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Abstract

A fully-coupled partitioned finite volume–finite volume andhybrid finite volume–finite
element fluid-structure interaction scheme is presented. The fluid domain is modelled
as a viscous incompressible isothermal region governed by the Navier-Stokes equations
and discretised using an edge-based hybrid-unstructured vertex-centred finite volume
methodology. The structure, consisting of a homogeneous isotropic elastic solid un-
dergoing large, non-linear deformations, is discretised using either an elemental/nodal-
strain finite volume approach or isoparametric Q8 finite elements and is solved us-
ing a matrix-free dual-timestepping approach. Coupling ison the solver sub-iteration
level leading to a tighter coupling than if the subdomains are converged separately.
The solver is parallelised for distributed-memory systemsusing METIS for domain-
decomposition and MPI for inter-domain communication. Thedeveloped technology
is evaluated by application to benchmark problems for strongly-coupled fluid-structure
interaction systems. It is demonstrated that the scheme effects full coupling between
the fluid and solid domains, whilst furnishing accurate solutions.

Keywords: Fluid-structure interaction, Partitioned solution, Arbitrary Lagrangian
Eulerian (ALE), Finite volume methods, Finite element methods, Parallelisation

1. Introduction

While the field of Computational Mechanics has traditionally been dominated by
structual and fluid modelling in isolation, many problems ofinterest are in truth strongly
dynamic systems where there is a close coupling between fluidand solid domains.
Fluid–Structure Interaction (FSI) modelling is a branch ofComputational Mechan-
ics which aims at accurately calculating these effects in a quantitative manner. For
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example, in aeroelastic systems, one important phenomenonis non-linear flutter re-
sponse which has spawned the field of Computational Aeroelastics [1, 2]. Computa-
tional Biomechanics is another major area in which complex dynamic structural re-
sponses are intimately coupled with fluid flow in cardiac, arterial and respiratory sys-
tems [3, 4, 5, 6]. Other examples of such problems include structural loads on ships [7],
flow induced vibrations in nuclear power plants [8] and wind response of buildings [9].
Though recent years have seen much research going into the development of FSI mod-
elling technology [10, 11, 12, 13, 14], the efficient and robust modelling of large-scale,
strongly-coupled systems which involve complex geometries is still a work in progress.
In this paper, we develop and evaluate a fully-coupled, matrix-free methodology as
a contribution towards this challenge. This is incorporated into theElemental1 flow
solver developed for multiphysics applications [15].

This work focusses on FSI systems where there are strong interactions between the
fluid and structural domains and weakly-coupled methods are, therefore, not consid-
ered as they may diverge or result in inaccurate solutions [16, 17, 18, 19]. As a result,
recent research in the field has been devoted to developing strongly-coupled modelling
technologies. Strongly-coupled methods can be sub-classified into separate or parti-
tioned and single or monolithic solution methods. The advantage of a monolithic over
a partitioned approach is that all the equations are considered simultaneously and a sin-
gle system of equations is solved, which ensures stability and convergence. However,
this approach may suffer from ill conditioning and convergence is generally slow [16].
The advantage of a partitioned approach is that it allows theuse of two independent
solution techniques for the fluid and solid equations in isolation. The drawback of
partitioned approaches is that they generally require a separate coupling algorithm or
additional outer iterations between the fluid and solid to achieve strong-coupling, which
places an additional computational cost on the scheme [16, 20, 21]. The most popular
partitioned coupling algorithms use fixed-point iterationmethods or interface Newton-
Krylov methods [22, 20]. Fixed-point methods generally make use of Gauss-Seidel
iterations which are slow to converge and methods to accelerate convergence, includ-
ing Aitken and steepest descent relaxation and coarse-gridpreconditioning, have been
used [22, 19, 23, 24, 21]. The Newton-Raphson methods require the computation of
Jacobians, which may be difficult to compute exactly and various methods have been
developed that use approximate Jacobians [25, 26, 27].

For the purpose of this work the fluid and structural domains are to be solved in a
strongly-coupled partitioned manner, where the transfer of information occurs at solver
sub-iteration level leading to a tighter coupling than if the subdomains are converged
separately and negating the need for a separate coupling algorithm. This leads to a
fully-converged solution at each timestep where both dynamic and kinematic continu-
ity – i.e. continuity of forces and velocities – are satisfiedat the fluid/solid interface.
Our approach allows independence with respect to spatial discretisation of the fluid
and solid domains. Many recent FSI efforts have made use of a single discretisation

