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ABSTRACT 

 
The woody component in African Savannahs provides essential 

ecosystem services such as fuel wood and construction timber to 

large populations of rural communities. Woody canopy cover (i.e. 

the percentage area occupied by woody canopy or CC) is a key 

parameter of the woody component. Synthetic Aperture Radar 

(SAR) is effective at assessing the woody component, because of 

its capacity to image within-canopy properties of the vegetation 

while offering an all-weather capacity to map relatively large 

extents of the woody component. This study compared the 

modelling accuracies of woody canopy cover (CC), in South 

African Savannahs, through the assessment of a set of modelling 

approaches (Linear Regression, Support Vector Machines, 

REPTree decision tree, Artificial Neural Network and Random 

Forest) with the use of X-band (TerraSAR-X), C-band 

(RADARSAT-2) and L-band (ALOS PALSAR) datasets. This 

study illustrated that the ANN, REPTree and RF non-parametric 

modelling algorithms were the most ideal with high CC prediction 

accuracies throughout the different scenarios. Results also 

illustrated that the acquisition of L-band data be prioritized due to 

the high accuracies achieved by the L-band dataset alone in 

comparison to the individual shorter wavelengths. The study 

provides promising results for developing regional savannah 

woody cover maps using limited LiDAR training data and SAR 

images. 

 
Index Terms— Woody canopy cover, Savannahs, Synthetic 

Aperture Radar, Multi-frequency, Non-parametric 

 

1. INTRODUCTION – BACKGROUND, AIMS AND 

OBJECTIVES 

 
The woody component in African Savannahs provides essential 

ecosystem services such as fuelwood and construction timber to 

large populations of rural communities. The woody component is 

also an important physical attribute for many ecological processes 

and impact the fire regime, vegetation production, nutrient cycling, 

soil erosion and the water cycle of these environments [1]. In order 

to monitor and manage these fuelwood reserves and carbon stock, 

the structural parameters of the woody components needs to be 

estimated over large areas. Woody canopy cover (i.e. the 

percentage area occupied by woody canopy or CC) is a simple and 

key parameter of the woody component and is used for the 

estimation of above ground biomass by combining it with tree 

height [2]. 

 

Active remote sensing sensors such as Light Detection And 

Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are 

effective at assessing the woody component, because of their 

capacity to image within-canopy properties of the vegetation [3], 

[4], [5]. SAR-based approach, furthermore, offers an all-weather 

capacity to map relatively large extents of the woody component, 

which cannot be easily achieved with LiDAR only [6]. In line with 

the protocols outlined in the GOFC-GOLD Sourcebook [7], for 

extensive regional CC modelling, mapping potential and capacity 

to incorporate such diverse datasets, a robust but accurate 

modelling approach is needed. Both parametric and non-parametric 

modelling approaches can fulfill this criterion. Parametric 

approaches are based on particular assumptions about the input 

variable(s) distribution while in non-parametric approaches, the 

input variable(s) do not take a predetermined form but are built 

from information derived from the dataset(s) itself [8]. 

 

This study compared the modelling accuracies of woody 

canopy cover (CC), in South African Savannahs, through the 

assessment of a set of modelling approaches (from simple 

parametric Linear Regression to more complex non-parametric 

algorithms such as Support Vector Machines, REPTree decision 

tree, Artificial Neural Network and Random Forest) with the use of 

X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band 

(ALOS PALSAR) datasets. Since this work feeds into a bigger 

programme for robust CC modelling development and automated 

mapping potential, minimal algorithm parameter tuning and 

optimization was conducted. With this in mind, the default 

parameter values recommended by the various software proprietors 

were thus used in this study. Finally, CC was derived from 

airborne LiDAR data to train the models and evaluate the SAR 

modelling accuracies. The following research questions were posed 

in accordance to this study’s main objectives: 

 

1) Which modelling technique yielded the best CC 

modelled accuracies? 

