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Abstract—The real-time super-resolution technique discussed
in this paper increases the effective pixel density of an image
sensor by combining consecutive image frames from a video. In
surveillance, the higher pixel density lowers the Nyquist rate
of the sensor which improves the detection, recognition and
identification (DRI) task performance of the system.

When a sensor lingers on a stationary target or tracks a
moving target then the image of the target would with time move
around slightly on the focal plane. If one accurately registers the
image of the target on the focal plane to some reference then
one can increase the effective sensor pixel density by stacking or
appropriately combining the registered images.

The super-resolution technique operates on the focal plane
array after the image has been degraded by the Modulation
Transfer Function (MTF) of the lens and atmosphere. Any
high frequencies lost due to the atmosphere or lens cannot be
recovered. However, if the MTFs of the lens and atmosphere are
good enough to cause aliasing on the focal plane then the sharp
stack algorithm discussed here can at least double the resolving
power of the sensor.

I. INTRODUCTION

The focus of this paper is on combining consecutive video
frames to create a super-resolved still image. The video frames
are first registered and then appropriately stacked to reconstruct
the still image signal from the multiple low resolution image
signals.

The scope of the work includes analysing the effectiveness
of the well-known average stack operation and presenting a
new sharp stack operation that results in improved resolution
enhancement. The super-resolution technique was developed
for real-time execution on small form factor CPU-only com-
puters. The Lucas-Kanade optical flow algorithm is used to do
real-time sub-pixel accurate registration of the low resolution
images.

The next section, Section II gives the background to
multi-frame super-resolution followed by an overview of the
related work in Section III. Section IV analysis the average
stack operation and proposes the new sharp stack operation.
The Lucas-Kanade image registration implementation is then
briefly described in Section V. Section VI puts forward a
proposal on how to measure the resolution enhancement of a
super-resolution algorithm. Section VII shows some compara-
tive as well as additional results. Section VIII reflects on the
success of the undertaking, highlights limitations and points
ahead to future work.

II. BACKGROUND

In Surveillance the detection, recognition and identifica-
tion (DRI) task performance is dependent on the number of
resolved spatial cycles on target [1]. The number of resolved
spatial cycles on target is in turn dependent on the surveillance
system’s frequency response (SFR). The SRF is a product
of the atmosphere’s modulation transfer function (MTF), the
lens’ MTF and the frequency response of the focal plane array
(FPA). The ideal lens, for example, would have a modulation
transfer of one for all frequencies which would contribute to
a good SFR.

If one assumes that the lens is good enough and that
the atmospheric effects are negligible then the SFR is dom-
inated by the frequency response of the FPA. The frequency
response of the FPA is a function of the spatial resolution
(or spatial sampling rate) of the FPA. This sampling rate
therefore becomes an important contributor to the resolving
power of the system. Nyquist rate is defined as the lower
bound on the sampling rate required to effectively reproduce
a signal. Nyquist frequency is the reciprocal of Nyquist rate
and normally half of the sampling frequency of the FPA.

Below two pixels per cycle (above 0.5 cycles/pixel) the
image signal usually becomes aliased. The original high reso-
lution (HR) image can then no longer be reconstructed from a
single low resolution (LR) input frame. The term HR image is
reserved for the continuous image function. The reconstructed
digital image is referred to as the super-resolution (SR) image.

However, if one could somehow add more pixel samples to
the FPA then the Nyquist rate of the sensor would be lowered.
This is true even if the pixel samples overlap. Lowering the
Nyquist rate of the sensor of course has the desired effect of
increasing its resolving power.

If video frames are first registered and then appropriately
stacked such that image features are aligned between con-
secutive frames then the stacking operation computationally
adds pixel samples to the FPA which still lowers the Nyquist
rate of the sensor. This is the basis for the multi-frame super-
resolution image processing discussed in this paper.

The super-resolution technique described here was devel-
oped for real-time execution on small low power proces-
sors which places some additional limitations on the super-
resolution technique. The paper therefore presents the de-
termined effort to apply a fast image registration algorithm
in combination with only an image stacking operation for
generating super-resolution stills from video.



