to be the second particle in the subswarm, as it was the closest particle to p when the
subswarm was created. This implies, as stated above, that yp will always be considered over yq for the swarm’s
initial global position, and consequently, that xq will move towards xp. When yp ¼ yq ¼ ŷ, the following con-
ditions will occur:

• xp 	 xq, and
• vp and vq will approach zero.

Under these circumstances, no further learning takes place, and exploration of the search space is minimal.
Again, it should be noted that the assumption that ŷ represents a global solution, cannot be made. The same
argument can be applied to the lbest PSO, but with reference to the neighborhood best instead of the global
best. It should be noted that this behavior will be exhibited only when the problem occurs for all the neigh-
borhoods. To detect and avoid the described situation, the GCPSO algorithm is employed. GCPSO uses
adapted velocity and position update equations for the global best particle in a swarm (in our case particle
p), that allows efficient local traversal of the search space.

Table 4 presents experimental results that compare the performance of GCPSO with gbest PSO and lbest

PSO as subswarm optimization technique. For the lbest PSO, all parameters are the same as for the gbest PSO.
Neighborhoods of size 2 have been used. % Convergenced is the average success rate for finding all solutions of

Table 4
% Convergence of experiments for GCPSO and gbest

Test problem % Convergence: GCPSO % Convergence: gbest

F1 100 76
F2 93 66
F3 100 83
F4 93 86
F5 100 86

1876 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
a test function over 30 experiments. It is clear that GCPSO was better suited towards maintaining niches than
gbest PSO and lbest PSO. Experimental results obtained showed that for all functions, when using gbest PSO,
it frequently occurred that subswarms were formed that consisted of only two particles. Such swarms quickly
stagnated on suboptimal locations. The same problem was observed with lbest PSO. The lbest PSO performed
consistently better than the gbest PSO, except for function F5.

When several local and global optima exist in close proximity to each other in a function, GCPSO would
tend to be biased towards the global optima. This was not the case for the gbest PSO and lbest PSO.

5.3.4. Relationship between jSj and the number of solutions

This section investigates the relationship between the swarm size jSj and the number of optima, a, in a
multi-modal function.

Fig. 8a and b present experimental results that compare the number of solutions found and the number of
fitness function evaluations required for different swarm sizes. Reported results are means over 30 simulations
for functions F1, F3 and F5.

Trivially, NichePSO failed to locate all solutions when kSk < a. When kSk < 2a, NichePSO also did not
locate all the solutions. Since the subswarm creation technique needed two particles to create a subswarm,
intuitively, 2a would have been expected to be a sufficient swarm size. This was however not the case. This
situation can be clarified when considering the distribution of particles, and the fact that velocity vectors were
initialized randomly. No ‘directional-bias’ is introduced by forcing velocity vectors to lead a particle into a
specific direction, specifically towards a solution. If possible solutions are not known in advance, such a bias
would not be possible. A particle could therefore be initialized close to a solution, but an initial velocity value
may cause it to move away from the possible solution towards another solution, where it could eventually set-
tle. For function F1, when kSkP 20, NichePSO successfully located and stably maintained all solutions. For
all the tested functions, a swarm of size kSkP a2 managed to locate all solutions. Fig. 8b shows the mean
number of fitness function evaluations required for the different swarm sizes used above.
0

1

2

3

4

5

6

7

8

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
ea

n
nu

m
be

r
of

 s
ol

ut
io

ns
 fo

un
d

Swarm Size

F1
F3
F5

0

1000

2000

3000

4000

5000

6000

7000

8000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
ea

n
nu

m
be

r
of

 fi
tn

es
s

fu
nc

tio
n

ev
al

ua
tio

ns

Swarm Size

F1
F3
F5

a b

Fig. 8. Performance under different swarm sizes: (a) relationship between different swarm sizes and the number of solutions locates and (b)
the mean number of fitness function evaluations required for different swarm sizes.

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1877
5.4. Comparison with other niching approaches

This section compares the performances of NichePSO, nbest PSO, lbest PSO, sequential niching (SN) and
deterministic crowding (DC) using the same parameter settings for all algorithms. For this purpose, functions
F1–F5 are used, as well as the following systems of equations (as illustrated in Fig. 3):
S1 : y ¼ 2x� 3;

y ¼ �3x� 1;

y ¼ �xþ 1; ð14Þ
S2 : y ¼ x2;

y ¼ 2xþ 2; ð15Þ
S3 : y ¼ cos x ln x;

y ¼ tan x: ð16Þ
For each of the nbest PSO, lbest, NichePSO, SN and DC algorithms, 30 simulations were performed on each
of the systems of equations above. The following sections describe GA and PSO parameter settings
respectively.