1Elementalreferred to in this paper was a scientific toolbox founded by A.G. Malan and has been dep-
recated in its entirety. A new ElementalTM has since been developed at Univ. of Cape Town which is being
commercialised by Elemental Numerics (Pty) Ltd.
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scheme, either finite volume [28, 17, 29, 30] or finite element[16, 18, 31, 32, 33, 34],
to solve the entire domain, which simplifies the treatment atthe interface of the fluid
and solid domain. However, each method contains certain inherent advantages and
should be used as such. In this work we have chosen to use the finite volume method
for the fluid domain. For the solid domain, we use both the finite element method and
an enhanced finite volume method [35, 36]. The enhanced finitevolume method is
essentially a hybrid between the traditional node-based finite volume method, which
suffers from locking with high aspect-ratio elements [35], and the element-based strain
method [29], which suffers from odd-even decoupling. The fluid physics is described
with the incompressible Navier-Stokes equation written for an Arbitrary Lagrangian
Eulerian (ALE) coordinate frame. A total Lagrangian formulation is employed in the
case of the solid. This prevents discretisation errors fromaccumulating over time.
Dynamic unstructured fluid mesh movement technology is developed using a simple
interpolation method in the interests of computational efficiency and parallisability.
For the finite volume method, the non-linear, unified governing equations are spatially
discretised via a compact unstructured, edge-based finite volume method whose spa-
tial accuracy is notionally of second order. In the interests of both computational and
programming efficiency, the chosen spatial discretisation algorithm should be natu-
rally applicable to any part of a fluid or solid mesh. In the case of the fluid, this is
achieved by employing an edge-based compact [37, 38] discretisation methodology,
which holds the additional advantage of being computationally considerably more ef-
ficient than element-based approaches [39] while being ideally applicable to massively
parallel distributed memory machines. For the solid domain, we use both the enhanced
finite volume method, which is a hybrid of the traditional node-based approach and
the element-based strain method, as well as a higher-order Q8 finite element solver.
The coupling of a higher-order finite element formulation for the structure and a linear
finite volume formulation for the fluid leads to non-matchingnodes at the fluid/solid
interface and the transfer of information at these nodes will also be addressed in this
paper. Dual-timestepping [40] is employed for the purpose of temporal discretisation.

As noted, the proposed partitioned modelling method allowsfor complete flexi-
bility in terms of the solution strategy employed for the fluid and solid domains as
these contain widely varying characteristic velocities – the fluid may be incompressible
while the solid may range from compressible to almost incompressible. In the case of
the fluid, the Artificial Compressibility Characteristic Based Split (CBS-AC) algorithm
[41, 42, 43] is used. This scheme combines two historically opposing methodologies
viz. pressure based(pressure projection – PP) proposed by Patankar [44] and theden-
sity based(artificial-compressibility – AC) method introduced by Chorin [45]. The
scheme allows matrix-free solution of compressible as wellas incompressible flows,
which is of key value to large scale distributed memory computing. In this work the
CBS-AC algorithm has been extended to an ALE co-ordinate frame. The solid equa-
tions are solved via a Jacobi iterative dual-timestepping scheme which is implemented
such as to ensure matrix-free and robust solution. Finally,the modelling technology
outlined above is validated by application to problems fromthe literature. The cou-
pled solver is applied to strongly-coupled large-displacement FSI benchmark problems.
Rigorous temporal and mesh independent studies are presented.

The outline of this paper is as follows: in Section 2 we present the govering equa-
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tions for fluid and solid domains, then describe the discretisation, numerical solution
and coupling algorithm in Section 3. In Section 4 we detail the mesh movement algo-
rithm used, and in Section5 discuss parallelisation of the code. We present numerical
applications in Section 6 before concluding in Section 7.

2. Governing equations

The fluid-structure interaction to be modelled consists of aviscous incompressible
isothermal fluid domain and homogeneous isotropic elastic solid region. The mechan-
ics of each is described via the appropriate governing equation set, which is detailed in
this section. Note that for the purposes of this work, the fluid-boundary mesh is fitted
to the deforming solid.

2.1. Fluid equations

The fluid flow is governed by the Navier-Stokes equations. In general, these equa-
tions are expressed in an Eulerian or spatial frame of reference, which entails a fixed
spatial region with fluid flowing through it. For fluid-structure interaction problems the
solid deforms and displaces the fluid domain and the fluid equations are written in a
manner which allows a Lagrangian description at the fluid-solid interface interpolat-
ing to an Eulerian description at the outer boundaries. For this purpose an arbitrary-
Lagrangian-Eulerian (ALE) reference frame is used, which accounts for the motion
of the FSI interface. The ALE approach was first described by Hirt et al. [46] and
later adopted by many others and is now widely used for FSI applications [47]. A
dynamic mesh movement algorithm that deforms the fluid mesh is therefore required
and is described later. The deforming-spatial-domain/space-time procedure [48, 49]
is another popular method for treating moving boundaries and interfaces, while other
formulations that utilise a fixed mesh, including immersed boundary [50] and fictitious
domain [51] methods, can also be used to perform FSI simulations.

Assuming a viscous, incompressible and isothermal fluid, the equations governing
the fluid flow are given by the continuity and Navier-Stokes equations:

∂vi

∂xi
= 0 (1)

ρ
∂vi

∂t
+ ρ(v j − v∗j )

∂vi

∂x j
+
∂p
∂xi
−
∂σi j

∂x j
− ρ fi = 0 (2)

whereρ, vi , p, σi j and fi are the fluid density, fluid velocity, pressure, stress and body
forces respectively,xi are the fixed Eulerian coordinates andv∗j is the mesh velocity.
The term (v j − v∗j ) is an ALE convective velocity that results from a difference between
the fluid velocity and the mesh velocity. We write the governing equations in weak
form over an arbitrary and time-dependent volumeV(t) as

∂

∂t

∫

V(t)
WdV +

∫

S(t)

(

F j +H j −G j
)

n jdS =
∫

V(t)
QdV, (3)
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where

W =














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
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W1

W2





















=





















ρ

ρv1

ρv2





















, H j =





















0
pδ1 j

pδ2 j





















, G j =





















0
σ1 j

σ2 j





















, (4)

F j =W(v j − v∗j ), (5)

In the above,S(t) denotes the surface of the volumeV(t), with n j being the outward
pointing unit normal vector;δi j is the Kronecker delta andQ is a vector of source terms
(e.g. body forces).