Fig. 1. An Example of a Low Resolution (LR) Input image (left) and the
Resulting Average Image (right) using Eight LR Images

III. RELATED WORK

This section captures an overview of existing research
related to multi-frame super-resolution techniques. Research
on other types of super-resolution such as single frame super-
resolution and image enhancement in the presence of atmo-
spheric effects such as scintillation are not discussed.

The image formation process causes image degradation
due to the lens Modulation Transfer Function (MTF), the
integrative FPA sampling and some quantisation and read-out
noise from the FPA sensor. The classic spatial reconstruction
based techniques build an image formation model, invert it and
then use the inverse model to estimate the original HR image
from the LR input images as discussed by among others Keren
et al. [2], and Irani and Peleg [3]. Such a super-resolution
algorithm then has the following steps:

• Sub-pixel accurate registration of the input LR images.

• Stacking of the registered LR images to create the SR
prior.

• An iterative refinement of the SR image using the
forward and inverse image degradation models.

Generation of the SR image from the image degradation
model is an ill posed problem. Schultz and Stevenson [4], and
others [5] [6] have used regularisation to introduce the addi-
tional information required to solve the ill-posed reconstruction
problem. This information is in the form of restrictions on
smoothness and a philosophical justification for regularisation
is that it attempts to impose Occam’s razor on the solution. In
other words the simplest SR result is the most probable one.
Finding this solution is however very time consuming.

The SR prior is usually the average image. He et al. [7] do
a median stack instead of an average stack of the LR images
to remove sampling and registration outliers, but there is still
an inherent spatial filter when combining the different stacked
LR images. This paper investigates a filter-less stacking that
removes the need for the iterative refinement step.

IV. STACKING LOW RESOLUTION IMAGES

This section analysis the average stack operation and
proposes a new sharp stack operation. In the average stack
the most recent N frames of a video stream are registered
against a reference frame and upscaled by some factor. The
aligned pixels are then averaged to produce a single upscaled
image called the average image. Figure 1 shows an example
of a low resolution input image and the resulting average

Fig. 2. Another Example of a Low Resolution (LR) Input image (top), the
result of the Double Box Filtered Model (bottom-left) and the Actual Average
Image (bottom-right) using Many LR Images

Fig. 3. A Low Resolution (LR) Input image (top), the Actual Average Image
(bottom-left) using Many LR Images and the result of the Single Filter Sharp
Stack Model (bottom-right)

image. The average image already produces quite a significant
improvement over the low resolution input image.

Keren et al. [2] suggested that the registered average
stack operation (using many LR images) generates a Gaussian
blurred version of the HR image. However, in this paper it is
proposed that the effect of the stacking operation is separable
into two sequential box filters. Of course, by the central limit
theorem, two sequential box filters approximate a Gaussian
filter to some degree, but the motivation for the separation lies
deeper than this theorem.



Fig. 4. The Result of the Single Filter Sharp Stack Model (left) and the
Actual Sharp Stack Result (right) using Many LR Images

Fig. 5. The Nearest Neighbour Filter Result for the First Four Input Frames

The first filter is proposed to be due to the integrative
sampling of the FPA which results in the values of the LR
image pixels. The integrative sampling of the FPA is effectively
a sparse box filter of the HR image. It is sparse because one
convolution is done per LR pixel centre only.

The second filter is proposed to be due to the averaging
inherent in the average stack operation. The value of a pixel
in the stacked image is influenced by a local neighbourhood
of LR pixel splats. The shape of this second filter is somewhat
dependent on the spatial distribution of the registered LR
pixels, but approximately a box filter in practice.

Figure 2 shows the result of the double box filtered model
of the average image. The bottom-left image shows the double
box filter of the HR image and the bottom-right image shows
the actual average image given many input LR images. Note
the similarity between the double filtered model and the actual
average image. Recall that the size of the box filter is the same
as the LR pixel size.

One cannot avoid the first filter. It is due to the physical
size of the LR sensor pixels on the focal plane array. One
might however be able to minimise the effect of second filter
which is inherent in the average stack operation.

If one could avoid the second filter by smart stacking then
it follows that the stacked image may be modelled by only
one (the first) box filter. Such a simulated result is shown in
Figure 3. I call the resulting single filter result the model of
the sharp stack. Note the somewhat sharper appearance of the
bar targets.