 

2) Which SAR frequency (e.g. X-, C- or L-band) yielded 

the highest accuracies for predicting CC? 
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2. MATERIALS AND METHODOLOGY 

 
Five 2012 TerraSAR-X X-band (Dual pol. StripMap), four 2009 

Radarsat-2 C-band (Qual pol. Fine beam but only HH and HV data 

was used in this study) and two 2010 ALOS PALSAR L-band 

(Dual pol. FBD) images were acquired for the Southern Kruger 

National Park region (31°00’ to 31°50’ Long E; 24°33’ to 25°00’ 

Lat S).  This area is made up of a mixture of communal rangelands 

(e.g. Bushbuckridge), private game reserves (e.g. Sabi Sands) and 

national parks (e.g. Kruger Park).  The woody vegetation in the 

region is generally characterized as open forest with a canopy 

cover ranging from 20-60%, a predominant height range of 2 to 5m 

and biomass below 60T/ha [9]. The SAR imagery was acquired in 

winter when it is dry with the lowest moisture levels and leaf-off 

conditions.  Dry conditions allow for minimal SAR signal noise 

from moisture variability [9].  The SAR intensity imagery 

underwent the following pre-processing steps: multi-looking 

(range and azimuth factor of 2:8 for L-band, 1:5 for C-band and 

4:4 for X-band), radiometric calibration (conversion into σ0 

backscatter values), geocoding and topographically normalization 

of the backscatter (90m SRTM DEM) and filtering (3X3m sigma 

Lee filter). 

 

LiDAR data were acquired by the Carnegie Airborne 

Observatory AToMS sensor in summer 2012 and processed 

according to steps outlined in [10].  The LiDAR CC product was 

derived from a Canopy height model (CHM, pixel size of 1.12m) 

that was computed by subtracting a DEM from a Canopy Surface 

Model obtained from the raw point cloud. The percentage area of 

25 x 25m area covered by woody canopy was calculated (using the 

CHM values above 0.5m to exclude the grass layer) to create the 

LiDAR CC product.  For the modelling, the LiDAR CC and SAR 

datasets were combined using a fixed spatial grid of 105m cells, 

spaced 50m apart to avoid spatial autocorrelation [9].  Polygon 

shapefiles of the informal settlements, the main roads, rivers and 

dams were used to remove any grid cells occupying those features.  

Mean values within each 105m cell were extracted from the SAR 

and LiDAR CC datasets. This resulted in a dataset of 

approximately 21000 samples.   

 

Five popular regression and data mining algorithms were 

applied to specific scenarios derived from the extracted data: linear 

regression (LR) [11], Support Vector Machines (SVM) [12], 

REPTree [13], Artificial Neural Network (ANN) [14] and Random 

Forest (RF) [15].  LR is the simplest to implement but are sensitive 

to outliers and are not suited to non-linearly distributed data. ANN 

(a feed-forward version used in this study with the hidden layer 

nodes set at a default value of 10), SVM (Polykernel algorithm 

with default RegSMOImproved optimizer) and RF are more suited 

to complex datasets but are ‘black-box’ in nature with specific 

software requirements. Additionally ANN and SVM are more 

computationally intensive and time consuming due to the level of 

complexity and customization that is required [16], [17].  REPTree 

decision tree (unconstrained with a default value of 3 number of 

folds for growing the rule set) have also been proven to be an 

effective technique [18] but, like most decision tree algorithms, are 

sensitive to small changes in the training datasets and are 

vulnerable to overfitting [19]. RF, however, is easier to implement 

as it only requires two main user-defined inputs – the number of 

trees in the forest (default = 500 trees) and the number of possible 

splitting variables for each node (default rule is the square root of 

number of predictor variables used i.e. 1 in this study) [20].  