To close the fluid governing equations, a constitutive relation for the stress is re-
quired. Assuming a Newtonian fluid, the relationship between stress and rate of strain
is given by

σi j = µ

(

∂vi

∂x j
+
∂v j

∂xi

)

, (6)

whereµ is the fluid viscosity.

2.2. Solid equations

The partial differential equations that describe a homogeneous isotropic elastic
solid undergoing large non-linear deformation are given byCauchy’s first equation
of motion (balance of linear momentum) [52], which in a totalLagrangian formulation
is

∫

Vo

(∂Pi j

∂X j
+ fi

)

dVo =

∫

Vo

ρoaidVo, (7)

wherePi j , fi , ρo and ai are the first Piola-Kirchoff stress, body force, density and
acceleration, respectively andVo is the volume of the solid body in the undeformed
configuration.

Assuming an isotropic hyperelastic St-Venant-Kirchoffmaterial model, the consti-
tutive stress-strain relationship is given by

Si j = Ci jkl Ei j , (8)

whereEi j is the Green-Lagrange strain,Si j is the second Piola-Kirchoff stress andCi jkl

is the fourth order elasticity tensor.
The first Piola-Kirchoff stress,Pi j , in Eq. (7) is then obtained by multiplying the

second Piola-Kirchoff stress,Sk j, with the deformation gradient,Fik:

Pi j = FikSk j. (9)

The deformation gradient relates quantities in the undeformed configuration to their
counterparts in the deformed configuration:

Fik =
∂xi

∂Xk
(10)

whereXk andxi are the coordinates of the solid in the undeformed and deformed con-
figurations, respectively.
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Finally, to close the governing equations, the relationship between strain and the
displacement field is given by

Ei j =
1
2

(Hi j + H ji + HkiHk j), (11)

whereHi j is the displacement gradient defined as

Hi j =
dui

dXj
(12)

andui is the total displacement of the solid, i.e.xi = ui + Xi .

3. Discretisation and solution method

3.1. Spatial discretisation

Considering the fluid ALE governing equations (3), all surface integrals are cal-
culated in an edge-wise manner. For this purpose, bounding surface information is
similarly stored in an edge-wise manner and termededge-coefficients. The latter for a
given internal edgeΥmn connecting nodesmandn, is defined as a function of time as

Cmn(t) = nmn1Smn1(t) + nmn2Smn2(t) (13)

whereSmn1 is a bounding surface-segment intersecting the edge (Figure 1) and the
normal unit vectors are similarly a function of time. The discrete form of the surface
integral in Eq. (3), computed for the volume surrounding thenodem, now follows as

∫

Sm(t)

{

F j +H j −G j
}

n jdS ≈
∑

Υmn∩Vm(t)

{

F j
mn+H j

mn−G j
mn

}

C j
mn (14)

where all•mn quantities denote edge-averaged values which are calculated such that
second-order accuracy of the overall scheme is ensured [37]. In the case of the fluid,

G j
mn =

[

G j
mn

∣

∣

∣

∣

tang
+ G j

mn

∣

∣

∣

∣

norm

]

, whereG j
∣

∣

∣

tang
is calculated by employing directional

derivatives andG j
∣

∣

∣

norm
is approximated by employing the standard finite volume first

derivative terms.
When considering the solid governing equation, Eq. (7), both the finite volume and

finite element methods of discretisation are used. For the finite volume method, Eq. (7)
is written in weak form as

∂

∂t

∫

V0

ρ0vidV =
∫

S0

Pi j n jdS +
∫

V0

QidV, (15)

wherevi is the solid velocity andQi a vector of source terms. The above method of
discretising the stress term would enforce continuous gradients at nodes and element
boundaries. To remedy this we consider the element-based-strain approach of Xia and
Lin [29], and utilise a hybrid technique. Here, strainsE11 and E22 are evaluated at
nodes and averaged to obtain face values (as per the above), whereasE12 is evaluated
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at the element centre and averaged with the neighbouring element’s value to obtain
the value at the shared face. This approach was found to be comparable in accuracy
to the cited element-based approach while eliminating odd-even decoupling from the
solution.

