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Abstract

Interval Algebra provides an effective means to schedule surveillance radar

networks, as it is a temporal ordering constraint language. Thus it provides

a solution to a part of resource management, which is included in the re-

vised Data Fusion Information Group model of information fusion. In this

paper, the use of Interval Algebra to schedule mechanically steered radars to

make multistatic measurements for selected targets of importance is shown.

Interval Algebra provides a framework for incorporating a richer set of re-

quirements, without requiring modifications to the underlying algorithms.

The performance of Interval Algebra was compared to that of the Greedy

Randomised Adaptive Search Procedure and the applicability of Interval Al-

gebra to nimble scheduling was investigated using Monte-Carlo simulations

of a binary radar system. The comparison was done in terms of actual per-

formance as well as in terms of computation time required. The performance

of the algorithms was quantified by keeping track of the number of targets

that could be measured simultaneously. It was found that nimble scheduling

is important where the targets are moving fast enough to rapidly change the
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recognised surveillance picture during a scan.

Two novel approaches for implementing Interval Algebra for scheduling

surveillance radars are presented. It was found that adding targets on the fly

and improving performance by incrementally growing the network is more

efficient than pre-creating the full network. The second approach stemmed

from constraint ordering. It was found that for simple constraint sets, the In-

terval Algebra relationship matrix reduces to a single vector of interval sets.

The simulations revealed that an Interval Algebra algorithm that utilises

both approaches can perform as well as the Greedy Randomised Adaptive

Search Procedure with similar processing time requirements. Finally, it was

found that nimble scheduling is not required for surveillance radar networks

where ballistic and supersonic targets can be ignored. Nevertheless, Interval

Algebra can easily be used to perform nimble scheduling with little modifi-

cation and may be useful in scheduling the scans of multifunction radars.
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1. Introduction

Multisensor management deals with the task of queueing sensors to make

measurements that best serve the mission that a multisensor data fusion

(MDF) system is intended to complete [1, 2]. In the case of a surveillance

system, this means controlling the sensors so as to gather the most pertinent

information about the sensed area.

Multisensor management is contained entirely in level 4, process refine-
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ment, of the Joint Directors of Laboratories (JDL) data fusion model [3], as

refining the process of information fusion can best be achieved by control-

ling the inputs to the process. This is when the only inputs to the infor-

mation fusion system are the sensor measurements. Recently, the updated

Data Fusion Information Group (DFIG) data fusion model was proposed

[3–5], where resource and mission management replaces process refinement.

Resource management is a subset incorporating aspects such as tuning all

information fusion functionality. Furthermore, it also looks at how to control

information collected by other means, such as military intelligence.

Two preliminary steps can be used to formulate a solution for multisensor

management. The first is to model the sensors, their environment and the

goals they must achieve. The second is the choice of architecture, which

dictates how the multisensor manager will be designed and employed.

Modelling a sensor manager can be achieved using two methods [6]. The

first choice is to make use of a myopic simplification and thus deal with only

a very simple model of the past and the future. The alternative choice is

to employ longer-term planning, which considers more historic information

and generates long-term predictions. Common solutions for the latter choice

include partially observed Markov decision processes (POMDPs) [7, 8] and

multiple-armed bandits (MABs), a simplification of the Markov decision pro-

cess (MDP) [9, 10]. These are both types of Bayesian networks and, while

they are promising, they often lead to numerically difficult solutions. Thus,

as longer-term planning is desirable, there is still work required to make these

practically feasible in all cases.

There are various architectures used for creating a mulstisensor man-
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ager. Traditionally, a centralised architecture has been used, where a central

information fusion system feeds a centralised multisensor manager with in-

formation so as to control all sensors. Another possibility is a decentralised

architecture, where typically both the information fusion system and multi-

sensor manager are distributed across each discrete sensor or suite of sensors

[2, 11, 12]. These architectures represent the current state of the art, as

distributed problems are difficult to solve. A hybrid of these approaches has

been proposed by various authors [13, 14], which usually consists of two or

more distinct levels. On the lowest level sensor management is distributed

and must keep sensors busy and tune sensor parameters for high-level tasks.

The higher level, sensor coordination, is centralised and ensures that collec-

tively the sensors are optimally achieving the sensor fusion system goals.

Sensor coordination consists of planning and scheduling [2], and can be

sub-divided into three functions [15]. The first function of sensor coordination

must solve the problem of generating tasks for each sensor. The next function

of sensor coordination is to prioritise the generated tasks. Together the first

two functions perform the required planning. The final function of the sensor

coordination is to place the best set of tasks in the timeline of sensing actions

for each sensor. This is known as the scheduling function, which is the focus

of this work.

A sensor coordination algorithm is considered a nimble scheduler when

it is able to rapidly adapt to changes in the surveyed area. This means

that, if there are fast-moving or rapidly accelerating targets, the scheduler

will incorporate the updated target locations in real time. These targets will

not only affect planning but also scheduling within very short time intervals.
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Thus the scheduler must be able to recalculate the schedule of tasks for the

sensors concurrently with the execution of these tasks by the sensors. The

updated schedule of tasks can leverage the improved situational picture as it

is generated by the information fusion system.

1.1. Current scheduling solutions

Sensor scheduling treats the sensor resources as a timeline extending from

the present towards the future. As such, scheduling is a combinatorial opti-

misation problem very similar to the knapsack problem. The goal is to fill the

timeline with tasks such that the sensor is never idle. Idle time is wasteful

since this time is better spent catching up on tasks that may later cause a

bottleneck.

A good overview of types of algorithms for sensor scheduling can be found

in the work of Xiong and Svensson [2], Musick and Malhotra [15], as well as

a more recent work by Ding [16]. There are many approaches that can be

followed to schedule individual sensors. However, not all of them are directly

applicable to multisensor scheduling, which is required for an MDF system.

Early in the history of sensor management scheduling was performed by

human operators with only minimal assistance provided by the system that

was being managed [17]. Next, heuristic approaches that captured much of

the domain knowledge of human operators were employed. These approaches

are still very popular today as they require minimal computation time and

are easy to develop [14, 18–20].

As research in the field broadens to encompass additional functions of

sensor coordination, this aspect is sometimes handled intrinsically by task

prioritisation algorithms [9, 21–24]. Examples are split among those using
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information and decision theory. This has the benefit of not wasting compu-

tation especially if the mission of the MDF system changes on a high level.

In this case, instead of handling a timeline of tasks, the sensor manager only

deals with the current task to schedule. On the other hand, if a centralised

fusion centre is used and stops operating or if communication is lost in a

decentralised system, there will be no timeline of tasks to continue with in

the interim. Just doing arbitrary tasks during this time can have detrimental

effects, not only on the optimality of the scheduling solution, but also on the

mission of the MDF system as a whole.

The scheduling problem can be solved through the use of optimisation

algorithms when information-theoretic approaches to task prioritisation are

used [25]. These optimisation algorithms fall into two categories: mathe-

matical programming [19, 26–28] and artificial intelligent search techniques

[29, 30]. Simulation techniques are another possibility, where possible future

timelines are investigated using multiple trials [31–33]. Sometimes random

approaches are followed and these are typically used as an electronic coun-

termeasure [34].

Artificial intelligence techniques have also been proposed in the past and

have predominantly used reasoning/expert systems. Examples include fuzzy-

set based reasoning [35, 36] and fuzzy decision trees [36] all within the context

of an expert system. In these systems, the scheduling rules are captured by

analysing linguistic rules of thumb provided by human sensor operators.

1.2. Multistatic radars

An interesting application of multisensor management for radars is the

possibility of making multistatic measurements [37, 38], which can be used to
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increase the probability of detection of small targets in heavy clutter scenar-

ios. Increasingly, there is a trend where small boats are used in piracy and

terrorist activities to attack larger vessels. Coordinating the measurements

of multiple radars could potentially mitigate some of these problems, by en-

suring that these targets are detected and tracked. However, most radars

of the affected vessels are not very sophisticated, and thus require a simple

solution to benefit from multistatic measurements.

Multistatic measurements are possible by adequately scheduling each

radar to measure the target simultaneously. Each radar must also be able to

receive the transmitted signals of the other radars, or the signals must com-

bine coherently through constructive interference to increase the energy on

the target. Receiving radars can always make a monostatic measurement by

computing the monopulse angle of the target and the delay experienced by

the signals it transmits. More sophisticated receiving radars can also discern

the Doppler shift induced by the target motion.

For multistatic radars, where a radar can distinguish the signals of the

other radars, this receiving radar can then also make a bistatic measurement.

This is done by pinpointing the position of the target using intersecting

ellipsoids with the receiving and transmitting radars as the ellipsoid foci.

Thus, each radar is able to make more measurements of the target. Each

radar has an increased probability of detection and can make more accurate

measurements of the positional and kinematic attributes of the target.

1.3. Interval Algebra

Interval Algebra (IA) is an artificial intelligence technique that does not

require performing searches. IA falls within the field of constraint satisfaction
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problems (CSP). Apart from the authors’ conference paper [39], there appear

to be no published papers that investigate the use of IA in information fusion.

At this point, it may be beneficial to refer to Appendix A for the theory

of IA. Briefly, IA reasons about the start and end points of intervals of time.

Hence it is able to ensure that tasks adhere to temporal constraints (with the

potential of adding duration constraints) but is not able to prioritise tasks. It

can also be used to check if the intervals are consistent with each other, given

fixed constraints. As sensor tasks are defined as taking a defined amount of

time and starting at a defined point in time, they can easily be represented as

intervals. Temporal constraints between sensor tasks are also often required

and these can be captured using IA relationships.

Alone IA can also provide a schedule of tasks with a low latency and

within few computation cycles. Thus, IA should be able to efficiently plan

a single dwell for advanced sensor systems. In the case of the surveillance

radar systems discussed here, this would entail planning the tasks for the

radars during the next scan of the sensed area. IA can fill the timeline of

the radars with tasks such that temporal constraints are not violated, but it

cannot make decisions about which tasks are best.

IA can also be used with other algorithms such as information-theoretic

algorithms to provide a holistic sensor management solution. IA could be

used as a pre-processing step which eliminates tasks that violate constraints.

Thereafter, all tasks not excluded by IA could be prioritised and the best

tasks selected using an information-theoretic algorithm such as Shannon’s

entropy.

IA also does not dictate a specific multisensor management architecture.
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The form of IA used here will naturally work for a centralised architecture or

the central part of a hybrid architecture. It can also be used for the scheduling

of a single sensor and even in a decentralised approach. Nevertheless, it is

also possible to use a decentralised CSP algorithm to solve the constraints

[40].