5.4.1. GA setup

For all experiments, populations consisting of 20 individuals were used. For Beasley et al.’s SN algorithm,
the probabilities of crossover and mutation were set to 0.9 and 0.01 respectively [2]. mutation operators are
applied. A single-point crossover operator was used. As selection operator, stochastic universal sampling

(SUS) were used, as suggested in [26]. One-dimensional problems used a 30-bit chromosome representation.
For two-dimensional problems, two chromosomes of 15-bits each were used. The halting window approach
described in [2], was used to terminate the algorithm. The approach monitors the average fitness of a popu-
lation at each generation. If the average fitness has not improved on the fitness reported h generations earlier,
the algorithm is terminated. For all runs of the SN algorithm, a halting window of h = 20 was used. Apart
from this control setting, a maximum number of 2000 iterations was allowed. To determine the niche radius
(refer to Section 3.3), the method suggested by Beasley et al. was used (originally suggested by Deb [11]). For a
d-dimensional problem with l optima, the niche radius r was calculated as
r ¼
ffiffiffi
d
p

2�
ffiffi
ld
p : ð17Þ
This technique assumes that fitness function parameters are normalized to [0,1]. The exponential derating
function in Eq. (7) was used.

Mahfoud’s DC uses an internal selection scheme (see Section 3.4). Crossover and mutation probabilities
were set at 1.0 and 0.01 respectively, since the DC algorithm favors a low mutation probability and a high
crossover probability [27]. DC also used a halting window-based termination criterion of h = 20, and a max-
imum number of generations of gmax ¼ 2000.

The PSO implementations and NichePSO used the same values for control parameters as used in the pre-
vious sections and summarized in Table 1 (except that 20 particles have been used for all functions).

5.5. Results and discussion

Tables 5 and 6 summarize the performance of the tested niching techniques. In both tables, entries marked
with a ‘*’ indicate that experiments on the relevant test problem and algorithm combination were not carried
out. Marked entries apply specifically to the situation where the nbest PSO algorithm was used to find multiple
solutions to problems with optima of varying fitness. If only fitness is considered on problems such as function
F2 and F4, topological neighborhoods of particles overlap. Particles are therefore drawn to solutions with bet-
ter fitness, and only converge on solutions with optimal fitness.

Table 5
Average number of fitness function evaluations required to converge for each niching algorithm

Problem SN DC nbest NichePSO Average

S1 1841 ± 86 15088 ± 4197 8493 ± 413 2554 ± 228 6994
S2 1193 ± 96 17554 ± 4657 6934 ± 542 3966 ± 353 7412
S3 1927 ± 95 13816 ± 4225 7019 ± 670 2704 ± 135 6366
F1 4102 ± 577 14647 ± 4612 4769 ± 45 2372 ± 109 6473
F2 3505 ± 463 13052 ± 2507 * 2934 ± 475 6497
F3 4141 ± 554 13930 ± 3284 4789 ± 51 2404 ± 195 6316
F4 3464 ± 287 13929 ± 2996 * 2820 ± 517 6738
F5 3423 ± 402 14296 ± 3408 5008 ± 562 2151 ± 200 6220

Average 2950 14539 6169 2738

Entries marked with a ‘*’ indicate that experiments were not carried out for the relevant problem and algorithm.

Table 6
The consistency with which each of the techniques managed to locate a complete set of solutions for each of the test problems

Problem SN (%) DC (%) nbest (%) lbest (%) NichePSO (%) Average (%)

S1 76 93 100 0.00 87 89.00
S2 66 100 100 0.00 80 86.50
S3 83 87 100 0.00 90 90.00
F1 100 100 93 0.00 100 98.25
F2 83 93 * 0.00 93 89.67
F3 100 90 93 0.00 100 95.75
F4 93 90 * 0.00 93 92.00
F5 86 90 100 0.00% 100 94.00

Average 85.88 92.86 97.67 0 92.88

Entries marked with a ‘*’ indicate that experiments were not carried out for the relevant problem and algorithm.