Next, the standard Galerkin finite element method of discretisation is used for spa-
tial discretisation of the solid governing equations. Assuming the body forces to be
negligible, casting Eq. (7) into weak form based on the method of weighted residuals
and applying the divergence theorem of Gauss gives the general weak form of the solid
mechanics boundary value problem:

∫

At

tp
o · wdAo −

∫

Vo

P · ∇XwdVo − ρo

∫

Vo

w · adVo = 0 (16)

whereAt is the boundary surface where the surface tractiontp
o is prescribed andw is

the weighting field. Instead of solving for all possible set of weighting functions for
w to obtain an exact solution, we consider only a finite set of functions forw. These
functions are chosen as piecewise-continuous low-order polynomial functions defined
on sub-domains (elements) within the total domainVo and are referred to as basis or
shape functions [N]. The weighting field is now interpolated between nodal weighting
values{W} using these shape functions, i.e.

w = [N] {W}. (17)

The primary variable, viz. the displacement fieldu, is interpolated over an element
using the same shape functions (Bubnov-Galerkin method):

u = [N] {U}, (18)

Sm

Smn1

Smn2

ϒmn

m

n

Vm

Figure 1: Schematic diagram of the construction of the median dual-mesh on hybrid
grids. Here,Υmn depicts the edge connecting nodesm andn.
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Figure 2: Isoparametric Q8 element in physical space (left)and reference space (right).

where{U} is the vector containing the nodal displacements. The domain is discretised
into a finite number of non-overlappingcontrol volumes or element domainsVe, which
are defined in the undeformed configuration. Simplifying Eq.(16) and expressing it as
the sum over all the elements within the domain gives

∑

e

ρo

∫

Ve

[N]T [N] dVo{Ü} =
∑

e

∫

Ae
t

[N]T {tp
o}dAo −

∑

e

∫

Ve

[B]T{P}dVo, (19)

where [B] is a matrix containing the derivatives of the shape functions and{P} is a
vector containing the first Piola-Kirchoff stress.

In this work the solid domain is discretised into eight-noded isoparametric quadri-
lateral elements. Figure 2 (left) shows an actual Q8 elementin physical space and
(right) is the reference element mapped or transformed using reference or natural co-
ordinatesξ andη. The integral of the spatial term in Eq. (19) is performed numerically
using Gauss quadrature, i.e. the integral is evaluated at a specific number of Gauss
points, the result is then multiplied by a weighting factorWGP and the results summed
over all the Gauss points. The discrete equation is therefore

∑

e

ρo

∫

Ve

[N]T [N] dVo{Ü} =
∑

e

{Fext} −
∑

e

















∑

Gauss pts

[B]T{P}det(J)WGP

















, (20)

where the external loads are simply denoted as{Fext} and det(J) is the determinant of
the Jacobian matrix and is used to transform the integral in the physical coordinates to
that in the reference coordinates.

3.2. Geometric conservation
In order for the fluid solution to be as transparent as possible to the movement

of the mesh, an identity known as the Geometric ConservationLaw (GCL) should be
obeyed [53, 54, 55]. It asserts that the momentum flux into a cell due to the motion
of the faces should be consistent with the change in momentumof the cell due to its
changing volume. That is, the discretised version of

∂

∂t

∫

V(t)
dV =

∫

S(t)
v∗j n jdS. (21)
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should hold exactly, which implies that constant spatial fields will be unaffected by
arbitrary mesh deformations. The GCL can therefore be said to impose a specific
relationship between mesh deformation and the mesh-velocity field. In order for the
GCL to hold we could discretise the equation above at nodemas

Vt+∆t
m − Vt

m

∆t
=

∑

Υmn∩Vm(t)

δVt
mn

∆t
, (22)

whereδVt
mn is the volume swept out by the face lying between nodesmandn between

time-stepst andt + ∆t, as in [55], andVm the volume of the dual-cell containing node
m. Alternatively, to second order accuracy

3Vt+∆t
m − 4Vt

m+ Vt−∆t
m

2∆t
=

∑

Υmn∩Vm(t)

3δVt
mn− δV

t−∆t
mn

2∆t
. (23)

So, in order for our discretisation to be consistent with theGCL, the mesh velocity flux
v∗jC

j
mn in the discretisation of (3) is set equal to (3δVt

mn− δV
t−∆t
mn )/2∆t.

3.3. Temporal discretisation and solution procedure

The solution procedure is to allow for fully coupled solution of all descritised equa-
tions while allowing independence in terms of discretisation and solution strategy em-
ployed for the fluid and solid domains. We therefore advocatea matrix-free iterative
solution process where fluid-solid interface nodes communicate velocities and tractions
at each iteration. The resulting solution procedure is detailed below.

For the purpose of transient calculations, a dual-time-stepping temporal discreti-
sation [40] is employed such that second-order temporal accuracy is achieved while
ensuring that all equations are iteratively solved simultaneously in animplicit fashion.

3.3.1. Fluid
The real-time temporal term is accordingly discretised andadded as a source term

to the right-hand-side of the discretised fluid equation as

Qτi V
τ = −

3Wτi Vτ − 4Wt
i V

t +Wt−∆t
i Vt−∆t

2∆t
(24)

for i = 1, 2 where∆t denotes the real-time-step size, thet superscript is the previous
(existing) real time-step andτ denotes the latest known solution to the time-step being
solved for viz.t + ∆t.