It seems plausible then that one could generate an actual
sharp stack result by reducing each LR pixel to a single SR
pixel (instead of a box covering multiple SR pixels) before
stacking. Figure 4 shows the result of the sharp stack model
and an actual sharp stack result generated in this way given
many input LR images.

The fact that the double box filter and single box filter
match the average image and sharp stack results strengthens

Fig. 6. The Low Resolution Input (top), Average Stack (bottom-left) and
Sharp Stack (bottom-right) with Nearest Neighbour Filter Given Eight Input
Frames

Fig. 7. The Low Resolution Input (top), Average Stack (bottom-left) and
Sharp Stack (bottom-right) with Kernel Filter Given Eight Input Frames

the double box filter conjecture. The sharp stack operation then
has the ideal modulation transfer function of one. Section VI
will show that the sharp stack is probably the best that one
can do and as good as alternative super-resolution techniques.

However, although the sharp stack is simple and efficient
to implement, if one is not able to linger long enough on a
target or if the target changes appearance too quickly then the
sharp stack would not produce a dense result. The rest of this
section discussed two filters that are useful for producing a
dense result in such cases.

The two filters investigated to produce a dense result from
sparse samples are:

• Nearest neighbour Voronoi filter.

• Kernel filter.

Figure 5 demonstrates the operation of the nearest neigh-
bour filter for the first (red), second (green), third (blue) and
fourth (yellow) registered and upscaled LR frames. The darker



pixels indicate the centres of the registered Low Resolution
(LR) input pixels for each frame. The super-resolution up
scaling is five in this case.

A radius image of the same resolution as the SR image is
used to keep track of the pixel distances from the LR pixel cen-
tres. Each entry in the radius image holds the distance/radius
to the closest LR pixel.

For each registered LR pixel centre added to the SR image
a local neighbourhood of SR pixels are processed. A SR pixel
is given the value of the LR pixel if the LR pixel centre is
closer than the radius given in the radius image. The radius
image is then updated as the new LR pixel is nearer than the
previous LR neighbour was. The radius image is initially filled
with the diagonal radius of the LR pixel.

Figure 6 shows the LR input, average stack and nearest
neighbour (i.e. Voronoi) filter results given only eight regis-
tered input frames. Note the improvement in target resolution
which is most noticeable on the smaller 1 - 6 targets on the
right-hand side of the USAF1951 target.

The kernel filter operates similar to the nearest neighbour
filter except for one detail. If the SR pixel is nearer to incoming
LR pixel centre than the corresponding radius in the radius
image then the LR pixel is blended with the SR pixel instead
of replacing it. The blending is done for the colour image as
well as the radius image. The radius is referred to as the kernel
radius.

The incoming LR colour is blended with the current SR
pixel colour using a specific weighting. This weighting pro-
vides an immunity to noise, but causes the result to converge
slower than the nearest neighbour filter.

The distance of the incoming LR pixel centre to the current
SR is also blended with the current SR radius using a specific
weighting. This weighting is coupled to the colour blending
weight; the radius should converge slower than the pixel
colour. Note that the SR pixel is only processed when closer
to the LR pixel centre than the current radius. The SR kernel
radius is therefore strictly decreasing.

Figure 7 shows the average stack and kernel filter results
given only eight registered input frames. Note the improvement
in target resolution which is most noticeable on the smaller 1
- 6 targets on the right-hand side of the USAF1951 target.

The nearest neighbour and kernel filters have similar qual-
ity performance in the limit. The nearest neighbour method is
however simpler, faster and has improved quality for a small
number of inputs. On the other hand when the input is very
noisy then the kernel method offers an advantage due to its
temporal smoothing behaviour.

V. REGISTRATION OF IMAGES

This section briefly describes the Lucas-Kanade (LK) op-
tical flow image registration implementation. The implementa-
tion closely follows the original 1981 Lucas-Kanade paper [8]
with only one optimisation as discussed below. The interested
readers that are unfamiliar with the LK algorithm should please
read the 1981 paper.