While IA is being used for scheduling here, it should be noted that IA can

be used to resolve constraints wherever decisions need to be made. Thus, IA

could be used in other parts of an information fusion system such as object

refinement, situation assessment, threat assessment and user refinement.

2. Material and Methods

The results of two different sets of simulations are presented to achieve

the following goals. Firstly, a comparison is drawn between IA and the

Greedy Randomised Adaptive Search Procedure (GRASP). Secondly, an in-

vestigation into a nimble scheduler, where targets are highly manoeuvrable,

is presented.

The methodology followed for the comparisons of IA to GRASP is the

same as the experimental set-up of the authors’ previously published work

[39]. For this comparison, the simulations also made use of a target priority

queue so as to prioritise targets as depicted in Figure 1. These simulations

also simplify the information fusion system by only simulating fused tracks.

This was done to keep the simulations tractable such that many simulations

could be executed for the Monte-Carlo analysis.

The nimble scheduler simulations require a more realistic approach. Thus,

unlike in the previous work, the simulation environment makes use of Kalman
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Figure 1: Markov chain representing target priority

tracking filters [41]. The tracks of the radars are then fed to a central in-

formation fusion system. Here the tracks are associated using the auction

algorithm for data association [42]. An information filter is then used to fuse

the associated tracks [43]. Finally, the covariance of the information filter is

used to prioritise the tracks. When managing real sensors this is a better ap-

proach for prioritising targets. However, it may still be desirable to consider

a mechanism whereby all targets are frequently revisited.

2.1. Scheduling problem

The sensor management problem to solve is selecting the maximum num-

ber of targets to measure with multiple radars. It is assumed that the me-

chanically steered positioners of the radars are not allowed to change direction

during the scan, as doing so would increase the cost and complexity of the

radars. Thus each radar will temporally scan over all targets in a specific

sequence.

Given a multistatic radar network that is scanning a scene of N targets,
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the scheduling goal per scan can be written as:

argmax
∑N

k=1 Q (k) · S(k)

subject to: C(m,n, r) ∀ {m,n} ∈ K, r ∈ R
(1)

where k, m and n are target indexes; r is the radar index, K is the set of

scheduled targets and R is the set of radars. Q(k) is the priority of target

k. S(k) denotes whether target k has been scheduled. The full enumeration

of C(m,n, r) for all values of m and n in K, as well as radars r in R are the

constraints that need to be satisfied. In other words, the goal is to find the

largest set K, which maximises the value of Equation 1 but does not violate

any constraints.

The target selection function S(k) is then simply:

S(k) =

 1 if k ∈ K,

0 otherwise
(2)

Given an arbitrary reference line and radar positioner rotation, C(m,n, r)

returns constraints as follows:

C(m,n, r) =


θr (m) ≺ θr (n) if m < n,

θr (m) � θr (n) if m > n,

∅ otherwise

(3)

Here θr(m) is the function that determines the angle from the radar r taken

from the arbitrary reference line to target m. This reference line is selected

such that the angles for all targets increase monotonically. For a dual radar

case used in this research, the best selection for the reference is the line that

connects the radars. The C(m,n, r) function imposes the constraint that all

targets must either appear in sequence or simultaneously for a specific radar.
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The precede ‘≺’ and succeed ‘�’ operators are used as the ordering depends

on the scan direction. Thus, all the radars should be able to measure the

targets in sequence without requiring a change in scan pattern.

2.2. Ambiguity in the sequence of targets

Ambiguities arise in the azimuth ordering of the targets for either radar.

This is due to the azimuth angle measurement accuracy of the radar, which

cannot be infinitesimally small. This is an unavoidable situation even if

monopulse measurements are made, as in both cases the angular accuracy is

determined by the beam width [44]. Consequently, when targets are too close

together in azimuth angle the radar is unable to discern their true order.

The mechanically steered multistatic surveillance radar network (MSM-

SRN) scheduling algorithms must be able to exploit these ambiguities so

that they can be used to schedule more multistatic measurements per scan.

Furthermore, no tracking degradation will be experienced in the ambiguous

case. This is due to the fact that the targets are sufficiently close to the

centre of the radar beam in order to receive maximum antenna gain.

Figure 2 illustrates a scenario where targets are measured ambiguously.

Radar one does not need to discern the true order of targets two and five.

2.3. Target motion and scheduler nimbleness

Since the targets are moving, the geometry of the targets relative to the

two radars changes over time, as depicted in Figure 2 by the curved dotted

arrows. If the targets move fast enough and scheduling is performed without

any future prediction, then it is possible that the target will not lie in the

beam of one or both radars and a multistatic measurement will not be made.
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Figure 2: Ambiguity in the sequence of targets and target motion as scheduling proceeds
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Similarly, targets that are ambiguous for a radar will only remain in this

state for a brief period of time.

As a result, the scheduling problem to solve is dependent on the targets

that are scheduled. Each time a target is scheduled, the intersection point

of the radar beams must move from the current target to the next target.

The shortest path is a straight line between the two targets and is shown in

Figure 2 by the solid straight arrows. Thus the minimum time that will pass

is the angular difference between the two targets divided by the maximum

scan rate. This value will be largest for the radar which has the greatest

angular difference to rotate.

During this time, all targets that must still be measured by the radars

later in the scan will have moved. The distance required to move out of the

beam of the radar is dependent on the target distance from the radar, the

beam width of the radar and the direction of motion. Assuming straight

line motion, the last parameter can be simplified to an aspect angle of the

motion. The minimum velocity can be calculated from the distance and the

scheduling time between the two multistatic measurements, which will cause

multistatic measurements to be missed.

The degree to which multistatic measurements will be missed is thus

dependent on the velocity of the target as well as the scanning rate of the

radars. Targets that will be measured closer to the end of the scan will also be

the worst affected, as more time would have passed before these mulstistatic

measurements were attempted. Fast vehicles, helicopters, airplanes and fast-

moving boats, such as go-fast boats, will cause the largest problems for any

surveillance radar scheduler. Ballistic and supersonic targets are usually not
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tracked by surveillance systems and are instead tracked by a tracking radar

due to their extremely fast motion. For all these types of target, the scene

unfolds quickly at each time step and it is not possible to rely on targets

falling within the edge of the beam to ensure detections.

In order to handle fast targets, a scheduling algorithm must therefore

predict target locations after each multistatic measurement is made. How-

ever, as the goal is to measure as many targets as possible, this leads to two

interacting requirements. Firstly, the schedule of targets to visit that will be

generated is dependent on the geometry of the targets. However, the geom-

etry changes over time and the degree of change depends on which targets

have been scheduled. There is no simple solution to this problem that will

ensure that no multistatic measurements are missed.

Nevertheless, any forward predictions made should result in a better

scheduling performance than making no predictions. One simple approach

would be to determine the fastest time the two radar beams could be made

to intersect at any target in isolation. Thus all other multistatic measure-

ments that may be made before this target is visited are ignored. This will

once again lead to a static target geometry, with errors that increase over the

scan, which can be used to select the targets for multistatic measurements.

A better approach would be to calculate the schedule of targets to visit on

the fly, while still attempting to measure as many high-priority targets as

possible. This scheduler would be nimble in terms of reacting to the changes

in the target geometry.
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Both approaches require solving

θr(t0) + t · θ̇r(t) = arctan

((
At

f · x̂f (t0)− xr

)
· [0 1 0 0]′(

At
f · x̂f (t0)− xr

)
· [1 0 0 0]′

)
(4)

for each radar r, where t0 denotes the current time, t denotes the prediction

time, f signifies the target, θ and θ̇ is the current positioner movement profile

of the radar, A is the motion model of the target, x̂ is the current filter

estimate of the target Cartesian location and velocity, and xr is the Cartesian

location and velocity of the radar (assumed to be stationary). This equation

can be solved for t using the Newton-Raphson method along with a numerical

differentiation technique. Similarly, the tracking covariance matrices of the

targets must also be updated:

P̄f (t) = At
f · P̂f ·At

f
′
+ t ·Qf (5)

where A is the motion model of the target, P̂ is the estimate of the tracking

covariance, Q is the acceleration model of the target and P̄ is the prediction

of the tracking covariance. However, as our simulation used discrete time, it

was possible to search for the first potential solution.

2.4. Scanning, tracking and confirmation tasks

The multisensor management solution investigated here then uses a hy-

brid architecture consisting of two levels [13]. The higher-level radar coor-

dinator attempts to schedule multistatic measurements for as many targets

as possible. The lower-level radar manager is replicated for each radar and

operates independently of the radar coordinator. The radar manager could

also have been implemented using IA; however, it is not the focus of this
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research. In this research, the radar manager makes a decision to track,

confirm or search independently.

Thus far, only the mulstistatic aspect of the radar system has been dis-

cussed. However, nothing stops the radars from scanning for new targets

while they are not making multistatic measurements. Furthermore, targets

that will not be measured in the multistatic mode should still be measured in

a monostatic mode by the radar so as to maintain a stable track. Finally, it

is also possible to confirm the presence of new targets during the same time.

Performing these types of tasks will not affect the multistatic measure-

ment capability of the radars for slow targets, as they only require one radar

to make the measurement. Also, they always temporally occur between two

multistatic measurements for the radar performing these tasks. During the

time that these tasks are performed the other radar may only be required to

slow down.

These tasks will, however, impact on the maximum scan time, and thus

if there is an upper bound on the scan time or a requirement for a fixed scan

time, only a certain number of these tasks will be possible. This can easily be

accommodated in any scheduling algorithm by keeping a sum of the duration

of all tasks. As long as the sum of task durations is less than the maximum

scan time, more of these tasks can be added.

2.5. Implementation of scheduling algorithms

The target priority queue is initialised with all targets having the high-

est priority level for the comparison simulations when the simulation starts.

Targets are then placed at their initial 2D positions and will travel on their

selected 2D paths. In all the comparison simulations, targets were always
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Table 1: Table demonstrating input format with ambiguities as multiple entries in a column

1 3 4 5 6 7

2 8

9

visible to both radars when they were scanning over the area. For the nim-

ble scheduling simulations, the probability of detection (Pd) was set to 0.9

for monostatic measurements and 0.99 for multistatic measurements. Fur-

thermore, the probability of false alarm (Pfa) was set to 10−6 per radar cell

(radars were assumed to have a 3.75 m resolution and a 1◦ azimuth resolu-

tion).

A recognised surveillance picture is assumed to be perfectly generated

by a fusion system for the comparison simulations. However, for the nimble

simulations the recognised surveillance picture is built by first detecting tar-

gets, then forming tracks, associating the tracks of the two radars and finally

fusing the associated tracks. The recognised surveillance picture is used by

the radar schedulers to generate an ambiguous target azimuth ordered list.

