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of modal entangled photon pairs

Alpha Hamadou Ibrahim,? Filippus S. Roux,!

* and Thomas Konrad?

!CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa
2School of Physics, University of KwaZulu-Natal,
Private Bag X54001, 4000 Durban, South Africa

When a pair of photons that are entangled in terms of their transverse modes, such as an orbital an-
gular momentum (OAM) basis, propagates through atmospheric turbulence, the scintillation causes
a decay of the entanglement. Here, we use numerical simulations to study how this decoherence
process depends on the various dimension parameters of the system. The relevant dimension pa-
rameters are the propagation distance, the wavelength, the beam radius and the refractive index
structure constant, indicating the strength of the turbulence. We show that, beyond the weak scin-
tillation regime, the entanglement evolution cannot be accurately modeled by a single phase screen
that is specified by a single dimensionless parameter. Two dimensionless parameters are necessary
to describe the OAM entanglement evolution. Furthermore, it is found that higher OAM modes are
not more robust in turbulence beyond the weak scintillation regime.
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I. INTRODUCTION

The orbital angular momentum (OAM) eigenstates of
photons form an infinite-dimensional system. A super-
position of d > 2 such states in a single photon encodes
an amount of quantum information known as a qudit [1].
Photons that carry OAM are therefore a suitable candi-
date for applications such as quantum key distribution
[2] with a larger alphabet [3]. As such, it is an attractive
resource for the quantum information community.

Transmission through free-space can be used as a chan-
nel for high dimensional quantum communication. Un-
fortunately, unlike polarization, the OAM states of pho-
tons are severely affected by turbulence. Therefore, to
use OAM modes successfully in free-space quantum com-
munication, one needs to quantify and understand the
effect of atmospheric turbulence on the OAM modes.

Most previous (theoretical and experimental) studies
[4-8] of the effect of atmospheric turbulence on the modal
entanglement of photon pairs are based on the single
phase screen (SPS) approach [9], which uses a single
phase screen to simulate the turbulent atmosphere. The
random phase function of such a phase screen represents
the phase modulation caused by the turbulence under
weak scintillation conditions. The SPS approximation is
therefore only valid for weak scintillation.

An alternative approach, which avoids the restriction
of weak scintillation, is to use a multiple phase screen
(MPS) approach. Recently, the MPS approach was used
to derive first order differential equations that enable the
study of turbulence-induced decoherence of entanglement
encoded in the transverse spatial modes of photon pairs
[10-12]. The MPS approach is valid in all scintillation
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conditions. According to [10], the parameter dependence
in the atmospheric decoherence process is more complex
than what is found from the SPS approach [9].

The aim of the present work is to use numerical sim-
ulations to investigate the parameter dependence of the
atmospheric decoherence of photon pairs that are entan-
gled in terms of their transverse spatial modes. We use
the Kolmogorov theory of turbulence [13, 14] and restrict
our numerical analyses to the two-level (qubit) case. The
photons are assumed to be monochromatic, uniformly
polarized and they propagate paraxially. Entanglement
is quantified in terms of Wooter’s concurrence [15].

The paper is organized as follows. First, we discuss
the different parameters in Sec. II. The various tech-
nical aspects of the numerical simulations are explained
in Sec. III. We address the validation of the numerical
procedure in Sec. IV. The results that we obtain from
these numerical simulations, which are presented and dis-
cussed in various ways in Sec. V, support the notion that
in general two dimensionless parameters are needed to
describe the atmospheric decoherence process. The con-
clusions are provided in Sec. VII.

II. PARAMETERS

The SPS approach is assumed to be valid when the ir-
radiance fluctuations (scintillations) are weak. The scin-
tillation strength is quantified by the Rytov variance,
which is defined as

0% = 1.23C2k/011/0, (1)

where C2 is the refractive index structure constant, z is
the propagation distance and kg is the wavenumber. The
condition for weak scintillation is 0% < 1 [14].
According to the SPS model, the effect of the turbu-
lence on the entanglement of a photon pair is completely



described by a single dimensionless parameter given by

wo
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where wy is the radius of the optical beam and rq is the
Fried parameter, which is given by

)\2 3/5

for plane waves within the Kolmogorov theory of turbu-
lence [13, 14]. All the dimension parameters of the system
(the beam radius wy, the wavelength ), the propagation
distance z and the refractive index structure constant
C?) are combined into W.