The LK algorithm is a coarse to fine optical flow based
image registration algorithm. At each resolution level only sub-
pixel movement is expected. The optical flow is tracked using
a Newton-Raphson error reduction between the input and a
reference image. Seven Newton-Raphson iterations offers good
sub-pixel accuracy.

Generating synthetic low resolution images provides one
with an accurate ground truth to compare the Lucas-Kanade
registration to. A root mean square error (RMSE) of 0.045
pixels per frame was measured in this way. Even when adding
uniform noise of 20% and applying a Gaussian filter with a
standard deviation of 5 pixels an RMSE of 0.063 pixels per
frame was achieved.

Bi-linear interpolation is used in the Newton-Raphson error
reduction to calculate a smooth image function for the refer-
ence image. The bi-linear filter is one of the most expensive
operations of the algorithm.

To optimise the image registration implementation the
bilinear interpolation of the reference image is executed on
the fly, but only for areas of approximately constant gradient.
The contribution weight of the other areas to the displacement
vector are simply set to zero.

VI. GAUGING THE RESOLUTION IMPROVEMENT

The super-resolved edge spread function of the SR image
was calculated for each stacking operation. The Fourier trans-
form of an edge spread function (of what should be an impulse
edge) gives the SFR of the stacking operation and FPA. The
SFR of the stacking operation and FPA along with the pixel
resolution of the SR image may then be used to gauge the
resolution improvement due to a super-resolution algorithm.

Figure 8 shows the measured frequency response of the
input and super-resolved images. All plots except for the
average stack SFR are typical of a box filter’s response [9].
Notice that the frequency response of the sharp stack is the
same as the frequency response Fpixel of the low res image.
Also notice that the frequency response of the average stack
is less than that of the sharp stack and is in fact Fpixel

2.

The Double Low Resolution (DLR) SFR shown in Figure 8
is given as a reference of what the SFR of the system would
look like if the resolution of the FPA could be physically
doubled. Without any processing the DLR system would
provide significant modulation up to 1 cycle/LRPixel and then
suffer aliasing problems.

Lin and Shum [10] found that in practice the resolution
increase factor of spatial reconstruction based algorithms is
typically limited to 1.6. They state that the limited resolution
increase factor is mainly due to typical registration inaccura-
cies and noise in the LR images. However, the SFR of the FPA
and the stacking operations show that resolution limit is much
more fundamental. Above 1.5 cycles per pixel the modulation
transfer reduces sharply. It is in theory possible to also recover
information around 2.5 cycles/pixel, 3.5 cycles/pixel, etc., but
probably difficult in practice due to the low transfer.

It is important to note that one cannot recover spatial
frequencies that are suppressed due to the FPA’s SFR. The
recommended measure of performance of the super-resolution
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Fig. 8. The System Frequency of the Input and Super-Resolved Images (see the figure key)

algorithm is therefore how close the SR image’s measured SFR
is to the super-resolved SFR of the LR input image. In other
words how much the system’s frequency response deteriorates
when super-resolving the image.

VII. RESULTS

The registration is implemented in C++ and quick enough
to run at 20 fps on a low power dual-core Intel i5 NUC running
at 1.8 GHz for images up to 512x512 pixels. One processor
core is used for the image registration and the other for video
input, stacking and video output which then lags by one frame.

The sharp stack results are compared to the SupReMe
reference solution developed at Stellenbosch University by
Stefan van der Walt [11]. SupReMe was chosen as a reference
because the source code is available for running on one’s
own data. Figure 9 shows the results of the sharp stack
and the SupReMe reference for the USAF1951 test target.
Figure 10 shows the Supreme reference results for video
recorded in Simonstown, South Africa. The sharp stack result
is comparable to that of SupReMe although the sharp stack
executes at 20 fps while the SupReMe implementation takes
about 2 minutes per frame.

Figure 11 shows a SR result when the image is degraded by
20% uniform pixel noise and a Gaussian blur with a standard
deviation of 0.5 pixels. The system MTF is still good enough
to cause aliasing on the FPA which is super-resolved by the
sharp stack algorithm.