Before a scan commences, each of the MSMSRN scheduling algorithms

accepts two ambiguous target lists from the simulation environment, one list

for each radar that scans over the area. An example of these lists can be

found in Table 1, where the columns indicate discrete azimuth sectors and

the rows are individual targets within the sector. The nimble scheduler is

also supplied with two updated ambiguous target lists once each interception

point has been reached.

The MSMSRN scheduling algorithms select the targets measured in the
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Table 2: Table demonstrating output format

1 2 5 7 8 9

multistatic mode by taking into account the priorities and the azimuth angle

orderings per radar for each target. This list of multistatic measurements is

then returned to the simulation environment (refer to Table 2). Finally, the

simulation environment executes the next scan as quickly as possible under

the positioner slew rate constraints. This is achieved by ensuring that the

radars illuminate the targets in the list simultaneously.

If used, the target priority queue is updated for the next scan at the

end of the current scan. This is done using the final list of targets that was

selected for multistatic measurement. Targets that were scheduled decrease

in priority, and unscheduled targets can either stay at the same priority level

or increase in priority (refer to Figure 1).

2.6. Choice of a comparison algorithm

For the comparison simulations it was important to compare the IA

scheduling algorithm to another widely used algorithm. However, the focus

of this research is not an exhaustive comparison but rather an introduction

to IA for the purposes of multisensor scheduling. It includes a meaningful

comparison of IA to show that IA can be used in practical settings. Most

scheduling algorithms tend to fall predominantly in three categories: heuris-

tics, optimisation and information-theoretic approaches. Furthermore, many

scheduling algorithms make use of greedy optimisations, as these tend to lead

to quicker convergence [2].
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GRASP, as a meta-heuristic optimisation algorithm, seems to be a good

representative algorithm for both of the first two choices. It is neither a full

heuristic, as the search aspect is done in a rigorous manner that should find

optimal solutions, nor is it very cumbersome, as it uses simple heuristics to

build locally optimal solutions. GRASP was chosen as it is a heuristic search

algorithm and should require both little processing time and provide good

scheduling performance [26]. This comparison ensures that IA is computa-

tionally feasible while achieving similar performance to that of a conventional

scheduling algorithm. Interested readers can refer to Appendix B for the

theory of GRASP.

Optimality is not achievable in general and is not necessarily the best ap-

proach for scheduling, mainly for the reason that there are other important

requirements such as meeting deadlines, resource usage, processing require-

ments and trading off constraints. Our goal is to demonstrate IA to the sensor

scheduling community and not prove optimality in all cases. IA should be

seen as a tool that can be used alongside more rigorous approaches, for ex-

ample with search procedures either to validate or generate solutions. IA

can be used to validate temporal constraints and this is required for many

problems.

3. Calculation

Previous work presented by the authors [39] compared IA to a heuristic

algorithm that was devised to solve the MSMSRN scheduling (MS) prob-

lem. This comparison did not demonstrate the effectiveness of IA against

established techniques. Thus, the IA MS (I-MS) algorithm was compared
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to a conventional algorithm to evaluate the suitability of IA as a solution to

the MS problem. GRASP, a mathematical programming technique, [26] was

selected for the comparisons.

The GRASP MS (G-MS) algorithm, unlike the I-MS algorithm, performs

a global search by repeatedly performing multiple local searches. In each

iteration of GRASP, a solution is generated and then a local search is per-

formed, which continually adds and removes targets in order to find a better

solution. In contrast, the I-MS algorithm generates a single locally optimal

solution and so is expanded by using it as the local search for the GRASP

algorithm to draw fair comparisons. This form of the I-MS algorithm was

referred to as the Iterative IA MS (II-MS) algorithm.

The comparison of the II-MS algorithm to the G-MS algorithm was then

evaluated from two different perspectives to ensure that a fair comparison

was performed. The first perspective compared the algorithms in terms of the

computational gain they offer. The algorithms were optimised such that they

performed equally well against the tested metric of mean multistatic mea-

surements per scan. Algorithms that require less computation time provide

a better solution to the scheduling problem.

Conversely, the second perspective compared the algorithms in terms of

the performance gain they offer. The algorithms were optimised such that

they perform in the same amount of processing time. Algorithms that make

more multistatic measurements of targets on average per scan of the radars

provide better solutions. While the II-MS algorithm compared well to the

G-MS algorithm when only considering the performance of the algorithms, it

also required three orders of magnitude greater processing time. This is due
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to the fact that IA provides a much richer set of constraints than that which

was being used by the MSMSRN scheduler. To address this shortcoming the

Iterative Reduced Point Algebra MS (IRP-MS) algorithm was developed that

can be regarded as an equivalent to the G-MS algorithm in both respects,

and is discussed in Section 3.5.

3.1. Basic IA scheduling

As per Section 2, the IA scheduler receives an ordered lists of targets Tr

from each of the radars r forming a multistatic radar network, where Tr(n)

is the location of the target n in the list. The IA scheduler then creates

an interval Ir,n per target for each of the radars, which represents a task

for the radar to track the target during the scan. Next, the IA network is

initialised by adding each of the created intervals and only populating the

IA relationships for tasks of the same radar.

This is done by consulting the two order lists and generating suitable IA

relations. If the relationship is unambiguous then it will only contain either

the IA operator ‘before’ or ‘after’. The order list is consulted for each target

and the relationship for a corresponding interval is set as follows:

Ir,n{before}Ir,m | ∀ (r, n 6= m,Tr(n) ≺ Tr(m)) (6)

All other relationships are kept at their initial value of {all}.

Next, the scheduler must decide which targets will be measured by both

radars simultaneously; thus a multistatic measurement can be made. For the

IA scheduler, this requires setting the relationship between the intervals for

the selected target n of all the radars r and s to contain only ‘equal’.
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Algorithm 1 IASchedulerInit (A : target order for each radar)

create IA network N = ∅

for all radars r do

create handled set H = ∅

for all bins b ∈ Ar in sequence do

for all targets t ∈ Ar,b in sequence do

create interval It

add row and column t to N for It

for all intervals In in H do

if n ∈ Ar,b then

PC (N , [n, t], {all})

else

PC (N , [n, t], {before})

end if

end for

H = {H, In}

end for

end for

end for

return N
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Ir,n{equal}Is,n | ∀ r 6= s (7)

Each time a target is scheduled for a multistatic measurement, the IA

scheduler first makes a backup of the current IA network. Then the scheduler

randomly selects a target with the highest priority and sets the corresponding

intervals to the ‘equal’ relationship. If the network remains consistent the

target is added to the list of targets that will be measured simultaneously and

the resulting IA network is retained. Alternatively, when an inconsistency

is generated, the IA network is reinstated to the backup and the target is

discounted from being measured simultaneously.

The final list of targets to measure simultaneously is the list that is gen-

erated once each target has been attempted. Targets of a lower priority are

only selected once every target of a higher priority has been attempted. If

there are two targets with the same priority a random selection is made.

3.2. IA scheduling with ambiguities

IA can easily manage the case where the azimuth angle of the targets

cannot be determined. As per Section 2, the scheduler now receives an order

list of azimuth sectors Ar for each radar r. Each azimuth sector Ar,k can

contain one or more targets, where sectors containing zero targets need not

be reported.

The same IA operators are used in the relationships of targets from dif-

ferent azimuth sectors, which will again match their ordering in the list as

follows:

Ir,n{before}Ir,m | ∀ (r, n 6= m,n ∈ Ar,k,m ∈ Ar,l, k < l) (8)
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Algorithm 2 IASchedulerRun (N : IA network, A : target order for each

radar, Q : target priority queue)

create schedule S = ∅

for all targets n ∈ Q select n randomly according to priority do

for all radars r do

pr = index of n in Ar

end for

set consistency c = true

for all unique combinations a and b |a 6= b in index of p do

c = c ∧ PC (N , [pa,pb], {equal})

end for

if c = true then

S = {S, n}

end if

end for

return schedule S
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where n is the first target number, m is the second target number, k is

the sector number corresponding to target n and l is the sector number

corresponding to target m.

However, the relationships between targets in the same azimuth sector

are not updated and remain {all}, as per

Ir,n{all}Ir,m | ∀ (r, n 6= m, {n,m} ∈ Ar,k) (9)

Targets are selected as per the unambiguous case and the list of targets

to visit is generated again by using ‘equal’ relationships. Scheduling with

ambiguities then progresses exactly as per basic IA scheduling.

The IA scheduling algorithm, which can handle the ambiguities in the

target sequence, is presented as Algorithm 2. This algorithm requires using

Algorithm 1 to initialise the IA network once per scan.

3.3. Growing the IA network

Algorithm 3 RpaNetGrow (n : Reduced PA network, A : radars’ target

order, Q : target priority queue)

for all t ∈ Q select t randomly according to priority do

if t /∈ nk | ∀ k then

n = RpaNetAdd (n,A, t)

end if

end for

return n

Here the way IA is used to schedule is reconsidered by revisiting the way

intervals are added to the IA network. The I-MS algorithm first adds all in-

tervals to the IA network before performing any constraint processing. Thus
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each iteration of the IA path consistency algorithm executes on a maximum-

sized constraint matrix.

A better method to perform the IA computations would be to only add the

intervals as they are required, thereby growing the IA network as processing

continues. This is a simple contribution, which has parallels with the work by

Van Beek and Manchak [45], as this work focuses on adding intervals in the

order of maximum impact to least impact. This highlights the importance

of adding intervals to the IA network in the best possible order.

In the IA Growing-network MS (IG-MS) algorithm, multistatic measure-

ment intervals from each radar are added for one target at a time to the IA

network. In this way, the IA network only grows as more multistatic mea-

surements of the targets are scheduled. Algorithm 3 captures the essence of

the growing technique by only adding intervals as they are required.

3.4. Constraint ordering

Ordering heuristics could then be considered from the work of Van Beek

and Manchak [45] to be applied to the IG-MS algorithm. Constraint ordering

is described in Appendix A.3.

However, the ordering heuristics cannot be used directly for the IA schedul-

ing algorithm discussed. This is because the constraints with the ‘equals’ re-

lation have the largest impact and these are determined during the operation

of the algorithm. These represent the multistatic measurements, which must

be selected by the scheduling algorithm.