1878 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
5.5.1. Computational cost

Table 5 compares the computational cost of each of the niching techniques in terms of the number of fitness
function evaluations required to converge. For values reported in the format a
 b, a refers to a mean calcu-
lated over all simulations, and b refers to the standard deviation calculated over the same values. The given
results represent the actual number of fitness function evaluations that took place. This fact brings an inter-
esting point forward: DC does not compare each individual in the population to every other population mem-
ber at each generation of the algorithm; offspring are only compared to their parents. The net effect of this is
that DC requires a consistently higher number of fitness function evaluations. The following comments can be
made based on the results shown in Table 5:

• SN required fewer evaluations on the systems of equations in problems S1, S2 and S3.
• Although SN generally required a low number of fitness function evaluations, it should be taken into con-

sideration that the basis of the SN algorithm necessitates the calculation of a derated fitness at each gen-
eration, which becomes more complex as the number of generations increases.

• DC consistently required more fitness function evaluations than the other algorithms.
• When comparing nbest PSO and NichePSO, it is clear that NichePSO required a substantially smaller num-

ber of fitness function evaluations. In addition to its quota of fitness function evaluations, nbest PSO also
required the calculation of an inter-particle distance matrix at each iteration of the algorithm.

• Both nbest PSO and NichePSO consistently require less than the average number of fitness function eval-
uations to converge.

• Overall, NichePSO required the least number of fitness function evaluations to converge.
• Results for lbest PSO were not included as the algorithm failed to locate a complete set of solutions for any

of the test problems using the same set of parameters (see Table 6).

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1879
5.5.2. Performance consistency

Table 6 expresses as percentages the performance consistency of the tested niching techniques. ‘Perfor-
mance consistency’ reflects each algorithm’s ability to consistently locate all solutions to each of the optimi-
zation problems for the given parameters. All the tested techniques sufficiently maintained solutions sets. The
following conclusions can be drawn from the results reported in Table 6:

• Results for the SN algorithm compare well to that reported in [2]. The algorithm did however not perform
as well on systems of equations, and generally performed worse than the average.

• Regardless of its higher computational requirement, DC did not generally yield superior performance.
• Although still better than SN, NichePSO performed equal to or worse than the average performance on the

systems of equations in problems S1, S2 and S3.
• The nbest PSO algorithm appears to have exhibited the most consistent performance over all the test prob-

lems (keeping in mind that it was not applied to F2 and F4).

For the given set of test problems and control parameters, the lbest PSO was not successful in finding a
complete set of solutions, although the algorithm did manage to locate some of the solutions, as shown in
Table 7. These results prompted an experimental investigation into the potential of lbest PSO using more
favorable parameters. A set of 30 experiments were performed using lbest PSO on function F1, with swarms
consisting of 100 particles over 100,000 iterations of the algorithm. Settings for w, c1 and c2 were as above.
Table 8 show that lbest PSO was only successful in locating all solutions 13.33% of the time. In order for lbest
PSO to locate a complete set of solutions for a multi-modal problem, particles should be re-arranged during
the execution of the algorithm ensuring that index-based neighborhoods reflect the topological arrangement of
solutions within an optimization problem’s search space. This trend was not apparent for results reported in
Table 6, but did emerge for larger swarms. It is however significant that regardless of the high number of iter-
ations and particles, the lbest PSO was less successful than the investigated niching techniques. This finding is
confirmed by Engelbrecht et al. in a separate study of the niching ability of basic PSO [14].
Table 7
lbest PSO performance on test functions

Function Solutions % Experiments converged on # solutions

1 Sol (%) 2 Sols (%) 3 Sols (%) 4 Sols (%) 5 Sols (%)

F1 5 6.67 53.33 33.33 6.67 0.00
F2 5 60.00 20.00 20.00 0.00 0.00
F3 5 0.00 33.33 60.00 6.67 0.00
F4 5 20.00 33.33 40.00 0.00 0.00
F5 4 66.67 26.67 0.00 0.00 –
S1 3 80.00 20.00 0.00 – –
S2 2 100.00 0.00 – – –
S3 3 80.00 20.00 0.00 – –

Table 8
lbest performance with large swarms

Solutions Located by # experiments

1 0 0.00%
2 0 0.00%
3 13 43.33%
4 13 43.33%
5 4 13.33%

30 100.00%

1880 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
5.6. Scalability of NichePSO

The results obtained in Section 5.2 showed NichePSO to effectively solve multi-modal optimization prob-
lems. This section presents empirical results that investigate NichePSO’s ability to scale to massively multi-
modal domains.

NichePSO was tested on the following multi-modal functions:

Griewank function:
f ðxÞ ¼ 1

4000

Xn

i¼1

x2
i

 !
�

Yn

i¼1

cos
xiffiffi

i
p
� � !

