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 ABSTRACT  

For grazing, biomass is the main indicator of rangeland quantity, which is crucial to determine the 

amount of food available for animals (grazers), including livestock. Livestock production in the rural 

communities of the world, including Africa, is the main source of income and hence livelihood. 

Biomass information during dry season is not only important for grazing but also for determining the 

fuel load for fire risk. During dry season, grazers are mainly limited by grass quantity than quality. 

Therefore, it is important to quantify the variability of biomass during dry season to inform decision 

makers on planning and management of the grazing systems. Remote sensing provides opportunity 

to successfully estimate biomass in natural and agricultural areas. The conventional approach makes 

use of the vegetation indices such as the normalized difference vegetation index (NDVI), which is a 

measure of vegetation greenness. The use of vegetation indices has been successful during wet 

periods where vegetation is green and photosynthetic active. During dry season, biomass estimation 

is always not plausible using vegetation indices. The aim of this study is to estimate dry biomass using 

the multi-scale remote sensing data in the savanna ecosystem. Field data was collected in August 

2013, and concerted to the acquisition of the satellite image from RapidEye and Landsat 8. Random 

forest algorithm (RF) was used to predict biomass using the band reflectance data, from RapidEye 

and Landsat 8 respectively. The results show that RF combined with RapidEye explained over 85% of 

biomass variation, as compared to 81% explained by RF with Landsat 8 data. For regional assessment 

of biomass as an indicator of rangeland quantity, high spatial resolution data can be used for 

calibration and validation. This study demonstrates that dry season biomass can be estimated using 

remote sensing, and it is important for understanding grazing and feeding patterns of animals, 

including livestock and wildlife.  
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INTRODUCTION 

Biomass is the main indicator of rangeland quantity, which is crucial to determine the amount of 

food available for animals (grazers), including livestock. Livestock production in the rural 

communities of the world, including Africa, is the main source of income and hence livelihood 

(Shackleton et al. 2002). Rangeland quantity influences the feeding patterns and movements of 

grazers. Biomass information in dry season is not only important for grazing but also for determining 

the fuel load for fire risk. During dry season, grazers or grazing animals are mainly limited by grass 

quantity than quality. Therefore, it is important to quantify the variability of biomass during dry 

season to inform decision makers on planning and management of the grazing systems. Nowadays, 

global change including land cover/ land use and climate change due to new or existing tenure 

systems, drought and erratic rainfall influence land degradation. In addition, poor planning of land 

use is one of the major drivers of land degradation. Information on the spatial distribution of grass 

biomass is crucial for proper planning and management of the rangeland systems. 

 

For the past three to four decades, remote sensing provided opportunity to successfully estimate 

biomass in natural and agricultural areas (Tucker 1977, Tucker and Sellers 1986, Xu et al. 2014). The 

main approach was the use of the vegetation indices such as the normalized difference vegetation 

index (NDVI) (Rouse et al. 1974, Todd et al. 1998), which is a measure of vegetation greenness. 

Biomass estimation using vegetation indices such as NDVI was achieved by using empirical models. 

The empirical models are simple to implement, but site, season and data specific. The empirical 

models for predicting biomass using vegetation indices has been successful during wet periods where 

vegetation is green and photosynthetic active (Mutanga et al. 2012, Ramoelo et al. 2012). Mutanga 

et al. (2012) used WorldView-2 data and random forest algorithm to reduce the saturation problem 

in estimating biomass during peak productivity. Ramoelo et al. (2012) successfully estimated biomass 

using the integrated modelling approach, which combines remote sensing indices and environmental 

variables to minimize the saturation problem during peak productivity or wet season. During peak 

productivity, the saturation problem occurs when the amount of light that can be absorbed in the 

red region of the spectrum reaches a plateau (Tucker 1977), while the NIR reflectance continue to 

increase because addition of new leaves which influences the multiple scattering within the canopy 

(Kumar et al. 2001). During dry season, saturation might not a problem for biomass estimation 

because of the limited dependence on vegetation indices. Using hyperspectral data during dry 

season, biomass estimation can be achieved using short-wave infrared index such as Cellulose 

Absorption Index (CAI) (Nagler et al. 2003, Xu et al. 2014). Specific spectral bands used for CAI 

computations do not exist in most of the satellite sensors including RapidEye and Landsat 8. In 

addition, conventional vegetation indices are difficult to use in the dry season, for grass cover and 

biomass prediction (Xu et al., 2014). In this study, original reflectance data in combination with the 

random forest statistical technique were used to predict dry season biomass. 