The ordering heuristics did, however, lead to the notion of using a sin-

gle interval per multistatic tracking task. Doing so removes the need for

the ‘equals’ constraints as there is only one interval per target, which now
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Algorithm 4 RpaNetAdd (n : Reduced PA network, A : radars target

order, t target number)

d = length of vector n

for all s = 1→ d do

for all m ∈ ns do

R = {all}

for all radars r do

Rr = RpaGenRel (Ar, t,m)

R = R ∩Rr

end for

if R = ∅ then

return n

else if R = {before} then

ns−1 = {ns−1, t}

return n

else if R = {before, after} then

ns = {ns, t}

return n

end if

end for

end for

nd+1 = {t}

return n
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represents the multistatic measurement task for both radars.

All IA scheduling algorithms up until the IG-MS algorithm used an inter-

val for each target per radar; thus there were also two times more intervals

than targets for these algorithms. Using a single interval for a multistatic

measurement task leads to a further improvement in performance, as the IA

constraint matrix size is reduced by three quarters.

Using a single interval per target requires performing the intersect of the

constraints from the radar in the multistatic cluster. If the set is not null

then the interval can be added to the IA network. The resulting algorithm

was called the IA Simplified-Constraints MS (IS-MS) algorithm.

3.5. Reduced-point algebra networks

Algorithm 5 RpaGenRel (A : target order, n : target one, m : target two)

cn = column of n in A

cm = column of m in A

if cn < cm then

R = {before}

else if cn = cm then

R = {before, after}

else

R = {after}

end if

return R

After the preceding optimisations, only two IA operators were used in

interval relations, namely the ‘before’ and ‘after’ IA operator. This is a
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subset of Point Algebra (PA), which uses only ‘before’, ‘after’ and ‘equals’.

This means that the relationships between the interval for a single radar

would either be {before}, {after} or {before, after}. The intersection of the

relationships from both radars would then be similarly constrained.

Using Matlab R© code analyser revealed that, in all cases, this PA network

remained consistent. This was as long as the intersect of the constraints

from either radar was not null. Looking at the PA relational matrix for

the resulting PA network showed that each row of the PA network matrix

for MSMSRN scheduling is merely a permutation of every other row if set

inversion is applied. That is, one row captured all the information about the

relationships for the entire matrix.

Thus the entire PA network matrix could be captured more efficiently as

a vector of sets containing intervals. Intervals from different elements in the

vector, a set, are temporally organised as per their occurrence in the vector.

However, intervals found in the set have an ambiguous temporal relationship

to each other. In this case, a surrogate interval could be used in the vector

to represent this ambiguous grouping of intervals.

The Reduced PA Scheduling (RP-MS) algorithm therefore uses a vec-

tor of sets, containing intervals, to capture and maintain the relationships

between all the intervals. The Iterative RP-MS (IRP-MS) algorithm again

uses RP-MS as the local search for GRASP. This leads to savings in memory

and processing time, as the Reduced PA form does not require storing or

maintaining all the relationships between every interval. This algorithm is a

novel contribution which demonstrates that under certain circumstances the

relationships in a PA network can better be captured as a vector of sets than
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a matrix.

Algorithms 3–5 implement the Reduced PA defined as part of this re-

search. All set operations have their usual meaning, while subscripts denote

the indexing operation. Sets are in upper case, matrices are in bold upper

case while vectors are in bold lower case. Finally, the target order matrices

Ar are the ambiguous azimuth angle ordering from a radar r. Each column

represents the known angular sequence and the true order of targets in the

same column (on different rows) cannot be discerned. The pseudo code for

the Reduced PA scheduler is provided as Algorithm 6.

Algorithm 6 ReducedPAScheduler (A : target order for each radar, Q :

target priority queue)

create reduced PA network n = ∅

create schedule S = ∅

n = RpaNetGrow (n,A, Q)

for all targets i ∈ n in sequence do

S = {S, n}

end for

return schedule S

3.6. Nimble IA scheduling

As discussed in Section 2.3, in certain circumstances it is not sufficient

to perform scheduling only when the scan commences. In these cases, the

scheduling is performed at scan boundaries as well as during the time the

multistatic measurement is being made. The Nimble IA Scheduler solves

Equation 4 for each target before building the list of ambiguous targets. In
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Algorithm 7 NimbleIAScheduler (x̂ : target state estimate vector for all

targets, t0 : current time)

for all targets f where θf (t0) � θr(t0) do

for all radars r do

δf,r = θf (t0)− θr(t0)

end for

find radar r with maximum |δf,r|

solve Equation 4 for t using r

x̄f = At
f · x̂f (t0)

compute P̄f (t) using Equation 5

add target f and priority P̄f (t) to priority queue Q

add target f to Ar bins as per δf,r

end for

N = IASchedulerInit(A)

S = IASchedulerRun(N,A, Q)

send target Sf with minimum |δf,r| to radar schedulers

32



doing so, it assumes that the target will be visited by moving the radar with

the largest azimuth delta at the fastest positioner rate. Furthermore, the

assumption is made that no other target will be visited. The target priority

is also updated using Equation 5.

The selection of targets for multistatic measurement is then performed as

per all the other IA scheduling algorithms, except that the target priority is

the area of the 2σ ellipse defined by the predicted tracking covariance. There-

after, the low-level scheduler is tasked with ensuring that the positioners of

the two radars are moved so that the beams of the radars intercept on the

target. The low-level scheduler also solves Equation 4 but instead of assum-

ing no other targets are visited, it must compute the times as determined for

the entire sequence of targets. When reaching interception points, targets

that can no longer be measured in the multistatic mode are not considered

by the nimble scheduler.

Each time the scheduler is invoked at the boundaries of the scan or at

target intercepts, an IA network must be built from the remaining targets

that can be visited. As the target relationships change during the time it

takes the radar beams to reach an interception point, the IA network from

previous iterations must be discarded as it contains invalid information. In

the current form IA can only further constrain relationships; however, future

work could address this by allowing IA also to permit more ambiguity in

relationships. Nevertheless, generating the IA network for subsequent rounds

gradually requires less computation so that total processing time increases

logarithmically. The pseudo code for the Nimble IA Scheduler is presented

as Algorithm 7.
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4. Results

4.1. Simulation set-up

For each of the comparison simulations1 performed a 40×40 km area was

selected, while a 10 × 10 km area was selected for the nimble simulations2

to reduce simulation times. One radar is situated at coordinate (0, 0) km or

the bottom left corner of the area. The other radar is situated at the top

left corner of the area (coordinate (0, 40) km or (0, 10) km). Both radars are

assumed to have a maximum detection range greater than 57 km. The max-

imum slew rate of the positioners of the radar was selected to be Π/2 radians

per second, or a 90◦ rotation every second. The radars always scan over the

area in opposing directions; therefore, if one radar is scanning clockwise the

other will scan anti-clockwise.

A number of targets are then generated with random starting points and

random motion profiles. The relative positions of the targets in relation to

the two radars represent a target geometry. During the scan, the radars are

not allowed to change scan direction until they have reached the boundaries

of the surveyed area. With these constraints and any given target geometry,

a different upper limit of multistatic measurements can be generated. The

target geometry will change slowly as the targets move during the simulation.

Target motion for the nimble simulations is modelled according to the Singer

random-walk acceleration model [13].

Three Monte-Carlo simulation batches were performed to analyse the

performance of IA scheduling. The first two batches compared IA to GRASP,

1https://code.google.com/p/multiple-radar-fusion-simulation-simple/
2https://code.google.com/p/multiple-radar-fusion-simulation-realistic/
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where one batch varied the number of targets and the other varied the radar

beam width. For these batches the simulation time, for each random run, was

kept low at 1 000 seconds, which is not necessarily equivalent to execution

time. The final batch of simulations determined the nimbleness of the IA

scheduler when used in highly dynamic scenarios. Simulation time had to be

limited to 60 seconds due to the computational complexity of the nimble IA

scheduling simulation runs.

In all cases, the simulation time is realistic when considering the radar

positioner slew rates and target motion, but the simulation does not take

into account the processing time of the algorithms. During a simulation

run, the target geometries vary slowly due to the target movements. The

initial target geometry is generated randomly and varies greatly between

two different random seeds. Therefore, using more simulation runs tests a

greater diversity of the target geometries than using fewer simulations that

run for a longer simulation time.

The random seed was reinitialised every time the MSMSRN scheduling

algorithm changed. This was done for all the batches of simulations to ensure

that the different scheduling algorithms operated under exactly the same

conditions. A global counter was used as the random seed and was only

incremented after testing all scheduling algorithms. A 100 different global

counter values were used for each batch of simulations. The random seed

determines the initial placement and paths of the targets, as well as the

priority change of each target within the priority queue when used.
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Table 3: Results comparing IA to GRASP by varying the number of targets in the scenario.

Mean (µ) and standard error (ε), in factors of 10−2, of scan duration (S), targets measured

(M) and total execution time (E) as the number of targets is varied for IA (I) and GRASP

(G). This table captures the results of 800 Monte-Carlo simulation runs, where the number

of targets in the scenario were varied between 10, 20, 40 and 80 targets. The beam width

of the radars was kept at a constant value of 1◦. The G-MS algorithm is abbreviated to

G while the IRP-MS algorithm is abbreviated to I.

Targets

10 20 40 80

µ ε µ ε µ ε µ ε

SG 5.9 3 6.0 2 6.1 2 6.2 1

SI 5.9 3 6.0 2 6.1 1 6.2 1

MG 3.7 7 5.5 7 8.3 7 13 8

MI 3.7 7 5.5 7 8.3 7 13 8

EG 5.2 4 18 8 66 20 260 60

EI 4.9 3 16 7 60 20 240 60
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Table 4: Results comparing IA to GRASP by varying the radar beam width of both radars

simultaneously. Mean (µ) and standard error (ε), in factors of 10−2, of scan duration (S),

targets measured (M) and total execution time (E) as the beam width is varied for IA (I)

and GRASP (G). This table gives the results of 1 200 Monte-Carlo simulation runs, where

the beam width of the radars was varied between 10−6◦
, 1◦, 2◦, 4◦ and 8◦. The number

of targets was kept at a constant value of 20 targets. The G-MS algorithm is abbreviated

to G while the IRP-MS algorithm is abbreviated to I.

Beam width ◦

µ
ε

10−6 0.5 1 2 4 8

SG 6.0 6.0 6.0 6.1 6.2 6.5 1.8

SI 6.0 6.0 6.0 6.1 6.2 6.5 1.8

MG 5.3 5.4 5.6 5.8 6.4 7.3 7.6

MI 5.3 5.4 5.6 5.8 6.4 7.3 7.7

EG 18 17 18 17 17 16 8.1

EI 16 16 16 16 16 15 7.0

4.2. IA comparison to GRASP

4.2.1. Varying the number of targets

Refer to Table 3 for the results of the simulation batch that compared IA

to GRASP when varying the number of targets.