As we demonstrate below, the evolution of the deco-
herence process in the MPS approach requires at least
two dimensionless parameter, instead of one. The two
parameters are the normalized propagation distance

z ZA
t=—=—3, (4)
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which is independent of the turbulent strength, and a
system constant

o= Cawg Ut T (5)
¥ 0%

which is independent of the propagation distance. Here,
T = C,Qlw(z)/ ® is a normalized turbulence strength and
Op = A/mwy is the beam divergence angle. Note that the
normalized propagation distance is related to the Fresnel
number F' by

1
t=—.
—F (6)
According to [10], the MPS approach reverts back to the
SPS approach [9] for ¢t <1/3 (F 2 1).
The three dimensionless parameters W, K and t are
related by

W = 1.37K3/5¢3/5 (7)

and the Rytov variance can also be expressed in terms of
the dimensionless parameters as

0% = 2.76Kt11/6 = 1.64W°/34%/6, (8)

IIT. NUMERICAL PROCEDURE

A. Input functions

The quantum optical system that is simulated by our
numerical procedure, is shown in Fig. 1. The source
generates a pair of photons that are initially in a maxi-
mally OAM entangled state. The OAM basis states |¢, p)

correspond to elementary excitations of the LG modes
M g;)G (r,¢,t) of the electromagnetic fields, which can be
expressed in normalized cylindrical coordinates by
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were Llfl represents the generalized Laguerre polynomials
with the parameters £ and p being the azimuthal and the
radial mode indices, respectively; 7 = (22 + y?)/2 Jwy,
¢ is the azimuthal angle and zg is the Rayleigh range
(= mw3/\). The normalization constant is given by
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FIG. 1: The source generates two photons that are entan-
gled in OAM. Each photon is then sent through a turbulent
atmosphere (modeled by a series of phase screens) toward a
detector.

The initial quantum state in the numerical simulations
is a Bell state

L
R

where the subscripts A and B label the two different
paths of the two photons through turbulence. We only
consider the zero radial index p = 0 and azimuthal indices
of £ =1,3,5,7 in our simulations.

The initial state requires four optical fields that cor-
respond to the two possible states of each of the two
photons labeled by A and B in Eq. (11). Each optical
field is represented by a 256 x 256 array of samples of the
complex-valued function for the mode given in Eq. (9).

[W)in (Oal =Op+|=0all)p),  (11)

B. The split-step method

The evolution of the quantum state of the two qubits,
starting from the initial state given in Eq. (11), is deter-
mined by simulating the propagation of the four optical
fields through turbulence. As a result, four propagations
are required for each realization of the turbulent media.



The two photons respectively propagate through differ-
ent uncorrelated turbulent media, as denoted by the two
propagation paths indicated by A and B in Fig. 1.

The refractive index n of a turbulent medium is inho-
mogeneous and can be represented by

n =1+ dn(x), (12)

indicating that the average refractive index of air is taken
as 1, while the fluctuation is given by dn(x) and is very
small (én < 1). We assume that the beam propagates
paraxially, which leads to the paraxial wave equation
with an extra inhomogeneous medium term [14]

Vig(x) — i2kod.9(x) + 2kgon(x)g(x) =0,  (13)

where (assuming that the paraxial beam propagates in
the z-direction and is uniformly polarized)

B(x) = g(x) exp(—iko2) (14)

is the scalar part of the electric field, V7 is the transverse
part of the gradient operator and x is a three-dimensional
position vector.

Due to the smallness of dn(x) compared to the average
refractive index, the modulation by the refractive index
fluctuation separates from the free-space propagation in
Eq. (13). This suggests that one can model the propaga-
tion through turbulence by a repeated two-step process
that alternates the modulation of the beam by the ran-
dom phase fluctuation and the propagation of the beam
over a short distance through free-space without turbu-
lence. The numerical technique that is based on this
approach is known as the split-step method or the phase
screen method [16, 17]. In this method, the atmosphere
is represented by a series of phase screens separated by a
distance Az as shown in Fig. 1.