þ 1: ð18Þ

Rastrigin function:

f ðxÞ ¼
Xn

i¼1

½x2
i � 10 cosð2pxiÞ þ 10�: ð19Þ

These functions are massively multi-modal. Both contain a single global minimum at the origin of the n-
dimensional real-valued space in which they are defined. For each of the functions, the number of minima
increases exponentially, as can be seen from the one and two dimensional plots given in Figs. 4 and 5. Figs.
4b and 5b are drawn inverted to more clearly illustrate the multi-modal nature of the function surfaces. The
goal of the experiments were to ascertain whether increased dimensionality and large numbers of optima
degraded the performance of NichePSO.

For each of the test functions, 10 experiments were performed with the NichePSO algorithm. Initial swarms
sizes used were as listed in Tables 9 and 10. For all experiments, the inertia weight w was scaled linearly from
0.7 to 0.1 over a maximum of 2000 training iterations. The acceleration coefficients were set to c1 ¼ c2 ¼ 1:2.
NichePSO parameters were set as l = 0.001 and d = 0.1. The Griewank function was investigated in the range
½�28; 28�n, and the Rastrigin function in the range ½� 3

2
; 3

2
�n. Tables 9 and 10 present performance results of

NichePSO on the two test functions.
The following observations could be made:

• Given the sharp increase in the number of optima, NichePSO gave consistent performance, with slight deg-
radation as the number of dimensions increased. It should be taken into account that a linear increase in the
number of dimensions is coupled with an exponential increase in the number of solutions.
Table 9
Scalability performance on the Griewank function

Dimensions (n) Number of solutions (a) Swarm size (jSj) % Accuracy

NichePSO (%) SN (%) DC (%)

1 5 20 100.00 100.00 90.00
2 25 100 100.00 68.00 66.60
3 625 2500 94.75 41.00 56.6

Table 10
Scalability performance on the Rastrigin function

Dimensions (n) Number of solutions (a) Swarm size (jSj) % Accuracy

NichePSO (%) SN (%) DC (%)

1 3 9 100.00 100.00 100.00
2 9 36 100.00 78.00 67.00
3 27 108 97.45 66.70 61.10
4 81 324 97.08 58.00 54.20
5 243 972 92.00 * *

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1881
• Using the exponential relationship kSk ¼ a2 suggested in Section 5.3.4, is computationally very expensive.
As an example, the 5-dimensional Rastrigin function with 243 solutions would require a swarm of 59,049
particles! As shown in Tables 9 and 10, the relationship between the number of solutions, a, and the swarm
size, jSj, was kept at
jSj ¼ 4a: ð20Þ

This relationship is computationally more tractable. It also shows that kSk ¼ a2 does not represent a lower
bound on the relationship between swarm size and number of solutions. Consequently, the relationship be-
tween swarm size and number of solutions would more likely be expressed as
jSj ¼ c � aq; ð21Þ

where c is a constant, and 1 6 q 6 2. Further experimentation would be required to empirically estimate
ideal values for c and q.
6. Conclusions and future work

Population-based search methods such as particle swarm optimizers, present a real and viable alternative to
existing numerical optimization techniques. Population based optimization techniques can rapidly search large
and convoluted search spaces and are not susceptible to suboptimal solutions. The standard gbest and lbest

PSO approaches share information about a best solution found by the swarm or a neighborhood of particles.
Sharing this information introduces a bias in the swarm’s search, forcing it to converge on a single solution.
When the influence of a current best solution is removed, each particle traverses the search space individually.
When a possible solution is detected at a particle’s location, a subswarm is created. The subswarm then opti-
mizes the potential solution. This pseudo-memetic approach is called NichePSO. Experimental results
obtained on a set of multi-modal functions showed that NichePSO successfully located and maintained multi-
ple optimal solutions. Several parameter issues, related to NichePSO, were addressed. Suggestions were made
as to potential values for tunable parameters.

Future work on NichePSO will include:

• Parameter independence: The current NichePSO implementation fails to correctly locate all solutions to a
multi-modal function if l is greater than the inter-swarm distance. This situation could be avoided by mon-
itoring the effect of merging on swarm fitness. Ideally, swarm fitness should remain stable or improve. If
particles from different potential solutions are merged, swarm fitness will be erratic until the swarm settles
on one solution. Swarms may of course not settle at all, as several potential solutions would confuse it.
Alternatively, a technique similar to that of Goldberg and Wang’s CSN could be utilized to remove this
parameter limitation [28].