4.2.2. Varying the beam width of the radars

Refer to Table 4 for the results of the simulation batch that compared IA

to GRASP when varying the beam width of the radars.
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Figure 3: Effect of target initial velocity and acceleration on number of measurements made

using IA scheduling. Average number of multistatic measurements made for 900 nimble

IA scheduling Monte-Carlo simulation runs. Three different simulation scenarios were

employed to investigate the effect of highly dynamic targets. For each, the acceleration

variance σa of the Singer random-walk motion model and initial target velocity, a Gaussian

random value with mean µv, were set as follows: σa = 2 m · s−2 and µv = 25 m · s−1,

σa = 2 m·s−2 and µv = 50 m·s−1 or σa = 20 m·s−2 and µv = 25 m·s−1. Three MSMSRN

scheduling modes were tested: naive, once per scan using the current target geometry, thus

ignoring highly dynamic targets; intercept, once per scan simply predicting the location of

the target using the fastest beam intercept time; or nimble, at each intercept point where

all target locations are predicted using the fastest beam intercept time as per Section 3.6.
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Figure 4: Effect of target initial velocity and acceleration on number of measurements

missed using IA scheduling. Average number of multistatic measurements missed for

900 nimble IA scheduling Monte-Carlo simulation runs. Three different simulation sce-

narios were employed to investigate the effect of highly dynamic targets. For each, the

acceleration variance σa of the Singer random-walk motion model and initial target ve-

locity, a Gaussian random value with mean µv, were set as follows: σa = 2 m · s−2 and

µv = 25 m · s−1, σa = 2 m · s−2 and µv = 50 m · s−1 or σa = 20 m · s−2 and µv = 25 m · s−1.

Three MSMSRN scheduling modes were tested: naive, once per scan using the current

target geometry, thus ignoring highly dynamic targets; intercept, once per scan simply

predicting the location of the target using the fastest beam intercept time; or nimble,

at each intercept point where all target locations are predicted using the fastest beam

intercept time as per Section 3.6.
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4.3. Nimble scheduling with IA

Refer to Figures 3 and 4 for the results of the nimble scheduling simulation

batch.

5. Discussion

5.1. IA comparison to GRASP

Running Monte-Carlo simulations comparing the IRP-MS algorithm to

the G-MS algorithm revealed that the two algorithms not only compute in

a similar amount of time but also perform equally in terms of multistatic

measurements made. In the case of the IRP-MS algorithm, the RP-MS

algorithm would be run once per target in the scene. Thus, in these respects

the RP-MS algorithm is equivalent to the GRASP construction algorithm

used by the G-MS algorithm.

However, IA can cater for a richer set of temporal constraints without

modifying the underlying algorithm. The GRASP construction algorithm

would need to be redesigned to handle the new set of constraints and the

modifications would become increasingly complicated matching the complex-

ity of the constraints. IA would be able to handle the new constraints without

modification, as long as these constraints can be expressed using the temporal

relationships defined by Allen [46].

5.1.1. Effect of increasing the number of targets

As the targets in the scene were increased, both the IRP-MS algorithm

and the G-MS algorithm could make more multistatic measurements per

scan. However, the increased number of multistatic measurements came
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Table 5: Scheduling performance versus number of targets

Targets Mean multistatic Percentage %

measurements

10 3.7148 37.148

20 5.5500 27.750

40 8.3025 20.756

80 12.519 15.649

Table 6: Scheduling processing time versus number of targets

Targets Processing time (s) Time per target (s)

10 5.0505 0.5051

20 16.919 0.8460

40 63.406 1.5852

80 251.92 3.1490

at the expense of more computations. Table 5 shows that the number of

multistatic measurements made decreases as a percentage of the number of

targets present in the scene. Furthermore, processing time required per target

in the scenario also increases as per Table 6.

The reason for these trends is due to the fact that as the number of targets

increases linearly, the number of different choices of sequences of targets that

can be measured multistatically increases much quicker. The positions of the

targets relative to the two radars determines a unique geometry. The number

of unique geometries of targets that can be generated was the key factor and

the longer sequences became less likely when increasing the number of targets.
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Thus, on average, the total length of each of the sequences of targets that

solved the scheduling problem increased slowly. The statistical distribution of

the geometry of the targets within the area under surveillance affected both

of these factors. Each of the simulation runs within a batch of simulations,

using the same scheduling algorithm, tested a different geometry.

5.1.2. Effect of increasing the radar beam width

When the radar beam width increased this did not cause much change in

the required computation for either algorithm. This was due to the fact that

the computation time for both algorithms is not dominated by the number

of ambiguities in the radar target sequences. Both algorithms efficiently

handled the ambiguities present in the azimuth ordering of targets.

G-MS employed a very simple construction algorithm, which was also

used to generate mutated solutions. The mutated solutions were generated

during the local search from the first solution constructed. In both these

algorithms, a single target was added at a time and simple checks ensured

that the target was only added if the sequence remained consistent. Thus,

this simple searching nature keeps the computational requirements low.

Reduced PA has some of the benefits of normal IA, but with fewer process-

ing requirements. This is because the IA relationship matrix was collapsed

from a matrix to a single row (or column) vector of interval sets. Ambiguities

in the list of targets from either radar changed the input relationships whose

intersection generated the IA relationships contained in the vector. The same

computation was performed regardless of the content of the relationships for

Reduced PA. Thus, more ambiguities did not require more processing time.

The slight decrease in processing time required can be attributed to the
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fact that as the number of ambiguities increased, the average length of the

solutions generated also increased. This means that, on average, more targets

can be added to the list of simultaneous measurements, and thus, on average,

fewer mutated solutions need to be generated in the search phase of GRASP.

5.1.3. Effect of increasing the number of radars

No simulations were performed to test the effect of increasing the number

of radars; however, it is easy to extrapolate what will occur from the results

given and the workings of these algorithms.

G-MS will require a redesigned construction and mutation algorithm to

handle the dimension increase in the number of radars used. This will lead

to more complicated checks that need to be performed and will lead to a

more complicated solution. The processing time for the G-MS algorithm

should increase linearly, as is the case when the number of targets increases.

This will be true as long as a sufficiently simple construction and mutation

algorithm can be generated for GRASP.

Reduced PA and any other form of IA will easily handle the addition of

multiple radars. In the case of Reduced PA, this only requires intersecting

more relationships for the multistatic target measurement intervals. Adding

more sensors should also cause computation time of the IRP-MS algorithm

to increase linearly. The IRP-MS makes use of a vector of interval sets to

store the relationships between intervals, and the size of this vector bounds

the computation. Each time a radar is added, one more intersect per target

addition will be required, thus the processing time should double. Thus, a

linear increase in computation is expected for the IRP-MS algorithm as well.
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5.1.4. IA network compression using Reduced PA

The two novel contributions were key to allowing the IRP-MS algorithm

to perform as well as the G-MS algorithm. Without these modifications

IA algorithms required more processing than GRASP for the same sized

MSMSRN scheduling problems. It is important to note, however, that these

modifications could be used in any IA algorithm. Thus they are not exclusive

to the MSMSRN scheduling problem.

The technique of growing the IA matrix was similar to the work of

Van Beek and Manchak [45] as the performance improvement results from

the order that intervals are added. Unlike the previous work, however, the

key was that intervals should only be added to the IA network when they

are necessary to generate a solution. Adding the interval prior to this time

leads to wasted computations, which, even though they are initially small,

adds up over multiple iterations of the IA path consistency algorithm.

Reduced PA became evident after considering the work of Van Beek and

Manchak [45]. It also builds on the initial work of Allen [46], in which he

noted that a set of intervals could be summarised using a surrogate interval.

However, details of when using a surrogate interval would be beneficial were

not clear. In the Reduced PA algorithm, it is clear that surrogate intervals

could be used to represent a set of IA intervals that have simple relationships.

When the IA relationships amongst a set of IA intervals were purely of

an ordering nature (containing ‘before’, ‘after’, ‘meets’ and ‘met’) then the

Reduced PA form would be applicable. For more complex IA relationships,

especially those that consider various types of overlapping intervals, the Re-

duced PA format is insufficient and the matrix format must be used.
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The relationships of the set of intervals with simple constraints can then

be captured in the more computationally efficient Reduced PA format. Alter-

natively, a surrogate interval could be used in the Reduced PA relationship

vector to represent portions of the network that could only be represented

using an IA relationship matrix. Which of these two approaches will work

best depends on the IA network, and thus both techniques may be usable to

solve future problems more efficiently. Similarly, a surrogate PA network can

also be used to reduce the size and computations of a large IA network and

vice versa. This holds true for any two constraint programming languages

where parts of a network only require the simpler constraint language.

5.2. Nimble IA scheduling

None of the nimble scheduling results obtained are statistically significant

due to the large variance of the two tested parameters: multistatic measure-

ments made and missed. On average, however, the nimble scheduling strategy

is able to make the most multistatic measurements, approximately ten more

than non-predictive scheduling strategy for all simulation modes. This is due

to the fact that the nimble scheduler is acting based on an updated recognised

surveillance picture and not on a single sample of the target geometry.

Unfortunately, it also requires much more processing than either of the

other strategies, as at each interception point all target locations are pre-

dicted for targets that can still be visited. The updated recognised surveil-

lance picture is then fed to the nimble scheduling algorithm to recompute.

Thus it appears that this simple intercept prediction strategy offers the best

alternative. It performs as well as the naive/non-predictive scheduling strat-

egy for both slow-moving targets and those with high accelerations, but per-
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forms better for fast-moving targets.

In terms of missed multistatic measurements, both of the predictive schedul-

ing strategies provided a small improvement. However, once again, the results

are neither statistically significant nor give a large improvement, and thus

do not warrant the extra processing.

5.3. Multisensor manager architecture

For this research a hybrid architecture was employed, where the mul-

tisensor manager is centralised and the radar managers are decentralised.

However, there are three ways that this architecture could be decentralised.

One approach would be to simply replicate the fusion centre and multi-

sensor manager at each radar. In this scheme, each radar would supply the

tracks that occur in a region of overlap to other radars. The tracks would

be associated, fused and a scheduling decision would be made. Each radar

potentially arrives at a different locally optimal solution. Then to reach

consensus, the radars share their chosen schedule with each other. The final

choice of targets to schedule is the sequence that maximises Equation 1. This

approach is equivalent to running iterations of GRASP in parallel using IA

as the construction algorithm.