Each phase screen contains a random phase function
that represents a layer of turbulent atmosphere with a
thickness of Az. This phase function can be expressed in
terms of the refractive index fluctuation of the medium

Az
O(z,y) = ko/o on(z,y, z)dz. (15)

Each phase screen imparts a random phase modulation
on the phase of the optical beam passing through it. Af-
ter the phase screen, the beam propagates through free-
space (without turbulence) over a distance Az between
consecutive phase screens. During propagation the phase
distortion induces an amplitude distortion on the beam.

The properties of the random fluctuations of the re-
fractive index is determined by the properties of the tur-
bulent medium. Within the Kolmogorov theory, these
properties are given by the power spectral density of the
refractive index fluctuation

@, (k) = 0.033C2|k| /3, (16)

where k is the three-dimensional coordinate vector in the
Fourier domain and C? is the refractive index structure

constant. The Kolmogorov theory is valid over the in-
ertial range 1/Ly < |k| < 1/lp, where Lo and [y are
the outer and inner scales, respectively. In the simula-
tion, these cut-offs are set by the smallest grid spacing
in the Fourier domain and the overall size of the angular
spectrum, respectively.

The expression of the random phase in terms of the
power spectral density of the refractive index fluctua-
tions, is given by [8, 16, 17]

Oary) = F(2naz)!?

P {6 ko) [0 (ko 012
(7)

where F~! is the two-dimensional inverse Fourier trans-
form, &(ky, ky) is a zero-mean normally distributed ran-
dom complex-valued function and Ay is the spacing be-
tween samples in the frequency domain. The square
root of the power spectral density of the phase function
gives the envelope of the Fourier transform of the ran-
dom phase function on a phase screen. The randomness
is added by multiplying the envelop by {(kg,ky). Note
that the phase function thus generated is complex-valued
O(x,y) = 01(x,y)+i02(x,y). This has the advantage that
the real and imaginary parts of the complex-valued phase
function can be used for two phase screens after each cal-
culation, having transmission functions ¢; = exp(if;) and
to = exp(ifz), respectively.

The free-space propagation is done by first computing
the angular spectrum G(kg, ky) of the beam profile at a
specific value of z (say z = 0)

G(ka, ky) = F {g(z,y,0)}, (18)

where F denotes the two-dimensional Fourier transform.
The angular spectrum is multiplied by a phase function
for the change in phase incurred by each plane wave after
propagating a distance Az. Finally, the beam is recon-
structed at z = Az by the inverse Fourier transform

g(z,y, Az) = FHG ks, ky) exp[—iAzk, (ks, ky)]},
(19)
1/2
where k. (ky, ky) = (k§ — k2 —k2)"".

The propagation is simulated by the split-step method
where we start with the phase modulation by the ran-
dom phase function of the phase screen, as computed
with Eq. (17). Then the resulting four beam profiles are
propagated through free-space over a distance of Az, as
expressed in Eq. (18) and Eq. (19). These two steps
(the random phase modulation and the free-space prop-
agation) are repeated several times, for different random
phase functions, using the four distorted beam profiles
obtained from the previous two steps, until the beams
have propagated far enough to have lost their entangle-
ment. Different values of the turbulence strength CZ, the
beam waist radius wg and the wavelength A\ are used in



the simulations (see Table I). Since the overall propaga-
tion distances in the simulations can vary quite drasti-
cally as a function of the different parameters, different
values of Az are used in different simulations. Depending
on the parameters, the total propagation distance may
range from less than a kilometer to several kilometers.

C. Data extraction

After the two photons propagated through the turbu-
lent media, they are analyzed in detectors, which perform
a state tomography to determine the density matrix of
the bi-photon quantum state. In the simulations, the
state tomography is performed after each iteration.

Although the OAM Hilbert space is infinite, we only
extract the two-level quantum information (qubits) in
this work. The basis of our two-level Hilbert space is

B = {|_€’ _€>’|_€’€>a|€7 _€>a|€7€>}7 (20)

where £ =1,3,5 or 7.