MATERIAL AND METHODS  

Study area and data collection  

The study area is located in the north-east of South Africa and covers part of the Kruger National 

Park (KNP), SabiSands and Bushbuckridge communal rangelands. Field work was undertaken in 

August 2013, the same month with the acquisition of the RapidEye satellite image. Sites along the 
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main roads covering the study area were purposively selected for the field sampling, also considering 

the underlying geological strata. The road sampling technique was preferred since penetration into 

the savanna landscape was constrained by management and logistical restrictions. Buffers of 300 m 

were created on both sides of these roads using ArcGIS software (ESRI, USA). Within the buffer 

polygons random sample points were generated using the ArcGIS. Once in the field location, 61 plots 

were placed in relatively large areas with homogeneous grass to avoid the possible contamination of 

the tree signal on the grass signal. In each plot of 20m x20 m, two subplots of 0.5m x 0.5m were 

randomly placed and the grass samples were cut and weighed to determine green or wet biomass 

(g/m
2
). Grass materials were dried at 80

0
C for 24 hours and weighed, henceforth referred to as 

biomass. 

 

The RapidEye and Landsat 8 data were acquired in August 2013. The sensor is a multispectral 

push broom imager with a spatial resolution of 6.25 m and captures data in the spectral bands: blue 

(440-550 nm), green (520-590 nm), red (630-685 nm), red edge (690-730 nm), and near infrared 

(760-850 nm). Surface reflectance data were retrieved using the atmospheric and topographic 

correction software (ATCOR 2) implemented in the IDL Virtual Machine (Richter 2011). ATCOR 2 

models reflectance for flat surfaces was considered sufficient because the study area is not 

characterized by very rugged terrain. Since the modules for Landsat 8 were not implemented in the 

ATCOT 2, Quick Atmospheric Correction implemented in ENVI was used. Before QUICK atmospheric 

correction was implemented, digital number (DN) values were converted to top-of-atmosphere 

(TOA) radiance. First seven Landsat bands were used for further analysis. 

 

Figure 1:  the performance of random forest in biomass estimation using RapidEye data 

Data analysis  

      Reflectance data from the RapidEye and Landsat were extracted corresponding to each sampling 

point where the field measured biomass data was done. The first set of analysis for predicting 

biomass was done using Random forest and RapidEye reflectance data. The second of analysis was 

performed by using RF and Landsat reflectance data. Random forest was implemented from the 
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random forest package programmed in the R statistical environment (Liaw and Wiener 2002). This 

technique was successfully used with remote sensing to predict wetland species biomass (Mutanga 

et al. 2012), plant water content (Ismail and Mutanga 2010) and for species classification (Ham et al. 

2005, Adam et al. 2012). RF is a machine learning method developed to improve the classification 

and regression trees method (CART) by using large set of decision trees. RF builds each tree by using 

a deterministic algorithm selecting a random set of variables and a random sample from the 

calibration data sets. For more details about the optimization and implementation of Random forest 

for prediction of vegetation parameter, see Mutanga et al. (2012). The validation of the model was 

done using leave-one-out cross validation (LOOCV). In cross validation, samples are estimated by the 

remaining samples. For example, if there are 20 samples, each sample will be predicted by 19 

samples iteratively to determine the performance of the model. Advantages of the cross-validation 

are the capability to detect outliers and provide unbiased assessment of the prediction error (Efron 

and Gong 1983). The statistic measure of precision and accuracy such as the coefficient of 

determination (R
2
) and root mean square error (RMSE) were determined. 

RESULTS AND DISCUSSIONS  

 

There is a moderate variation of grass biomass with coefficient variation equalling 46%. The 

highest biomass value was recorded to be 344 g/m
2
 and 52 g/m

2
 as the lowest. The mean biomass 

was 126 g/m
2 

(Table 1). The dry season measurement of biomass is significantly lower than the wet 

season. The distribution of biomass in the savanna ecosystem is influenced several edaphic and 

biophysical factors (Venter et al. 2003). Among other factors, fire, rainfall and geology influence the 

biomass distribution. For example, basalt geology is known to have high biomass as compared to the 

granite (Ramoelo et al. 2012).  