Another approach would be to divide up the sensed area into zones. Again

the information fusion system and multisensor manager are replicated at each

radar. However, the radars now only share tracks with other radars managing

the zone in which the track lies. A radar with a decentralised multisensor

manager then solves the IA constraints for their zones. Each partial solution

is then fed to the other radars collaborating in the multistatic network. The

final choice of targets to schedule is the concatenation of each partial solution
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in the correct sequence. This approach is only practical when the search

volume can be divided up into zones that each radar scans in exactly the

same sequence.

Finally, it is also possible to solve the scheduling with a decentralised

CSP (DCSP) [40]. As per the previous approach, the sensed area would

still be divided up into zones. Each radar would be responsible for a zone

and would need to receive tracks from the other radars that fall in the zone.

Each radar then associates and fuses tracks for the zone it controls. These

are then entered into the DCSP, where the radars collaborate to solve the

CSP as per our usage of IA in this research. For this approach the choice

of zones becomes completely arbitrary as a solution will be found taking all

constraints into account.

5.4. Information gain

It is important for a multisensor manager to improve the measures of

effectiveness of an information fusion system [47]. Performing multistatic

measurements for radars achieves this in three ways, and the Nimble IA

Scheduler offers the best improvement.

Firstly, the amount of information flowing into the fusion system is in-

creased. This is a direct consequence of the radars being able to make both

bistatic and monostatic measurements. Thus it is desirable to increase the

number of multistatic measurements that can be made and reduce the ones

that are missed. This is indeed the case for the Nimble IA Scheduler and

also the simple prediction scheduling. It is important to note that given our

comparison to GRASP, similar results can be expected for GRASP.
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Secondly, the quality of tracks formed for targets gaining multistatic mea-

surement should improve due to the increased information gain from the

multistatic measurements. Even when a multistatic measurement cannot

be made due to partial occlusion, the target will still be measured. More

accurate tracks should provide better information to all processes.

Finally, robustness of the information fusion system is improved. It is

far less likely that when a target is occluded for one radar that it will be

occluded for all radars. Therefore it is more likely that the target will be

measured regardless.

6. Conclusions

In this paper, Interval Algebra (IA) was compared to the Greedy Ran-

domised Adaptive Search Procedure (GRASP) for scheduling mechanically

steered multistatic surveillance radar networks (MSMSRNs). This was done

to show that IA is not computationally cumbersome and can provide equiv-

alent performance to that of GRASP. Furthermore, a realistic tracking en-

vironment was employed to show how IA could be used to perform nim-

ble scheduling. In the latter environment, three different scheduling modes

were tested: naive or no prediction, simple intercept prediction and nimble

scheduling.

Three Monte-Carlo simulations for a binary radar system were run to

produce results, where targets are randomly placed and move along random

trajectories. The first two simulation runs were used to vary the number of

targets and the radar beam width in order to compare IA to GRASP. The

final simulation runs compared the three scheduling modes used along with
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IA against slow, fast and rapidly accelerating targets.

While IA scheduling performed as well as GRASP in the binary radar

simulations, indications are that it would be easier to adapt this scheduling

algorithm to cater for more radars. IA is also more amenable to coping with

a richer set of temporal constraints that may be imposed. Since GRASP is

based on simpler heuristics, its implementation is more adversely affected by

changes in imposed constraints than IA.

IA guarantees that a maximum length solution will be found for the target

selections that are made as it performs locally optimal examinations. Instead,

conventional optimisation algorithms carry out global searches. Thus, com-

binations of IA with conventional optimisation algorithms such as GRASP

should lead to even more effective scheduling algorithms.

While the processing time required is within the real time available for

both algorithms, adding many more iterations or more targets would make

this difficult to sustain. Thus, while performing a global search is desirable,

it would not always be possible. Employing parallel processing architec-

tures such as field programmable gate arrays, multicore central and general-

purpose graphical processing units could make the use of a global search

technique practically feasible.

In most cases, the IA scheduling algorithm already provides good per-

formance and only a small incremental improvement is possible by utilising

a conventional optimisation algorithm alongside IA. Thus, the performance

given by the IA algorithm may be sufficient and it then provides a compu-

tationally effective solution to a radar network scheduling problem. The IA

algorithm can be used as implemented in Matlab R© for around 10 targets
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without requiring parallel processing.

IA path consistency can be run for 16 384 targets in about 0.5 s of exe-

cution time using C3. Future work could consider how parallel architectures

can be leveraged to reduce the computation time required by IA. Doing so

together with running the separate GRASP iterations in parallel may make

it possible to produce better results within realistic scan durations.

Given the present results it would appear that nimble scheduling is not

a major problem for a surveillance radar network that is tracking realistic

targets that are neither ballistic nor supersonic. However, the simple in-

tercept prediction strategy does provide a minor improvement and may be

worth considering if there is spare processing capacity in the system. Never-

theless, both multistatic measurements and nimble scheduling improves the

information gain of an information fusion system.

In the case of scheduling a multifunction radar, nimbleness is significantly

more important as the platform housing the radar is usually moving quickly

and it is likely that ballistic and supersonic targets may be encountered.

Thus, the Nimble IA Scheduler could be adapted for use in multifunction

radar networks and this would be an interesting topic to pursue in the future.

IA can also be used in decentralised multisensor management solutions

and does not impose a specific architecture to the multisensor manager. Fur-

thermore, IA is not only useful in scheduling sensors but can be used to

ensure that constraints are satisfied in other information fusion functions.

3These are preliminary results from our C environment run on an Intel R© CoreTM

i7-2670QM CPU at 2.2 GHz.
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Figure A.1: Temporal ordering of intervals in IA

Appendix A. IA Theory

Appendix A.1. Allen’s IA with improvements

The details of IA presented here is a rework of a conference paper [39],

which was presented by the authors to the sensor management community,

along with some new material that covers further interesting aspects.

IA is a method of reasoning about the temporal ordering of intervals in a

consistent manner [46]. Tasks can be represented by intervals in IA and, in

the case of the MSMSRN scheduling dealt with here, they either represent

target measurement for a single radar or a multistatic measurement for the

group of radars. The relationships capture the temporal ordering of intervals

between an arbitrary start and end point in time. Here, the relationships

are the temporal ordering constraints that the MSMSRN scheduler must

satisfy when scheduling tasks, and these arise due to physical constraints on

positioner movement and target geometries.

Intervals are related to each other using relationships that can contain
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any set of the 13 temporal operators: ‘before’ (b), ‘after’ (bi), ‘meets’ (m),

‘met by’ (mi), ‘overlaps’ (o), ‘overlapped by’ (oi), ‘finishes’ (f), ‘finished by’

(fi), ‘starts’ (s), ‘started by’ (si), ‘during’ (d), ‘contains’ (di) and ‘equals’ (e).

Figure A.1 depicts what each of the temporal operators means in isolation

when referenced to a common reference interval. The suffix ‘i’ is used to

associate two operators as inverse pairs, where the inverse operator imposes

exactly the opposite temporal ordering. Logically, the ‘equals’ operator is

the inverse of itself.

When no information is known about the temporal ordering between two

intervals, then the relationship is the set {all} that contains all 13 temporal

operators. The null set, ∅, denotes an inconsistency, as all intervals must

have some temporal ordering in relation to each other. Any other combina-

tion of operators, within a relationship, captures some degree of certainty in

the ordering of intervals. Relationships also always have an inverse relation-

ship, which can be found by placing into the inverse relationship the inverse

of each operator present in the relationship to invert. The inverse operation

is called ‘Inverse (·)’ in the pseudo code. When considering the relationship

between two intervals, there are always two reciprocal relationships that ex-

ist. Each relationship uses one of the intervals as a reference, and thus the

inverse relationship denotes the relationship using the alternate interval as

the reference interval.

A specific scenario is then captured in an IA network, which consists of

a set of intervals and all the relationships between each interval pair. The

relationships of an IA network are stored in a matrix N , where each cell

N r,c contains a relationship between an interval defined by the row r and an
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interval defined by the column c. The row or column number in the matrix

matches the index of the interval when they are stored in a vector.

Cells in the upper and lower triangle of the relationship matrix, where

the column and row numbers are swapped, are always the set inverse of

each other. The reason for this is that these two relationships represent

the relationship between the same intervals from the two possible reference

points. Relationships on the diagonal of the matrix must always contain

only the ‘equals’ operator (the ‘equals’ relationship), as they determine the

temporal ordering of an interval referenced to itself. For our research, each

scan for the radars is planned by the MSMSRN scheduler using a single IA

network, or in the case of the nimble scheduler one network per intercept.

Algorithm 8 CP (RA→B, RB→C)

RA→C = ∅

for all n ∈ RA→B do

for all m ∈ RB→C do

RA→C = RA→C ∪ T n,m

if RA→C = {all} then

return {all}

end if

end for

end for

return RA→C

Constraint propagation, or set composition for relationships, is captured

as Algorithm 8, which is the algorithm in IA that keeps the relationships

amongst any three intervals temporally consistent. Consider three intervals
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‘A’, ‘B’ and ‘C’, where knowledge about the relationship between ‘A’ and ‘B’

(RA→B) as well as ‘B’ and ‘C’ (RB→C) is known. Constraint propagation can

then determine the possible operators in the relationship between ‘A’ and

‘C’ (RA→C), which is consistent with the two known relationships. This is

done by pairing one operator, n, from RA→B with another, m, from RB→C

and then determining the operators permissible in RA→C . The permissible

operators for each combination of basic operators are stored as a transitivity

matrix T . The details for the contents of the transitivity matrix can be

found in Allen’s paper on IA [46], but these can also easily be determined by

considering each case in isolation. The transitivity matrix has 13 columns

and rows, where the row and column number matches one of the 13 operators,

and the contents are the permissible operators for the unknown relationship.