Considering next the solution procedure, we observe that inthe first instance, spa-
tial discretisation of the convective terms via linear interpolation results in destabilising
odd-even decoupling. Second, the incompressibility of thefluid results in an overly stiff
system. These are circumvented in this work without the lossof notional second-order
accuracy via the Artificial Compressibility Characteristic Based Split (CBS-AC) algo-
rithm [41, 42, 43], which has been demonstrated to be robust,efficient and accurate.
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To adapt the CBS-AC algorithm to ALE domains we consider Eq. (3) with a time-
dependent dual-cellV(t) which is moving at velocityu∗k, from which the first incre-
mental solution step written in semi-discrete form followsas:

∆W∗i
∆τ

Vτ = −
∫

S(t)
(F j

i −G j
i )n jdS

∣

∣

∣

∣

∣

τ

+

∫

S(t)

∆τ

2
(vk− v∗k)

∂

∂x j
(ρviv j)nkdS

∣

∣

∣

∣

∣

τ

+ QiV|
τ (25a)

for i = 1, 2, where theτ superscript denotes the previous (existing) solution or pseudo
time-step and∆τ is calculated as in Eq. (32).∆W∗i is an auxiliary variable which is
used in the second step as:

1
c2
τ

pτ+∆τ − pτ

∆τ
Vτ = −

∫

S(t)















ρvk + ∆τ















∆W∗k
∆τ
−
∂H j

k

∂x j





























nkdS

∣

∣

∣

∣

∣

∣

τ

. (25b)

Herecτ denotes the pseudo-acoustic velocity which is given by

c2
τ = max[ε2; 1.2v jv j ]

whereε is typically chosen as 0.1umax whereumax is the peak flow velocity in the
domain [40].

The third and final incremental solution step written in semi-discrete form now
follows:

Wτ+∆τi −Wτi
∆τ

Vτ =
∆W∗i
∆τ

Vτ −
∫

S(t)
H j

i n jdS
∣

∣

∣

∣

∣

τ+∆τ

≡ Ri(W) for i = 1, 2. (25c)

Finally, the fluid mesh velocityv∗k is calculated via second-order backward differ-
ence as follows:

v∗k =
3xτk − 4xt

k + xt−∆t
k

2∆t
(26)

where the nomenclature is as defined previously.

3.3.2. Solid
For the solid equation using the finite volume method, a similar source term is

added to the right-hand side of the discretised version of Eq. (15), namely

Qτi V0 = −ρ0
3vτi − 4vt

i + vt−∆t
i

2∆t
V0 (27)

where the nomenclature is as defined previously.
With the finite element method and using the same approach as above, Eq. (19)

becomes

∑

e

[Me] lumped
vτ+∆τi − vτi
∆τ

= RHSi −
∑

e

[Me]cons
3vτ+∆τi − 4vn

i + vn−1
i

2∆t
, (28)

where [Me]cons= ρo

∫

Ve
[N]T [N] dVo is the element consistent mass matrix and [Me] lumped

is the lumped mass matrix obtained from the HRZ lumping approach [56].
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For the solid domain, a second-order accurate single-step procedure [57] is em-
ployed:

uτ+∆τi = uτi + ∆τ
(

vτ+∆τi −
3uτ+∆τi − 4un

i + un−1
i

2∆t

)

+

1
2
∆τ2

1
ρoVm

(

RHSi |uτi −
∑

e

[Me]cons
3vτ+∆τi − 4vn

i + vn−1
i

2∆t
Vm

)

. (29)

vτ+∆τi = vτi +
∆τ

∑

e[Me] lumpedVm

(

RHSi |uτi −
∑

e

[Me]cons
3vτ+∆τi − 4vn

i + vn−1
i

2∆t
Vm

)

. (30)

whereuτ denotes a projected displacement which is calculated as

uτi = uτi + ∆τ
(

vτi −
3uτ+∆τi − 4un

i + un−1
i

2∆t

)

. (31)

3.3.3. Pseudo-timestep calculations
The pseudo-timestep local to each computational cell is to be determined in the

interest of optimal convergence while ensuring a stable solution process. An accurate
estimation is therefore required for which the following expression is employed:

∆τ = CFL













|ui − u∗i | + cunified

∆xi
+ κ

2µ

ρ∆x2
i













−1

(32)

where CFL denotes the Courant-Friedrichs-Lewy number,∆xi is the effective mesh
spacing in directioni andκ is equal to 1 in the fluid domain and 0 in the solid domain.
Further,

cunified = κcτ + (1− κ)
(√

K/ρ0 +
√

η/ρ0

)

. (33)

Finally, in the case of transient analyses, we treat the dual-timestepping term im-
plicitly, i.e., changeτ to τ + ∆τ in (24) and (27), in order to maintain stability in cases
where∆τ is comparable to or larger than∆t [58].

3.4. Fluid-solid interface treatment

At the fluid-solid interface, the following equations for traction, displacement and
velocity are prescribed:

τ j = pnj − σi j ni

u j = u∗j = v j (34)

xf
j = xs

j

where the superscriptsf ands respectively denote fluid and solid andni is the related
normal unit vector pointing outward from the fluid domain. The above are prescribed
as part of the pseudo-stepping iterative procedure in a manner which effects a stable
solution process.
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Figure 3: Arbitrary solid edge along the FSI interface.