When a photon carrying OAM propagates in a turbu-
lent atmosphere, the refractive index fluctuations cause
the OAM state of the photon to become scattered into
neighboring OAM modes. That is, the initial OAM state
of the photon will become a superposition of many OAM
states [8]. However, since we only consider qubits here,
we extract only the informations contained in the basis
B. Thus, after propagating through turbulence, the ini-
tial state given in Eq. (11) becomes

|\Ij>in — |\Il>out = Cl|_€7 _€> + CZ|_€7 €>
+CB|€7 _€> + C(4|€7 €>7 (21)

where C; represents the complex coefficients in the ex-
pansion of the distorted state in terms of the qubit basis
in Eq. (20) [8]. This process occurs for each iteration in
the simulation. Note that, since the complete field (as a
pure state) is propagated through all the phase screens,
the simulation incorporates all the transverse modes that
can be represented by the resolution in the simulation.

The density matrix |¥)out(¥|out, obtained from
Eq. (21), is that of a pure state representing the two
qubits for a specific realization of the turbulent medium.
Because of the randomness of the medium, one would
get a different density matrix for another realization of
the medium. Thus, to obtain an accurate description of
the evolution of the state of the two qubits, one needs
to compute the ensemble average of the density matri-
ces corresponding to all possible (or a representative set
of) realizations of the medium. More explicitly, the den-
sity matrix that is obtained after each iteration in the
simulation, is calculated by

o (T
e {300 [0 (]}

for N different instances of the medium.

p (22)

We quantify the entanglement between the two qubits
with the concurrence [15]. It is defined by

C(p) = max{0,v/ M — VA2 = Vs — Vi) (23)

with \; being the eigenvalues in decreasing order of the
Hermitian matrix

R:p(O'y ®Uy)p*(0'y ®Uy)7 (24)

where * represents the complex conjugate and o, is the
Pauli y-matrix

ay:{? 51]. (25)

The coefficients of the different modes are extracted
from the four beam profiles after each free-space propa-
gation step. The output quantum state is then computed
from these coefficients, as described by Eq. (21), and
the corresponding density matrix is determined. This
sequence of density matrices, obtained during one run
of the simulation, represents the evolution of the quan-
tum state for a specific set of phase screens or a specific
realization of the medium. We performed a number of
N = 1000 such runs corresponding to N different sim-
ulated instances of the turbulent medium to obtain N
different evolutions of the quantum state. The final se-
quence of density matrices is then computed from the en-
semble averages of the N sequences obtained from these
N runs, as described by Eq. (22).

IV. VALIDITY OF THE SIMULATION

We validate our simulation procedure by considering
the formula, derived in [18], stating that the entangle-
ment reduction induced by a one-sided noisy channel is
independent of the initial state and completely deter-
mined by the channel’s action on a maximally entangled
state (see also [19-21]). One can express the formula by

Cout = Cchcin; (26)

where the input state |x) is a partially entangled pure
state with a concurrence [15] given by Cin = C(|x){(x]);
the concurrence of the channel Co, = C[(I ® $)|¥)(¥|] is
determined by having the one-sided noisy channel (I ®
$) operate on a maximally entangled (Bell) state |¥);
and the output concurrence Couy = C[(I ® $)|x){(x|] is
determined by having the one-sided channel operate on
the input state.

The one-sided channel in our case corresponds to the
situation where only one of the two photons propagates
through turbulence, as illustrated in Fig 2. The two sides
of Eq. (26) are compared in Fig. 3, where we use the
following partially entangled pure input state

20 = 310a-05 +121-0a00. 1)



OAM —>|Az|<—
entanglement
source

Detector Detector

<
-

FIG. 2: The one-sided channel (I ® $) where only one of the
two photons propagates through turbulence.

It is clear that the evolution of Coy is equal to CepCin
over the entire range of W = wg/ro up to where the
concurrence becomes zero.
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FIG. 3: Comparison of Cout and CenCin as a function of W.