• Swarm sizes: In Section 5.3.4 it was found that a2, where a is the number of optima in a multi-modal func-
tion, was an acceptable estimate as to the number of particles required to locate all solutions. The accuracy
of this estimate warrants further investigation, specifically when applying NichePSO to multi-modal func-
tions of higher dimensions. Alternative velocity vector initialization techniques could also be investigated to
see whether the number of particles per solutions can be reduced.

• Ensemble neural networks: Ensemble architectures train a number of neural networks, either sequentially or
in parallel on the same problem. Since the search space associated with a neural network may be highly
multi-modal, the use of a niching technique may be beneficial. It seems a natural step to exploit the nature
of niching algorithms and applying it to ensemble learning, given that the PSO algorithm has been shown to
be an effective optimization technique for neural networks.

• Multi-objective optimization: Future studies will investigate the applicability of the NichePSO to multi-
objective optimization problems.
References

[1] T. Bäck, D.B. Foge, A. Michalewicz (Eds.), Handbook of Evolutionary Computation, IOP Publishers and Oxford University Press,
1997.

1882 R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883
[2] D. Beasley, D.R. Bull, R.R. Martin, A sequential niching technique for multimodal function optimization, Evolutionary
Computation 1 (2) (1993) 101–125.

[3] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
[4] R. Brits, Niching Strategies for Particle Swarm Optimization. Master’s thesis, Department of Computer Science, University of

Pretoria, Pretoria, South Africa, November 2002.
[5] R. Brits, A.P. Engelbrecht, F. van den Bergh, Solving systems of unconstrained equations using particle swarm optimizers, in:

Proceedings of the IEEE Conference on Systems, Man and Cybernetics, October 2002, pp. 102 – 107.
[6] M. Clerc, J. Kennedy, The particle swarm – explosion, stability and convergence in a multidimensional complex space, IEEE

Transactions on Evolutionary Computation 6 (1) (2002) 58–73, February.
[7] C.A. Coello Coello, An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends, in:

Proceedings of the IEEE Congress on Evolutionary Computation, Washington, DC, July 1999, pp. 3–13.
[8] C.A. Coello Coello, M.S. Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization, in: Proceedings of the

IEEE World Congress on Evolutionary Computation, Honolulu, Hawaii, May 2002, pp. 1051–1056.
[9] C.A. Coello Coello, D.A. van Veldhuizen, G.B. Lamont, Evolutionary Algorithms for Solving Multi-objective Problems, Kluwer

Academic Publishers, 2003.
[10] K.A. de Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. thesis, Department of Computer Science,

University of Michigan, Ann Arbor, Michigan, USA, 1975.
[11] K. Deb, Genetic Algorithms in Multimodal Function Optimization. Master’s thesis, Department of Engineering Mathematics,

University of Alabama, 1989.
[12] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, 2004.
[13] A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, 2005.
[14] A.P. Engelbrecht, B.S. Masiye, G. Pampara, Niching ability of basic particle swarm optimization algorithms, in: Proceedings of the

IEEE Swarm Intelligence Symposium, 2005.
[15] J.E. Fieldsend, S. Singh, A multi-objective algorithm based upon particle swarm optimisation, and efficient data structure and

turbulence, in: The 2002 UK Workshop on Computational Intelligence, 2002, pp. 33–44.
[16] E. Fiesler, R. Beale (Eds.), Handbook of Neural Computation, IOP Publishers and Oxford University Press, 1996.
[17] D.E. Goldberg, J. Richardson, Genetic algorithm with sharing for multimodal function optimization, in: Proceedings of the Second

International Conference on Genetic Algorithms, 1987, pp. 41–49.
[18] D.E. Goldberg, L. Wang, Adaptive Niching via Coevolutionary Sharing, technical report, Genetic Algorithm Lab, Urbana,

University of Illinois, Illinois, August 1997. IlliGAL Rep. 97007.
[19] J. Horn, The nature of niching: Genetic algorithms and the evolution of optimal, cooperative populations. Ph.D. thesis, Urbana,

University of Illinois, Illinois, Genetic Algorithm Lab, 1997.
[20] X. Hu, R. Eberhart, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in: Proceedings of the

IEEE World Congress on Evolutionary Computation, Honolulu, Hawaii, 12–17 May 2002, pp. 1677–1681.
[21] J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance, in: Proceedings of the