 

The various data input scenarios included X-band, C-band 

and L-band only.  Models were computed in WEKA 3.6.9 and R 

rattle software. Data were split into a random 35% for model 

training and random 65% for model validation. The entire 

modelling process was repeated 10 times for robustness and cross-

validation (allowing varying training/validation datasets) while 

calculating averaged coefficient of determination (R²), root mean 

square error (RMSE) and standard error of prediction (SEP) 

statistics (including their 95% confidence intervals or CI).  

Average predicted CC versus observed CC plots was also created. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mean RF predicted CC versus mean observed CC for each multi-frequency scenario (The dotted line refers to the 1:1 line) 

L-band 

R²=0.77 
RMSE=10.61% 
SEP=29.79% 

C-band 

R²=0.61 
RMSE=13.20% 
SEP=38.29% 

X-band 

R²=0.34 
RMSE=18.14% 
SEP=51.06% 



 
Table 1: Validation accuracies for modelling CC across various SAR frequencies and algorithms (N= no. of observations) 

 

3. RESULTS AND DISCUSSION 

 

 
In terms of the modelling algorithm results (table 1), LR and SVM 

both yielded poorer accuracies in comparison to REPTree, ANN 

and RF algorithms which obtained similarly high accuracies. This 

indicated that the implementation of mostly non-parametric 

algorithms (particularly ANN) were most suited for modelling CC 

in this heterogeneous savannah environment. LR performed poorly 

due to the fact that the relationships between the SAR predictor 

variables and CC were not linear (results not shown) while SVM’s 

poor performance could be attributed to insufficient learning or 

training by the algorithm (requires the tuning of 

‘hyperparameters’) [17]. Additional experimentation to find the 

optimal algorithm parameters (e.g. selecting a more effective 

kernel algorithm and optimizer), instead of the implementation of 

the default parameters, could also have improved the SVM results. 

Preliminary results also showed that when datasets were combined, 

RF yielded higher accuracies than the other algorithms examined 

in this study, which indicate that RF is more suited for larger 

predictor datasets (to be explored in upcoming publications). 

Additionally, the overall low CI values indicated that the derived 

models were very robust and stable across the various iterations.   

 

For the individual SAR frequencies, the L-band dataset 

yielded the highest modelled accuracies across all algorithms with 

the X-band dataset yielding the poorest results.  This L-band result 

can be attributed to the ability of longer wavelengths to interact 

with the main tree structural constituents (particularly in tree 

canopies with patchy crown architectures of which the shorter 

wavelengths might not fully capture) thus resulting in a better 

correlation with the LiDAR CC metric. These modelling results 

were supported by the mean predicted versus mean observed CC 

scatterplots for each scenario (figure 1 – RF results). The levels of 

major CC over-prediction and under-prediction (in relation to the 

dotted 1:1 line where predicted CC equals observed CC) 

noticeably improved as one progressed from the X-band plot to the 

C-band and to finally the L-band band plot. These modelling 

results highlighted the important contribution of the L-band in CC 

modelling in this environment. The preference for L-band SAR 

datasets for tree structure modelling has been supported by 

numerous studies [21], [22] and this study’s outcome corroborated 

those in [23]. The study provides promising results for developing 

regional savannah woody cover maps using limited LiDAR 

training data and SAR images. 

 

4. CONCLUDING REMARKS 
 

This study illustrated that the ANN, REPTree and RF non-

parametric modelling algorithms were found to be robust while 

yielding consistently higher CC prediction accuracies throughout 

the different band scenarios. One of these algorithms could be 

implemented for continuous mapping potential of CC when future 

datasets become available. Results also illustrated that the 

acquisition of L-band data should be prioritized due to the high 

accuracies achieved by the L-band dataset alone in comparison to 

the individual shorter wavelengths (e.g. X-band and/or C-band). 

The recent launch of the ALOS PALSAR-2 (L-band) sensor will 

ensure further woody structure modelling potential for future 

studies. The robust C-band results, however, still bode well for 

future work involving the Sentinel-1 sensor (recently launched) 

where free C-band data will be made available.  
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