3.4.1. Consistent nodal loads
For the purpose of this work fluid and solid interface nodes coincide, which sim-

plifies the transfer of information between the fluid and solid domains. However, the
Q8 element contains an additional node at the mid-point of every edge, which means
there is an unconnected solid node for every element along the interface. Therefore,
the transfer of traction from the fluid to the solid domain hasto be evaluated in terms of
conservation of momentum and accuracy on the overall solution [59, 60]. Two options
exist: the traction from every fluid node on the interface is transferred to the corre-
sponding solid node and the mid-nodes are ignored, which satisfies a global conserva-
tion of forces, or the traction from the fluid nodes are redistributed to every solid node,
which locally is consistent with the finite element method. For the latter approach, and
referring to Figure 3 which shows the traction imposed on an arbitrary solid edge along
the FSI interface, the consistent FEM nodal loads are given by:

{F} = b
∫ L

0
[N]TtdL (35)

where [N] contains the shape functions associated with each node along the edge,L is
the length of the edge andb is the depth of the element.

Assuming the tractiont varies linearly betweent1 andt2 (which is the case with
the fluid discretisation [61]), Eq. (35) can be expanded as


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= b
∫ 1
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[

S1

{

t1x1

t1x2

}

+ S2

{

t2x1

t2x2

}]

dL
dξ

dξ, (36)

where the integral is transformed to the natural coordinatesystem andSi are the linear
shape functions assumed for the traction.
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Substituting the quadratic shape functions associated with each node along the edge
and simplifying gives


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


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− 1
2ξ(1− ξ) 0

0 − 1
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2ξ(1+ ξ) 0

0 1
2ξ(1+ ξ)

(1− ξ2) 0
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

















































{ 1
2(1− ξ)t1x1

+ 1
2(1+ ξ)t2x1

1
2(1− ξ)t1x2

+ 1
2(1+ ξ)t2x2

} (

−
1
2

(1− 2ξ)x1 +
1
2

(1+ 2ξ)x2 − 2ξx3

)

dξ. (37)

The integrand is a fourth-order polynomial. Analytical integration gives the closed
form expressions:
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(38)

The expressions above give the consistent FEM nodal loads for each node along
the FSI interface as a function of the tractions imposed by the fluid domain.

3.5. Solution procedure

For the purpose of simultaneous solution of the discretisedfluid-solid equations in
a manner which effects strong coupling, the following solution sequence is employed
in an iterative fashion:

1. The fluid and solid discrete equations are solved concurrently via a single itera-
tion of (25), (29) and (30).

2. The calculated fluid traction is then applied to the solid boundary and the solid
velocities to the fluid boundary.

3. The above is repeated until convergence, with the mesh only moved if a solid
mesh boundary node displacement exceeds 30% of the element size or the resid-
ual of the fluid or solid mesh has been reduced by four orders ofmagnitude (a
real-time-step is considered converged when the residual of all fluid and solid
equations have dropped by at least 5 orders of magnitude).

4. The residuals are now calculated for all equations, and iflarger than the conver-
gence tolerance steps 1–3 are repeated.

5. If the residuals are below the convergence tolerance, thereal-timestep is termi-
nated, and the next time-step entered by proceeding to step 1.
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4. Dynamic mesh movement

The mesh movement strategy employed is an interpolation procedure which, while
offering no guarantees about element quality, has no significant computational cost and
is well suited to parallel computing. This approach entailsredistributing internal fluid
nodes via the following interpolation function:

∆x j = r∆x1
j + (1− r)∆x2

j ,

where∆x1
j and∆x2

j denote the displacements of, respectively, the closest fluid node
at the fluid-solid interface, and the closest external boundary node, from their initial
locations. Also,r, which varies between zero and one, is computed as

r =
Dp

2

Dp
1 + Dp

2

with p = 3/2.

Here,D1 andD2 are the distances between the node being moved and its closest inter-
nal and external boundary points, respectively, in the undeformed configuration. This
formula was tuned to the geometry of the large-displacementproblems considered be-
low, although it has been found to perform well for more general problems which
involve small to moderate displacements. Since the closestpoints and the values ofr
are calculated only once at the beginning of the analysis, the application of the mesh
movement function is essentially instantaneous, and the mesh will also not deteriorate
due to repeated oscillations as it will always return to the initial configuration.

5. Parallelisation

Because of the fully matrix-free nature of the numerical method at solver sub-
iteration level, data reference is local (nodes only see neighbouring nodes) meaning
that the mesh can be decomposed into separate subdomains forparallel operation. As
the operation count for each edge is very nearly identical, the number of edges in each
domain was balanced for efficient operation. This is done by weighting each node with
an integer equal to the number of edges which connect to it, followed by applying the
METIS library [62] to its connectivity graph. For the purpose of interdomain commu-
nication, a system of “ghost nodes” is used in this work, withone layer of overlapping
nodes at domain boundaries, where ‘slave’ nodes are updatedwith the values from cor-
responding ‘master’ nodes in the neighbouring domain. For efficiency, data transfer is
consolidated into the largest possible packets and communicated using MPI.

An example of the overlap of domains due to the inclusion of ghost nodes is shown
in Figure 4. The inset shows extended overlap near the boundary due to the larger
stencil required for certain types of boundary conditions.