Path consistency is presented as Algorithm 9, where set L contains each

of the cells that have been updated. When possible, by using constraint

propagation, this algorithm allows an interval to be added to an IA network

such that all relationships remain consistent. Furthermore, path consistency

can be used to alter a relationship in the IA network so as to determine the

constraints this will place on the rest of the relationships. In both cases, the

temporal ordering constraints can result in an inconsistent network or they

will be maintained so as to be consistent with each other. However, even

when consistent, it is not guaranteed that the network as a whole will yield

a consistent scenario through a single use of path consistency. Total path

consistency can only be maintained through iterative use of path consistency,

where each relationship in the network, in turn, is treated as though it were

updated (populating L with all cells).
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Algorithm 9 PC (N , [r, c], R)

N r,c = N r,c ∩ R

N c,r = Inverse(N r,c)

add [r, c] to set L

while L 6= ∅ do

select and delete first [r, c] from L

for all cells [k, l] in same row or column as [r, c] do

if l = c then

if not Skip (N k,r,N r,c) then

R = N k,l ∩ CP (N k,r,N r,c)

end if

else

if not Skip (N r,c,N c,l) then

R = N k,l ∩ CP (N r,c,N c,l)

end if

end if

if R = ∅ then

return false

end if

if R 6= N k,l then

N k,l = R

N l,k = Inverse (R)

add [k, l] to L

end if

end for

end while

return true 55



Initially, when adding the interval, the relationship between the newly

added interval and every other interval already in the network is {all}. Next,

one relationship between the newly added interval and an existing interval is

updated with a known set of operators. Updates must always be done by tak-

ing the set intersection of the existing relationship and the requested update,

as the IA algorithms only constrain relationships. Then every relationship in

the same row and column as the updated relationship is further constrained

by using constraint propagation. In this case, the relationship for the cell

under test is treated as the unknown relationship and the two other relation-

ships include the updated relationship and the relationship that completes

the CP triangle. This process is repeated for each subsequent update that

may occur during any iteration of path consistency.

Algorithm 10 Skip ( R1, R2 )

if (b ∈ R1 and bi ∈ R2)

or (bi ∈ R1 and b ∈ R2)

or (d ∈ R1 and di ∈ R2) then

return true

else

return false

end if

Some improvements to the IA algorithms as given by Allen are now listed.

Algorithm 10 is used by path consistency to skip computations that will yield

{all} [45]. Algorithm 8 includes an improvement that stops computation if

the resultant set becomes {all} [45]. Furthermore, Algorithm 9 can return

the consistency of the algorithm whenever a set becomes ∅ [45, 48].
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Appendix A.2. Hogge’s constraint propagation

Each time constraint propagation algorithm is invoked, it computes the

set composition that results for the two input relationships. It is also pos-

sible to pre-compute all combinations of the set composition by executing

Allen’s constraint propagation using all possible inputs. The result would

be a square lookup matrix where each dimension is 213 long. Each cell of

this matrix contains the set composition of the relationship matching the

row versus the relationship matching the column. This would, however,

require storing the result of 67 108 864 compositions (128 MiB for 16-bit

relationships). However, doing so would also regain most of the constraint

propagation processing time, as only one memory lookup would be required.

Hogge devised a compromise between the ideal case above and Allen’s con-

straint propagation [49]4. The approach splits relationships into two lookup

parameters. Seven IA operators are chosen to form the first lookup value and

will be referred to as the lower operators. The remaining six IA operators

yield the second lookup value and will be referred to as the upper operators.

Ideally, the choice of IA operators should match their packing in a 13-bit

field such that minimal encoding and decoding is required to generate these

values (preferably no encoding or decoding).

Using this definition, four inputs are derived from the two known rela-

tionships and are then used to look up a value in four different matrices.

1. Matrix one is a 128 × 128 matrix, which is populated with the results

of set composition of all combinations of relationships that contain only

4It is difficult to obtain this manuscript hence the full treatment of the technique here.
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the lower operators.

2. Matrix two is a 128 × 64 matrix, which is populated with the results of

set composition of all combinations of relationships that contain only

the lower operators along with all combinations of relationships that

contain only the upper operators.

3. Matrix three is a 64 × 128 matrix, which is populated with the results

of set composition of all combinations of relationships that contain only

the upper operators along with all combinations of relationships that

contain only the lower operators.

4. Finally, matrix four is a 64 × 64 matrix, which is populated with the

results of set composition of all combinations of relationships that con-

tain only the upper operators.

The four retrieved relationships are then combined using a set union to give

the final relationship.

This method requires four times the computation as per the ideal case

(simple logical conjunction, ∧, operations) but only requires storing 36 864

compositions (72 KiB for 16-bit relationships). Although memory require-

ments are becoming less important, the Hogge method is a good compromise

between storing all set compositions and computing them every time.

Appendix A.3. Constraint ordering

Constraint ordering is a technique where the intervals are added in an

order that is determined by the weight of each of the relationships associated

with that interval to others [45]. Thus, each relationship that must be applied

to the IA network is first scored based on the impact that it may have on

the IA network.
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As the relationship is composed of up to 13 IA operators, each IA operator

can potentially be given a different score. The final score of the relationship

is the combination, usually the sum, of each of the scores of the IA operators

that are present in the relationship.

For example, in the weighted scoring method [45], the score is determined

by the extent to which each IA operator will restrict the allowable operators

in the rest of the IA network. The IA operator that has the most weight in

this case is the IA ‘equals’ operator.

Constraint ordering is used to reduce the amount of computation required

for the IA path consistency algorithm. If the intervals whose relationships

have the most impact on the network are added first the computation re-

quired will be less than if they were added last. This is because relationships

with a higher score will result in multiple updates on each iteration of the

IA path consistency algorithm. Thus more iterations of IA path consistency

are required before the network stabilises.

The number of relationships that need to be updated per iteration of IA

path consistency is potentially twice that of the number of intervals present

in the IA network. Thus it is better to execute updates requiring multiple

iterations of the IA path consistency algorithm while the IA network is still

small.

Appendix A.4. Fuzzy and Bayesian IA

As mentioned in the authors’ conference paper [39], there are also two ex-

tensions to IA that increase the amount of information that can be captured

in the IA network. The first uses fuzzy-logic constructs on the relationships

and sometimes on durations of intervals, and the other uses probabilistic
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extensions to the relationships only.

Fuzzy IA has been examined by various authors and seems to be the most

promising extension of IA to employ [50–53]. An advantage of fuzzy IA is that

it can easily capture ordinary IA networks within the proposed framework.

In Allen’s IA, each operator is either fully present within the relationship or

absent. However, for fuzzy IA the degree of membership is allowed to vary,

as a real number, over the interval [0, 1]. The degrees of membership for all

of the operators in a relationship can therefore capture the certainty with

which it may be the true relationship, and this allows fuzzy IA to capture

more information than Allen’s IA. Fuzzy mixing is required to update the

degrees of membership during constraint propagation, path consistency and

total consistency checking.

Some authors also make the duration of the intervals fuzzy [50, 52], which

can be useful when the interval durations are not precisely known. The

duration is captured as a trapezoid in fuzzy IA where the ramp up and ramp

down are again the degree to which each point in time forms part of the

interval. This extension is useful in most practical applications, as tasks

generally only have a desired length, which can usually increase or decrease

given the current load a system performing those tasks is experiencing.

Bayesian IA has also been proposed, where a probability is assigned to

each of the operators in a relationship [54, 55]. In this case, the probability of

all operators in the set must add up to one, which is a much more difficult con-

straint to maintain. Capturing ordinary IA networks in this framework would

require keeping the probabilities equal for operators present in the relation-

ship. Bayesian IA also requires much more complex consistency algorithms,
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as during all updates the probabilities must add up to one. Furthermore,

updates to the relationships would require using Bayesian mathematics to

ensure that the probabilities are maintained consistently, which is more com-

putationally expensive than fuzzy-logic mixing. Much of the finer details of

Bayesian IA have not been published yet.

A good example of where fuzzy or Bayesian IA could be employed, is for

the case where targets are not exactly in the middle of the beam of the radars.

In this case, there is a degree of uncertainty both in the ordering of the tasks

for the radars as well as their duration. The ordering uncertainty occurs

when multiple targets are closer in the azimuth angle than the azimuth angle

resolution of the radar measurements. Allen’s IA is able to handle this case

through the inclusion of multiple operators, but fuzzy IA could be used to

determine the true ordering by tracking the change in degree of membership

over time. Such a technique will be considered in future work. Finally, the

uncertain duration occurs because the actual time the beams of two or more

radars would simultaneously measure the targets cannot be determined, as

the radars cannot measure azimuth angle to infinite accuracy.

Appendix B. GRASP Theory

GRASP is a meta-heuristic search procedure that is comprised of three

main steps, as per Algorithm 11:

1. Generate a reduced candidate list (RCL) that will be used to generate

solutions. In the case of the G-MS algorithm the RCL is the priority

queue of targets, and is the Q input to the algorithm. The priority

queue is explained in Section 2.
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Algorithm 11 GraspSchedule (Q : target priority queue, A : target order

for all radars, k : iteration)

create best solution b = ∅

for i = 1→ k do

create candidate solution c = ∅

c = GraspConstruction (Q,A, c)

c = GraspLocalSearch (Q,A, c)

b = GraspUpdateSolution (Q, c, b)

end for

for all radars r do

GraspCheckSolution (b,Ar)

end for

return b

2. Next, construct an initial solution from the RCL that adheres to the

solution space. Each radar supplies the azimuth angle ordering of tar-

gets as L1 and L2. The azimuth angle orderings can be seen as a set

of vectors, where each vector contains an ambiguous cluster of targets

and the sequence of vectors denotes the true ordering of the clusters in

relation to each other. The construction algorithm used by the G-MS

algorithm is presented as Algorithm 12, making use of Algorithms 13

and 14.

3. Search the solution space by performing a local search around the can-

didate solution from the previous step. The local search algorithm is

defined as Algorithm 15, making use of Algorithms 13, 14, 12 and 16.

When compared to genetic algorithms, the local search of GRASP can
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be likened to the mutation operation used for genetic algorithms.

The last two steps are repeated iteratively and the number of iterations

to perform, k, is a parameter that can be tuned for the GRASP algorithm.

At the end of the last step, during each iteration, the best solution found

during the local search is then compared to a stored best solution. If the

current solution is better than the stored best solution, the current solution

becomes the stored solution.

When the GRASP algorithm completes, the best solution found after all

iterations will be returned as the sequence of targets to measure using the

multistatic mode of the radars. The low-level scheduler will then ensure that

the radars will make simultaneous measurements of the targets contained in

this list by speeding up or slowing down either of the radar positioners.

Algorithm 12 constructs an initial solution that will be used as the start-

ing point during the GRASP local search algorithm. The algorithm receives

the priority queue of targets (Q), the azimuth angle ordering of targets (A)

for all radars and a list of already scheduled targets (s). During the execu-

tion the algorithm will attempt to add targets randomly selected from the

priority queue to the list of scheduled targets using Algorithm 13. If the

azimuth angle ordering of neither radar is violated the target will be added,

which is checked in Algorithm 14. The final updated list of scheduled targets

is returned to the calling algorithm and this parameter can be seen as an

input and output parameter.