Alternatively, for a fixed propagation distance, the out-
put entanglement (concurrence) that is obtained after
various partially entangled pure input states propagated
through the one-sided channel, would be linearly related
to the concurrence of the input state. The slope of the
linear relationship is given by C, for the fixed value of
z. In Fig. 4 we plot Coyt against Ci, for eight different
initial states of the form

0w =2 0a1-05 4 1= et 9

for n = 3,4,5,---10. Each point in Fig. 4 is averaged
over 500 realizations of the turbulent medium.

Based on the results presented in Figs. 3 and 4, we con-
clude that it is reasonable to use the presented numerical
procedure to study the evolution of OAM entanglement
in the atmosphere.

V. NUMERICAL RESULTS
A. Effect of the system constant

Various simulations with different sets of parameters
were performed to investigate the effect of the system
constant I on the evolution of OAM entanglement in
turbulence. (In Sec. VE below, we demonstrate that
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FIG. 4: Plot of Cout against Ciy for eight different initial states.
The error bars represent the dispersion of each run from the
mean.

the evolution of the concurrence is invariant with respect
to variations in the dimension parameters that produce
the same value of K.) Figure 5 shows the plots of the
concurrence against W for different values of I and for
£ =1,3,5,7. The different sets of dimension parame-
ters that were used to produce the different values of
[according to Eq. (5)] are given in Table I. Note that we
deliberately used various different values of wg, A and C?
to produce the different values of the system constant /C.

The general trend in the decay of the concurrence as a
function of W is qualitatively the same for all the /-values
considered. For large values of IC, the concurrence lies on
a limiting curve as a function of W, but tends to lie below
this limiting curve when IC is small. The limiting curve
is close to the theoretical curve obtained from the SPS
approach, which is represented by the solid line curves
in Fig. 5. One can see that there is a value of K beyond
which the evolution of the concurrence depends only on
W. According to the curves in Fig. 5 the limiting curves
are obtained when K 2 10 for £ = 1,3, K 2 20 for £ =5,
and K 2 100 for ¢ = 7. The limiting curve corresponds
to the situation that is considered in the SPS approach
[4, 9], where the behavior is completely determined by
W [4, 8, 10].

On the other hand, for small values of K (i.e., when
K <5for =13, K< 10 for £ = 5; and £ < 30 for
¢ =T), the concurrence deviates from the limiting curve
— it decays faster than the limiting curve as a function
W. This deviation implies that the SPS approach cannot
be used under these conditions. Instead, two dimension
parameters (K and t) are required to describe the evolu-
tion of the concurrence under these conditions.

B. Effect of the normalized propagation distance ¢

It was previously found [10] that the evolution of the
concurrence cannot be fully described by the single pa-
rameter VW when the concurrence survives for a distance
larger than the Rayleigh range. To see at what value
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FIG. 5: The concurrence against W for (a) £ =1, (b) £ =3, (¢) £ =5 and (b) £ = 7. Each graph contains curves for all the

different values of K given in Table I.

TABLE I: Dimension parameters for the different values of
the system constant X shown in Fig. 5.

K wo 0721 A
(m) (m~*?)
0.06 0.10 1.0 x 1077
0.3 0.05 1.0 x 10~%7
0.8 0.10 2.5 x 1077
1.5 0.10 5.0 x 1077
5 0.20 5.0 x 1077
20 0.10 1.0 x 10716
30 0.20 9.7 x 10716
10 0.05 3.2 x 10713
10* 0.10 5.0 x 10712

(nm)
1000
1414
600
600
947
322
1400
1190
1495

of ¢ the curves in Fig. 5 start to deviate from the limit-
ing curve, we calculate the difference in the concurrence
between the theoretical SPS curve (solid line curves in
Fig. 5) and the numerical curves that are shown in Fig. 5.
In other words, we calculated AC = C¢p — Chum for all the
different values of K given in Table I. The results are
plotted against ¢t in Fig. 6.