 

Table 1: Descriptive statistics for grass biomass 

Min (g/m²) Max (g/m²) STDEV Mean (g/m²) CV (%) 

52 344 58.28 126.46 46.09 

CV = coefficient of variance, STDEV = standard deviation 

 

The predictive models based on random forest (RF), Landsat and RapidEye significantly explained 

over 80% of biomass variation in the study area. The results further indicate that higher accuracies 

for predicting biomass have been achieved using RapidEye data as compared to the Landsat (Table 2, 

Figure 2-3). Using RapidEye data, prediction accuracy attained was 13.42 g/m
2
 which is about 10.61% 

of the mean, as compared to the 15.79 g/m
2
 (12.49% of the mean) of Landsat data. Estimation of 

biomass in dry season has proved to be challenging using remote sensing, but this study proved that 

using RF and remote sensing biomass can be estimated with acceptable accuracy. The success of 

estimating biomass in dry season was achieved using CAI (Nagler et al. 2003). CAI is computed based 

on the premises that the dead material absorption around 2100 nm is different from bare soil, then 

providing an opportunity to estimate biomass. 
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Table 2: prediction capability of grass biomass using RapidEye and Landsat 

  R² RMSE(g/m²) RRMSE(%) F-Stats P 

Rapideye 0.86 13.42 10.61 355.70 < 0.05 

Landsat 0.81 15.79 12.49 264.20 < 0.05 

RMSE = root mean square error, RMSE = relative RSME 

 

 

Figure 2:  the performance of random forest in biomass estimation using RapidEye data 

 

Figure 3: the performance of random forest in biomass estimation using Landsat 8 data 

Variables of importance in the analysis for RF and RapidEye showed that bands centred around 

710 nm (red edge band), 475 nm (blue) and 555 nm (green) were important for predicting biomass. 

While using Landsat data, bands centred at 560nm (green), 440 nm (deep blue), 860 nm (near 
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infrared) and 2220 nm (shortwave infrared) were most important for predicting biomass. Among 

selected bands from the RapidEye, the red edge band was important, because it is known to relate to 

biomass, even during peak productivity, and rarely explored for dry season grasses. Hyperspectral 

studies demonstrated the importance of narrow band red edge based indices for estimating biomass 

(Mutanga and Skidmore 2004). For the Landsat 8 data analysis, short-wave infrared (SWIR) was 

considered important, and is sensitive to plant water stress. In the SWIR region, there is absorption 

of cellulose and nitrogen, which are related to biomass. Xu et al. (2014) used Landsat spectral bands 

in the SWIR region to derive the normalized difference water index (NDWI), and found that there was 

a relationship between NDWI and dead vegetation cover. SWIR is a crucial region for the estimation 

of biomass in dry season, because the vegetation is less green and dead. 

 

RF model is robust and has been used successfully for regression and classification. RF can be 

used independent of the data distribution, and minimize overfitting and multicollinearity. 

Nevertheless, Figure 2 and 3 show that high biomass values are underestimated using RF. Mutanga 

et al. (2012) identified similar problem for biomass estimation in wetland vegetation using RF. This 

problem needs to be further investigated. Biomass estimation is a challenging activity, and several 

authors reported those challenges in literature (Todd et al. 1998, Lu 2006, Ahamed et al. 2011). 

 

The current launch of Landsat 8 and free or open data dissemination policy provide opportunity 

to monitor grass biomass in the savanna ecosystem. Similar to this study, several studies 

demonstrated the use of Landsat to estimate grass biomass (Friedl et al. 1994, Todd et al. 1998, Xu et 

al. 2014). Studies in the semi or arid environments showed indices such as the modified soil adjusted 

vegetation index (MSAVI) and SAVI are crucial to vegetation growth and productivity assessment, 

especially using the coarse spatial resolution data (Qi et al. 1994, Rondeaux et al. 1996, Wang et al. 

2006). This study demonstrated that high spatial resolution data such as RapidEye achieved high 

biomass estimation accuracy, as compared to Landsat 8. Nevertheless, the multiscale approach is 

crucial for the development of the biomass monitoring system, where high spatial resolution data 

can be used for calibration and validation of the Landsat 8 derived biomass. 

CONCLUSIONS  

 

The study demonstrated that biomass can be estimated using high and medium spatial resolution 

remote sensing data. High spatial resolution such as RapidEye yielded high biomass prediction 

accuracy as compared to the medium resolution data such as Landsat. RapidEye and Landsat can be 

used complimentarily for the development of the biomass monitoring system. Biomass monitoring 

system is crucial for planning and management of savanna ecosystems, in terms of grazing and fire 

control. For grazing, biomass is a key indicator of rangeland condition, and can be used as an input in 

the livestock carrying capacity determination. 
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