IEEE Congress on Evolutionary Computation, July 1999, pp. 1931–1938.
[22] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks,

vol. IV, Perth, Australia, 1995, pp. 1942–1948.
[23] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufman, 2001.
[24] J. Kennedy, R. Mendes, Population structure and particle swarm performance, in: Proceedings of the IEEE World Congress on

Evolutionary Computation, Honolulu, Hawaii, May 2002, pp. 1671–1676.
[25] M. Løvbjerg, T.K. Rasmussen, T. Krink, Hybrid particle swarm optimizer with breeding and subpopulations, in: Proceedings of the

Genetic and Evolutionary Computation Conference, vol. 1, San Fransisco, USA, July 2001, pp. 469–476.
[26] S.W. Mahfoud, A comparison of parallel and sequential niching methods, in: Proceedings of the Sixth International Conference on

Genetic Algorithms, 1995, pp. 136–143.
[27] S.W. Mahfoud, Niching Methods for Genetic Algorithms. Ph.D. thesis, Genetic Algorithm Lab, University of Illinois, Illinois, 1995.

IlliGAL Rep. 95001.
[28] O.J. Mengshoel, D.E. Goldberg, Probabilistic crowding: deterministic crowding with probabilistic replacement, in: Proceedings of the

Genetic and Evolutionary Computation Conference 1999, San Fransisco, USA, Morgan Kaufmann, 1999, pp. 409–416.
[29] B.L. Miller, M.J. Shaw, Genetic Algorithms with Dynamic Niche Sharing for Multimodal Function Optimization, Technical report,

Genetic Algorithm Lab, Urbana, University of Illinois, Illinois, December 1995. IlliGAL Rep. 95010.
[30] K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas, M.N. Vrahatis, Stretching technique for obtaining global minimizers through

particle swarm optimization, in: Proceedings of the Particle Swarm Optimization Workshop, Indianapolis, USA, 2001, pp. 22–29.
[31] K.E. Parsopoulos, M.N. Vrahatis, Modification of the particle swarm optimizer for locating all the global minima, in: V. Kurkova,

N.C. Steele, R. Neruda, M. Karny (Eds.), Artificial Neural Networks and Genetic Algorithms, Springer, 2001, pp. 324–327.
[32] K.E. Parsopoulos, M.N. Vrahatis, Particle swarm optimization method in multiobjective problems, in: Proceedings of the 2002 ACM

Symposium on Applied Computing (SAC 2002), 2002, pp. 603–607.
[33] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed.,

Cambridge University Press, 1992.
[34] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE World Conference on Computational

Intelligence, Anchorage, Alaska, May 1998, pp. 69–73.

R. Brits et al. / Applied Mathematics and Computation 189 (2007) 1859–1883 1883
[35] Y. Shi, R.C. Eberhart, An empirical study of particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary
Computation, Piscataway, NJ, 1999, pp. 1945–1960.

[36] P.N. Suganthan, Particle swarm optimizer with neighborhood operator, in: Proceedings of the IEEE Congress on Evolutionary
Computation, July 1999, pp. 1958–1961.

[37] E. Thiémard, Economic Generation of Low-Discrepancy Sequences with a b-ary Gray Code, Department of Mathematics, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

[38] F. van den Bergh, An Analysis of Particle Swarm Optimizers. Ph.D. thesis, Department of Computer Science, University of Pretoria,
Pretoria, South Africa, 2002.

[39] F. van den Bergh, A.P. Engelbrecht, Cooperative learning in neural networks using particle swarm optimizers, South African
Computer Journal 26 (2000) 84–90, November.

[40] F. van den Bergh, A.P. Engelbrecht, A new locally convergent particle swarm optimizer, in: Proceedings of the IEEE Conference on
Systems, Man and Cybernetics, October 2002, pp. 96–101.

[41] F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Science 176 (8) (2006)
937–971.

	Locating multiple optima using particle swarm optimization
	Introduction
	Particle swarm optimizers
	The standard PSO
	The guaranteed convergence particle swarm optimizer
	Niching ability of standard PSO

	Niching techniques
	What is niching?
	Fitness sharing
	Sequential niching
	Crowding
	Objective function stretching
	The nbest particle swarm optimizer

	The niching particle swarm optimization algorithm
	Experimental results
	Test functions
	Preliminary results
	Discussion
	Sensitivity to changes in mu
	Sensitivity to changes in delta
	The subswarm optimization technique
	Relationship between mid S mid and the number of solutions

	Comparison with other niching approaches
	GA setup

	Results and discussion
	Computational cost
	Performance consistency

	Scalability of NichePSO

	Conclusions and future work
	References