Those values of K that produce limiting curves repre-
sent cases where the concurrence becomes zero before the

propagation distance reaches ¢ = 0.1. We see in Fig. 6
that the difference AC remains small (< 0.2) up to about
t = 0.1. The value of AC for the large values of IC should
be zero, but because the numerical limiting curves do not
exactly match the theoretical (SPS) curve, we see that
the difference in the concurrence shown in Fig. 6 is not
exactly zero, but can be as large as 0.2. The reason for
the difference between the numerical limiting curves and
the theoretical curve is believed to be due to the fact that
the theoretical SPS calculations employ the quadratic ap-
proximation to the structure function of the refractive
index fluctuations [14, 22] in order to solve the overlap
integrals from which the concurrence is computed [4]. On
the other hand, the numerical simulations do not use the
quadratic approximation.

The end points of the curves represent the points where
the concurrence in the simulation becomes zero. We ob-
serve from the locations of these points in Fig. 6 that
the concurrence survives up to increasing values of ¢ as
the value of I becomes smaller. Furthermore, one sees
that for smaller values of IC, the curves start to deviate
significantly from the limiting curves. These deviations
start at a value of t = z/zg between 0.1 and 1.
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C. Effect of the Rytov variance 0%

Scintillation regimes (weak or strong) are usually in-
dicated by the value of the Rytov variance 0%, given in
Eq. (1). Weak scintillation conditions are said to exist
when 0% < 1[14]. To determine the scintillation strength
where the concurrence curves start to deviate from the
theoretical limiting curve, we plot in Fig. 7 the differ-
ence in the concurrence AC = Ciy, — Coum as a function
of the Rytov variance. Two significant observations can
be made from Fig. 7. Firstly, the deviations start to oc-
cur at 0% ~ 0.3, which implies that the SPS approach
breaks down at a scintillation strength of about 0%2 =0.3.
Secondly, the end points of the curves, which represent
the points where the concurrence goes to zero, all ap-
pear at or before 0% ~ 3. This observation indicates
that the concurrence cannot survive when the scintilla-
tion becomes stronger than about 012% =3.

In other words, all the curves that fall on the limiting
curve in Fig. 5 represent the evolution of the OAM entan-
glement in the weak fluctuation regime where 0% < 0.3.
One can, therefore, conclude that the evolution of the
OAM entanglement can only be fully described by the
single dimensionless quantity W = wg/r¢ as long as scin-
tillation remains weak, i.e., 0% < 0.3. In the region where
0.3 < 0%2 < 3 the evolution curves deviate from the lim-
iting curve, which represents the single parameter SPS
approach. Hence, in this region of scintillation strength,

two dimensionless parameters are required to described
the evolution of the concurrence.

D. Effect of the azimuthal index ¢

We now consider the effect of the azimuthal index ¢
on the evolution of the concurrence. For this purpose we
show in Fig. 8 the concurrence as functions of W and ¢
for £ =1,3,5,7 and for X = 0.06, 10, 100. We start with
the largest value of K in Fig. 8(a), because it represents
the limiting curves.

For K = 100, shown in Fig. 8(a), all the curves for the
concurrence decay to zero before they reach the value
t = 0.1. As a result these curves all lie on their respec-
tive limiting curves for the different values of £. As such
these curves only depend on W. For larger values of ¢
(larger amounts of OAM per photon) the entanglement
survives longer, reaching larger values of both W and
t. Under these conditions, entangled photon pairs com-
posed of higher OAM modes are more robust against at-
mospheric decoherence. The same behavior was observed
previously [4, 8, 10].

In Fig. 8(b), which shows the curves for K = 10, we
see that the curves for £ = 3,5,7 have merged almost
completely. These three curves extend beyond the t = 0.1
point, but they decay to zero at smaller values of W,
which means that they lie below the limiting curve (see
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FIG. 7: The difference in the concurrence AC = Cyp, — Cnum against the Rytov variance o% for (a) £ =1, (b) £ =3, (c) £ =5
and (d) £ = 7. Each graph contains curves for all the different values of K given in Table I.

Fig. 5). The curve for ¢ = 1 is still separate from the rest
and decays to zero at about ¢t = 0.1.

Finally, for K = 0.06, which is shown in Fig. 8(c), all
the curves have merged. The trend of decaying to zero
at smaller values of W for smaller values of K continues.
These curves decay to zero at distances larger than the
Rayleigh range ¢ > 1.