6. Application and evaluation

The developed FSI algorithms have been benchmarked with application to two-
dimensional problems from the literature for which the results can be compared with
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Figure 4: Example of domain decomposition showing one-element overlap due to
ghost nodes and extended overlap near the boundaries.

analytical solutions or the results of others. The extension to three-dimensional prob-
lems follows easily, apart from the expected additional computational cost. The meshes
employed range from structured to hybrid-unstructured, and solutions were only con-
sidered converged once the residual had been reduced by 5 orders of magnitude. Vali-
dation of the fluid solver for stationary meshes has previously been performed in [41].

6.1. Dynamic piston-channel system

The first test-case considered was that of a piston-channel system with a varying
fluid domain. The system geometry and boundary conditions are described in Figure 5.
The channel is 11 m long and is partially filled with an inviscid incompressible fluid
with an elastic piston situated to its left. A prescribed velocity,v(t), was imposed on the
piston, which pushes the fluid out of the domain. A zero pressure boundary condition
was imposed at the outflow boundary and slip boundary conditions were imposed along
all the channel walls. The piston has a Young’s modulus ofE = 10 Pa and density and
Poisson’s ratio of zero. A linear elastic solid model was used for this problem for
comparison with others [16]. The fluid has a densityρ f = 1 kg m−3.

This problem was chosen as the coupling between the fluid and solid domain is
strong and partitioned FSI solution schemes usually diverge for such a problem, even
with large under-relaxation [16, 47]. An analytical solution exists for this system,
which can be considered as a simple 1D problem.

To obtain an analytical expression for the displacement andvelocity of the inter-
face, the system can be treated as a 1D spring-mass system, asshown in Figure 6. The
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v(t) = 0.2t

Figure 5: Geometry and boundary conditions for the piston-channel system.

k

m(t)

int

v(t) = 0.2t

Figure 6: Representative spring-mass system for the piston-channel configuration.

elastic piston acts as a linear spring and the incompressible fluid as a variable mass [16].
Applying a balance of forces at the interface gives:

Fspring+ Fmass= 0 (39)

therefore,

k(uint − u(t)) = −m
dvint

dt
(40)

whereFspring andFmassare the forces exerted by the spring and mass,uint andvint are
the displacement and velocity of the interface,u(t) is the prescribed displacement of the
left wall, k is the equivalent spring constant andm is the mass of the fluid. Substituting
the properties of the piston and fluid for the spring and mass respectively, yield the
following expressions for the velocity and displacement atthe interface of the system:

dvint

dt
=

10(uint − 0.1t2)
(uint − 10)

(41)

duint

dt
= vint. (42)

The fluid domain is discretised using three cells. The solid domain is discretised
using either a single finite volume cell or a single Q8 finite element. The resulting
computed time history of the displacement and velocity of the interface is shown in
Figure 7 for the finite volume method and in Figure 8 for the finite element method. As
shown, both the schemes results in an accurate solution. In order to achieve stability
for this problem, under-relaxation was necessary by reducing the CFL number by an
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Figure 7: Displacement (left) and velocity (right) of the interface of the piston and
channel using the finite volume method. The lines show the simulated response and
the circles the analytical solution. This is identical to the result presented in [16].
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Figure 8: Displacement (left) and velocity (right) of the interface of the piston and
channel using the finite element method.
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Figure 9: Displacement (left) and velocity (right) of the interface of the piston-channel
using various meshes.

order of magnitude. However in all other more realistic FSI problems considered, no
under-relaxation was found to be required.

Figure 9 shows the results obtained using different meshes for the fluid and solid
domain, i.e. one solid and ten fluid cells (1× 10), one solid and twenty fluid cells
(1 × 20), and five solid and ten fluid cells (5× 10). This demonstrates stability and
robustness in the scheme.

Velocity contours of the solid and pressure contours of the fluid at various times are
shown in Figure 10. The velocity field is linear in the solid, while the pressure field is
linear in the fluid. A second-order accurate scheme is thus able to predict the solution
exactly.

An investigation was conducted on this problem to determinethe sensitivity of the
average number of iterations required per time step with respect to the fluid-structure
density ratio. The result, shown in Figure 11, indicates that the FSI system is less
stable numerically when the density of the solid decreases,relative to the fluid. As the
solid mass increases (or fluid density decreases) the so-called ‘added mass effect’ [63]
becomes less significant and the system converges quicker.

6.2. Block-tail in first mode of vibration

The second test-case considered was that of an elastic beam in the wake of a rigid
square block. This is a popular FSI benchmark test-case thatwas first proposed by
Wall [64] and studied by many other researchers [16, 34, 18, 29]. In these publications,
various different combinations of material properties, initial conditions and Reynolds
numbers have been considered. In this work, we have considered the cases studied by
Hübneret al. [16]. The geometry and boundary conditions are shown in Figure 12.
The properties of the incompressible fluid are: densityρ f = 1.18× 10−3 g cm−3 and
viscosityµ f = 1.82× 10−4 g cm−1 s−1, while that of the beam are: densityρs = 2.0 g
cm−3, Young’s modulusE = 2.0× 106 g cm−1 s−2 and Poisson’s ratioν = 0.35.
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Figure 10: Velocity contours of the piston and pressure contours of the fluid at various times.
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Figure 11: Sensitivity of average number of iterations per time-step with respect to
fluid-structure density ratio.
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Slip boundary condition

Slip boundary condition

pout = 0
vin = 31.5 cm s−1

4 cm4.5 cm

1 cm

1 cm

0.06 cm

10 cm

12 cm

Figure 12: Geometry and boundary conditions for the block-tail FSI test-case.