VIII. CONCLUSION AND FUTURE WORK

The paper presents the determined effort to apply a fast
image registration algorithm in combination with only an
image stacking operation for generating super-resolution stills
from video. The sharp stack algorithm is able to keep the
frequency response of the system the same as the frequency
response of the LR image while lowering the Nyquist rate of
the sensor. This is a measurable improvement over the average
stack algorithm which lowers the Nyquist rate of the sensor,

Fig. 10. An LR Image frame from a Video Sequence of Roman Rock in
Simonstown is Shown at the Top Next to the Resulting Average Image Stack
on the Right and the Supreme SR Solution at the Bottom

but degrades the frequency response compared to that of the
LR image.

The sharp stack super-resolution algorithm lowers the
Nyquist rate to one pixel per cycle which is a doubling of
the resolving power. Spatial frequencies above 1 cycle per
pixel experience a contrast inversion due to the FPAs frequency
response, but could potentially in future be super-resolved if
the inversion is factored into the problem.

The recommended measure of performance of the super-
resolution algorithm is how close the SR image’s is to the
SFR of the LR input image. In other words how much the
SFR deteriorates when super-resolving the image.



Fig. 9. An LR Image, Average Image, Sharp Stack and Reference Supreme Results

Fig. 11. The Low Resolution Input (top), Nearest Neighbour Sharp Stack
(bottom-left) and Kernel Filter Sharp Stack (bottom-right) when adding 20%
Noise and a Gaussian Filter with a Standard Deviation of 0.5 Pixels

When a limited number of LR frames are available then a
nearest neighbour filter or kernel based filter may be used to
create a dense SR result. The nearest neighbour and kernel
filters have similar quality performance in the limit. The
nearest neighbour method is however simpler, faster and has
improved quality for a small number of inputs. On the other
hand when the input is very noisy then the kernel method
offers an advantage due to its temporal smoothing behaviour.

In general the registration RMSE seems to be well below
0.1 pixels per frame. In addition the systematic error (i.e. drift
over multiple frames) was measured to be in the order of 0.002
pixels per frame.

This paper shows super-resolution of wide camera fields of
view where the effect of atmospheric bubbling and dancing due
to scintillation is not evident. When atmospheric effects start
playing a major role such as in long range image enhancement
then the rigid per frame image registration should to be
replaced with a per-pixel optical flow technique. The LK
algorithm could still be employed, but must be combined with

an efficient regularisation of the resulting sparse flow fields.

ACKNOWLEDGMENT

The author would like to thank both the Armaments Corpo-
ration (Armscor) of South-Africa and the CSIR for supporting
this research.

REFERENCES

[1] R. Vollmerhausen, D. Reago, and R. Driggers, Analysis and Evaluation
of Sampled Imaging Systems. SPIE Press, 2010.

[2] D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using
sub-pixel displacements,” in Computer Vision and Pattern Recognition,
1988. Proceedings CVPR ’88., Computer Society Conference on, 1988.

[3] M. Irani and S. Peleg, “Improving resolution by image registration,”
CVGIP: Graph. Models Image Process., 1991.

[4] R. R. Schultz and R. L. Stevenson, “Extraction of high-resolution frames
from video sequences,” Image Processing, IEEE Transactions on, 1996.

[5] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” in
Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceed-
ings of the 2001 IEEE Computer Society Conference on, 2001.

[6] X. Li, Y. Hu, X. Gao, D. Tao, and B. Ning, “A multi-frame image
super-resolution method,” Signal Processing, 2010.

[7] Q. He, R. R. Schultz, and C. H. Chu, “Efficient super-resolution
image reconstruction applied to surveillance video captured by small
unmanned aircraft systems,” in Signal Processing, Sensor Fusion, and
Target Recognition XVII, 2008.

[8] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings
of the 7th International Joint Conference on Artificial Intelligence
- Volume 2, ser. IJCAI’81. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1981, pp. 674–679. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1623264.1623280

[9] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, Hypermedia Image
Processing Reference. Wiley, 1997.

[10] Z. Lin and H. Shum, “Fundamental limits of reconstruction-based
superresolution algorithms under local translation,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 2004.

[11] S. J. van der Walt and B. Herbst, “A polygon-based interpolation
operator for super-resolution imaging,” arXiv preprint arXiv:1210.3404,
2012.