From the trends in the curves in Fig. 8, we conclude
that the concurrence does not in general last longer for
larger values of the azimuthal index ¢ when the system
constant IC becomes smaller.

E. Parameter invariance

Although one can see from the plots in Fig. 5 that one
dimensionless parameter is not enough to describe the
evolution of the entanglement, they do not reveal whether
or not perhaps more than two dimensionless parameters
are required. For this reason, we consider different sets
of dimension parameters that give the same value for
and plot them as a function of t. These different sets of
dimension parameters are given in Table II.

Figure 9 shows five different curves of the concurrence
as a function of ¢ for L = 0.067 and £ = 1. The five curves
are obtained with five different sets of dimension param-
eters, shown in Table II, all of which produce the same
value of L. We select L = 0.067, because it represents a

TABLE II: Dimension parameters for the curves in Fig. 9
(K =0.067).

Set wo

(m)

02
(m—2/%)

A

(nm)

0.100 1.0 x 1077
0.176 1.0 x 1077
0.100 1.0 x 107¢
0.035 1.0 x 10716
0.100 2.2 x 10718

T W N =

1000
2000
2154
600
600

conditions where the evolution of the concurrence devi-
ates significantly from the SPS predictions. One can see
from Fig. 9 that regardless of the values of the individ-
ual dimension parameters, all the points lie on the same
curve. Therefore, we conclude that the evolution of the
concurrence as a function of ¢ is completely determined
by the system constant /.

VI. DISCUSSION

The SPS approach has been used in several studies of
the effect of turbulence on the evolution of the OAM en-
tangled bi-photon states [4-6, 8]. According to [4] the
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FIG. 8: The concurrence against W (left) and against ¢ (right)
for (a) K = 100; (b) K = 10; (¢) K = 0.06. Each graph
contains curves for £ =1,3,5,7.

evolution of the concurrence depends only on a single di-
mensionless quantity (W = wg /7o) and the entanglement
between modes with higher OAM values is more robust
in turbulence. However, some important questions re-
mained unanswered: what is the range of validity of the
SPS approximation? How does the OAM entanglement
evolves beyond that range?

The current study addresses these questions by using
numerical simulations that represent the turbulent at-
mosphere with multiple phase screens. By combining
all the dimension parameters (the beam radius wy, the
wavelength )\, the propagation distance z and the Kol-
mogorov structure constant C2) into two dimensionless
parameters (the normalized propagation distance ¢t and
the system constant K), we show that the predictions
made under the SPS approximation is only valid for large
values of K. Under these conditions, the concurrence de-
cays to zero at propagation distances shorter than about
a tenth of the Rayleigh range. Our results demonstrate
that when I is large, the curves for the evolution of the
concurrence tend to lie on a limiting curve that is in good
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FIG. 9: Concurrence as a function of ¢ for = 0.067 and
¢ =1, using the sets of dimension parameters given in Table II

agreement with the SPS results. Moreover, the evolution
of the concurrence is fully described by the single param-
eter W = wyp/ro and modes with larger OAM values are
more robust in turbulence.

On the other hand, for weak turbulence — i.e., for
small values of L — where the concurrence remains non-
zero over propagation distances beyond one Rayleigh
range, our results indicate that the evolution of the con-
currence deviates significantly from the SPS predictions.
Under these weaker turbulence conditions, the curves of
the concurrence lie beneath the limiting curve — the de-
cay is quicker as a function of W than what the SPS
approach predicts. Moreover, the concurrence of modes
with larger OAM values are not more robust than that
of modes with smaller OAM values.

Hence, we find that in general one needs two parame-
ters IC and t to describe the evolution of the concurrence
in turbulence conditions. This conclusion is consistent
with what was found in [10].