Algorithm 13 generates a list of possible solutions of how a target (t)

could be added to a list of scheduled targets (s) adhering to the azimuth

ordering (A) specified by a radar low-level scheduler. The algorithm first
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Algorithm 12 GraspConstruction (Q : target priority queue, A : target

order for all radars, s : scheduling vector)

for all t ∈ Q select randomly according to priority do

if t /∈ s then

for all radars r do

Nr = GraspAddToSolution (t, s, Ar)

end for

if GraspFindMatchingSolutions (N , m) then

s = m

end if

end if

end for

return s

finds the location of the target in the azimuth ordering of the radar, and it

will determine the scan sector (r) and the element number (c) in the scan

vector. Only the scan sector ordering must be adhered to as targets within a

scan sector will be illuminated simultaneously by the radar beam regardless

of the scheduling sequences. Then the algorithm iterates through the list

of scheduled targets determining the first insert point and last insert point

that will adhere to the scan sector ordering. The first insert point will be

just before the first target that is in the same sector or a subsequent sector.

The last insert point will be just after the last target that is in the same

sector. Using these two insert points a number of solutions are generated.

The number of solutions generated will depend on the difference between the

two insert points plus one.
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Algorithm 13 GraspAddToSolution (t : target number, s : scheduled tar-

gets vector, A : target order for a radar)

find row and column [r, c] of t ∈ A

f = 0

l = 0

sort s in target order A for radar

for all k ∈ s in sequence do

find row and column [i, j] of k ∈ A

if i < r then

f = index of k in s

l = index of k in s

end if

if i = r then

l = index of k in s

end if

end for

R = ∅

for k = f → l do

v = [s1→k, t, sk+1→length(s)]

R = {R,v}

end for

return R
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Algorithm 14 GraspFindMatchingSolutions (S : set of integer vectors per

radars, m : scheduled target vector)

for all s1 ∈ S1 do

create match flag f = true

for all radars r 6= 1 do

for all sr ∈ Sr do

if length (s1) = length (sr) then

for i = 1→ length (s1) do

if s1,i 6= sr,i then

f = false

end if

end for

else

f = false

end if

if f = true then

continue to next radar

end if

end for

end for

if f = true then

m = s1

return true

end if

end for

return false
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Algorithm 14 receives two inputs: a set of scheduling vectors for radar

one (S1) and a set of scheduling vectors for radar two (S2). It also receives a

matched scheduling vector output parameter (m) that will contain a match-

ing solution from the two scheduling vector sets if found. The algorithm

searches within the two scheduling vector sets for a matching scheduling vec-

tor. If the vector is found the algorithm returns Boolean ‘true’ and sets the

matched scheduling output parameter appropriately. Alternatively, the al-

gorithm returns Boolean ‘false’ and does not modify the matched scheduling

output parameter.

Algorithm 15 performs a local search around the initial scheduling solu-

tion found by Algorithm 12. The algorithm receives three inputs: a priority

queue of targets (Q), the azimuth angle scan ordering for all radars (A)

and the initial scheduled list of targets (s). The algorithm returns the best

scheduling solution found (s). The set of scheduling solutions is generated

during the execution of the algorithm by randomly selecting targets to add to

the initial scheduled list of targets. The GRASP search algorithm generates

solutions by using a modified version of the GRASP construction algorithm.

After the randomly selected target is added, the GRASP construction algo-

rithm (Algorithm 12) is once again called to add any remaining targets to

the solution generated. Each of the generated solutions is then compared

to each other using the GRASP fitness algorithm (Algorithm 16). Only the

solution generated or the initial solution with the highest fitness score is kept

and returned as the new list of scheduled targets.

Algorithm 16 simply consults the target priority queue (Q) and sums all

the priorities of all the targets present in the scheduled list of targets (s).
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Algorithm 15 GraspLocalSearch (Q : target priority queue, A : target

order for all radars, s : scheduled targets vector)

R = {s}

for all t ∈ Q select randomly according to priority do

if t /∈ s then

v = ∅

M = {t, k ∈ s}

for all i ∈M do

for all radars r do

Nr = GraspAddToSolution (i, v, Ar)

end for

if GraspFindMatchingSolutions (N , u) then

v = u

end if

end for

v = GraspConstruction (Q,A,v)

R = {R,v}

end if

end for

m = −∞

for all k ∈ R do

f = GraspFitness (Q,k)

if f >= m then

s = k

m = f

end if

end for

return s
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Algorithm 16 GraspFitness (Q : target priority queue, s : integer vector)

f = 0

for t ∈ s do

p = priority of t in Q

f = f + p

end for

return f

The result is returned as the fitness value for the list of scheduled targets.

Thus longer target sequences as well as target sequences with high priority

targets are preferred.

Algorithm 17 GraspUpdateSolution (Q : target priority queue, s1 : sched-

ule integer vector, s2 : schedule integer vector)

f1 = GraspFitness (Q, s1)

f2 = GraspFitness (Q, s2)

if f1 > f2 then

b = s1

else

b = s2

end if

return b

Algorithm 17 is used to keep a globally optimal solution during each

iteration of the GRASP scheduling algorithm. The algorithm receives the

priority queue of targets (Q) which is used to determine the fitness of each of

the scheduled list of targets (s1 and s2). The scheduled list of targets with
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the highest fitness value is returned as the solution to keep.

Algorithm 18 GraspCheckSolution (s : integer vector, L : set of integer

vectors)

(i, j) = (0, 0)

for all sk ∈ s do

find location (r, c) of sk in L

if r < i then

s = ∅

return false

end if

for all sl ∈ s | k 6= l do

if sk = sl then

s = ∅

return false

end if

end for

(i, j) = (r, c)

end for

return true

Algorithm 18 checks the solutions generated by the GRASP scheduling

algorithm for validity. The algorithm receives the scheduled list of targets

(s) as well as the azimuth angle ordering of targets for a radar (L). The

ordering of targets within the scheduled list of targets is checked against

the azimuth angle ordering. Only if the orderings match will the scheduled

list of targets be valid. The scheduled list of targets is also checked for any
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duplicate targets, as a target can only appear in the list once.
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[14] A. R. Benaskeur, F. Rhéaume, Adaptive data fusion and sensor manage-

ment for military applications, Aerosp. Sci. Technol. 11 (2007) 327–338.

[15] S. Musick, R. Malhotra, Chasing the elusive sensor manager, in: Proc.

IEEE Natl. Aerosp. Electron. Conf., vol. 1, (1994), pp. 606–613. doi:10.

1109/NAECON.1994.332850.

[16] Z. Ding, A survey of radar resource management algorithms, in: Proc.

Can. Conf. Electr. Comput. Eng., (2008), pp. 001559–001564. doi:10.

1109/CCECE.2008.4564804.

[17] G. Earl, B. Ward, Frequency management support for remote sea-state

73



sensing using the JINDALEE skywave radar, IEEE J. Ocean. Eng. 11

(1986) 164–173.

[18] S. L. C. Miranda, C. J. Baker, K. Woodbridge, H. D. Griffiths, Phased

array radar resource management: a comparison of scheduling algo-

rithms, in: Proc. IEEE Radar Conf., (2004), pp. 79–84. doi:10.1109/

NRC.2004.1316399.

[19] R. Tharmarasa, T. Kirubarajan, J. Peng, T. Lang, Optimization-based

dynamic sensor management for distributed multitarget tracking, IEEE

Tran. Syst., Man, Cybern., Part C: Appl. Rev. 39 (2009) 534–546.

[20] F. Barbaresco, J. C. Deltour, G. Desodt, B. Durand, T. Guenais,

C. Labreuche, Intelligent M3R radar time resources management: ad-

vanced cognition, agility & autonomy capabilities, in: Proc. Int. Radar

Conf., Surveillance for a Safer World, (2009), pp. 1–6.

[21] Y. Xun, M. M. Kokar, K. Baclawski, Control based sensor management

for a multiple radar monitoring scenario, Inf. Fusion 5 (2004) 49–63.

[22] V. Krishnamurthy, Emission management for low probability intercept

sensors in network centric warfare, IEEE Trans. Aerosp. Electron. Syst.

41 (2005) 133–151.

[23] H. Godrich, A. P. Petropulu, H. V. Poor, Power allocation strategies

for target localization in distributed multiple-radar architectures, IEEE

Trans. Signal Process. 59 (2011) 3226–3240.

[24] H. Aftab, N. Raj, P. Cuff, S. Kulkarni, Mutual information scheduling

for ranking, in: Proc. Int. Conf. Inf. Fusion, (2011), pp. 1–8.

74



[25] Y. Cheng, X. Wang, M. Morelande, B. Moran, Information geometry of

target tracking sensor networks, Inf. Fusion 14 (2013) 311–326.

[26] P. Z. Thunemann, R. Mattikalli, S. Arroyo, P. Frank, Characterizing

the tradeoffs between different sensor allocation and management algo-

rithms, in: Proc. Int. Conf. Inf. Fusion, (2009), pp. 1473–1480.

[27] Q. Ling, Y. Fu, Z. Tian, Localized sensor management for multi-target

tracking in wireless sensor networks, Inf. Fusion 12 (2011) 194–201. Spe-

cial Issue on Information Fusion in Future Generation Communication

Environments.

[28] R. Tharmarasa, T. Kirubarajan, A. Sinha, T. Lang, Decentralized sensor

selection for large-scale multisensor-multitarget tracking, IEEE Trans.

Aerosp. Electron. Syst. 47 (2011) 1307–1324.

[29] S. R. Martin, A. J. Newman, The application of particle swarm

optimization and maneuver automatons during non-Markovian mo-

tion planning for air vehicles performing ground target search, in:

Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., (2008), pp. 2605–2610.

doi:10.1109/IROS.2008.4651133.

[30] P. J. Shea, J. Kirk, D. Welchons, Adaptive sensor management for mul-

tiple missions, in: Proc. SPIE Conf. Def. Secur., (2009), pp. 73300M–

73300M–12. http://dx.doi.org/10.1117/12.818892. doi:10.1117/

12.818892.

[31] Y. He, K. P. Chong, Sensor scheduling for target tracking in sensor

75



networks, in: Proc. IEEE Conf. Decis. Control, vol. 1, (2004), pp. 743–

748. doi:10.1109/CDC.2004.1428743.

[32] C. Kreucher, A. O. Hero III, K. Kastella, D. Chang, Efficient methods

of non-myopic sensor management for multitarget tracking, in: Proc.

IEEE Conf. Decis. Control, vol. 1, (2004), pp. 722–727. doi:10.1109/

CDC.2004.1428735.

[33] S. Ahlberg, P. Hörling, K. Johansson, K. Jöred, H. Kjellström,
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