The fact that the evolution curves for the concurrence
start to deviate from the limiting curve at particular
propagation distances allows us to specify a boundary
that exists between the region where one can use the
SPS approach and the region where one needs to em-
ploy an MPS approach. This is shown diagrammatically
in Fig. 10, where we plot the Rytov variance on a ver-
tical log scale vs the normalized propagation distance
on a horizontal log scale. In this diagram, we represent
the scintillation strength (Rytov variance) of an optical
beam (or photon) as it propagates through particular
turbulence conditions (indicated by the value of K) by
solid colored lines. The colored lines on the left-hand
side represent stronger turbulence conditions than those
on the right-hand side. The gray dashed lines represent
the theoretical bounds (according to the SPS predictions)
where the concurrence for particular values of £, as indi-
cated, vanishes. The red markers represent the points
where the concurrence approaches zero as obtained form
our numerical results for the different values of ¢ (red
squares for ¢ = 1, red circles for £ = 3, red triangles for
¢ =5 and red diamonds for £ = 7). The white mark-
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FIG. 10: The Rytov variance o% against the normalized propagation distance t. The colored lines on the left-hand side represent
stronger turbulence conditions than those on the right-hand side. The gray dashed lines are the theoretical bounds (according
to the SPS approach) where the concurrence for particular values of ¢, as indicated, will go to zero. The red markers represent
the points where the concurrence vanishes for the different values of ¢ (red square for £ = 1, red circle for £ = 3, red triangle
for £ = 5 and red diamond for £ = 7). The white markers represent the points where AC exceeds a value of 0.2 for the different
values of ¢ (white square for ¢ = 1, white circle for £ = 3, white triangle for £ = 5 and white diamond for £ = 7).

ers represent the points where the difference between the
theoretical (SPS) concurrence and the numerical concur-
rence exceeds a value of 0.2, again for the different values
of ¢ (white squares for £ = 1, white circles for ¢ = 3, white
triangles for £ = 5 and white diamonds for £ = 7). Note
that for strong enough turbulence conditions the theo-
retical and numerical curves never deviate more than 0.2
and thus do not produce a white marker on the diagram.

The diagram in Fig. 10 shows that the SPS approx-
imation is valid only for 0% < 0.3. Above 0% ~ 0.3
the concurrence starts to deviate from the SPS predic-
tions (as indicated by the general location of the white
markers). One can see that on the left-hand side of the
diagram, where the SPS bounds lie below 0% = 1, the
points where the concurrence vanishes are still more or
less located at the bounds. In contrast, on the right-
hand side of the diagram, where the SPS bounds extend
above 0% = 1, the points where the concurrence goes to
zero are located at values of 0%2 that are lower than what
the SPS appoximation predicts. This difference increases
as one moves further right towards smaller values of the
turbulence strength. In fact, judging from the highest
scintillation strength where red markers are located, one
can conclude that, by the time the scintillations strength
increased above 0% = 3 the concurrence would always be

zero, regardless of the turbulence strength.

VII. CONCLUSIONS

We presented a numerical study of the evolution of
OAM entangled bi-photons propagating through atmo-
spheric turbulence. Different values of the azimuthal in-
dex were considered. It was observed that the evolu-
tion of entanglement depends only on the dimensionless
quantity W = wq /7o in the case where the scintillation
strength, as quantified by the Rytov variance, is weak
0% < 0.3. For the concurrence to become zero while
the beam is still in this regime, the turbulence needs
to be strong. In such cases, the concurrence only lasts
over propagation distances shorter than a Rayleigh range.
Under these conditions, the entanglement of states with
larger OAM values survives for longer distances, suggest-
ing that states with larger OAM values are more suit-
able for free-space quantum communication, which agrees
with what was found in previous work.

For cases where the concurrence lasts beyond the weak
scintillation region — i.e., when 0% > 0.3 — the entan-
glement evolution depends on two dimensionless param-



eters: one is the normalized propagation distance, which
is inversely proportional to the Fresnel number, and the
other is a system constant that consists of the dimension
parameters of the system (the beam radius wp, the wave-
length A\ and the Kolmogorov structure constant C2),
but is independent of the propagation distance z. To
reach this scintillation regime, the concurrence must re-
main non-zero for propagation distances greater than a
Rayleigh range. In these cases the entanglement of states
with higher azimuthal indices is not more robust, in con-
trast to cases where the scintillation is weak.

When the scintillation strength has reached % ~ 3

the concurrence is zero, irrespective of the turbulence
strength or the azimuthal index.
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