Three meshes with varying density were employed (Figure 13)in the interests of
finding a mesh-independent solution. The fluid meshes consist of 6 000, 25 000 and
50 000 fluid cells respectively. For the analyses using the finite volume method for
the solid, structured meshes consisting of 12 elements through the thickness were em-
ployed, as this was found to produce a solution within 1% of the analytical solution
for a static cantilever beam undergoing large displacements. The number of elements
along the length of the beam was respectively selected as 40,120 and 160 for the three
different fluid meshes, in order to line up with the fluid nodes. In addition, to evaluate
solution independence with respect to the solid mesh, an extra analysis was performed
with a 320× 24 solid mesh – i.e. half the mesh spacing in both directions –in con-
junction with the 50 000 fluid mesh. With the finite element method for the solid, the
structure was discretised using a single layer of 40 Q8 elements and a finer mesh of
80× 2 Q8 elements was used to evaluate mesh independence. The time-step size used
in the aforementioned analyses was∆t = 0.001 s, and the accuracy of this was verified
by comparing with additional analyses with varying time-step sizes.

The beam was given an initial deflection due to a temporary load and the plane
strain assumption was used. This problem was considered by Hubner et al. [16]. In
order to fit the initial deflection of the beam as shown in [16],the piecewise-constant
tip-load as a function of time was determined empirically and is shown in Table 1.

The large deflection of the beam causes a vortex to develop on the opposite side of
the deflection. This vortex moves along the beam and breaks away as the beam reaches
its maximum deflection. As the beam moves in the other direction, a smaller vortex of
opposite rotation develops at its tip and also breaks away. Large-amplitude oscillations
of the beam occur in its first mode of vibration. Plots of the pressure and velocity
contours are shown in Figure 14.

The tip displacement of the beam is compared with the resultsof Hubner et al. [16]
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Figure 13: Block with flexible tail: (a) 6 000 cell mesh; (b) example of deformed mesh;
(c-e) Close up views of 6 000, 25 000 and 50 000 cell meshes respectively.

Time (s): 0–0.1 0.1–0.15 0.15–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6
Force (g cm s−2): 0 0.35 1.5 2.3 3.1 4.2 6.5
Time (s): 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 1.0–1.1 1.1–1.2 1.2–1.3
Force (g cm s−2): 6.5 5.5 5.0 4.0 3.0 2.0 1.0

Table 1: Piecewise-constant force as a function of time applied to tip of beam to repro-
duce initial deflection in results of [16].

in Figure 15 using the finite volume method and in Figure 16 using the finite element
method. The finite volume and finite element FSI formulationsprovide very similar
results. When compared with published data [16], there is a difference in the initial
response, but the results compare well as the limit-cycle isreached. Since the details
of the initial conditions imposed on the flow and the solid in [16] are not known, the
initial discrepancy is not considered significant. A rigorous mesh and temporal in-
dependence study was conducted. To evaluate mesh independence of the fluid, the
simulations were carried out on all three fluid meshes and theresults shown in Fig-
ure 15(b) and Figure 16(b). There is a significant change in the solution from the 6
000 to the 25 000 element mesh, but negligible change betweenthe 25 000 and 50
000 element mesh. Next, temporal independence was evaluated by using four different
timestep sizes varying from 0.005s to 0.0005s. The time history in Figure 15(c) and
Figure 16(c) show good convergence and independence in the results. Finally, to eval-
uate mesh independence of the solid a finer solid mesh twice the size was used and it
was found that the results are identical to the coarser solidmesh case (see Figure 15(d)
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Figure 14: Pressure (left) and velocity contours (right) for the block-tail test-case with the beam
oscillating in its first mode of vibration.

and Figure 16(d)). A comparison of the frequency and amplitude for different meshes
and timestep sizes is shown in Table 2 for the finite volume method and in Table 3 for
the finite element method.

6.3. Block-tail in second mode of vibration

In the final test-case, the same block-tail geometry as abovewas considered but a
uniform constant fluid velocity,vin = 31.5 cm s−1, or Reynolds number,Re=

ρ f Lvin

µ f
=

204, was applied at the inlet while at the exit the pressure was set to zero. The plane
stress assumption was used. The inlet velocity results in vortices that are shed from
the corners of the block periodically at a frequency of 3.7 Hz, which is close to the
second natural frequency of the beam of 3.8 Hz. The fluid passes over the beam as
symmetric vortices develop on either side of it. The symmetry of the vortices breaks,
which results in uneven forces on the beam inducing vibrations of small amplitude.
The oscillation of the beam results in further disturbance of the flow, which in turn
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Results of Hübneret al.
Fine mesh results
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Figure 15: Tip deflection of block with flexible tail using thefinite volume method with initial tip load
given in Table 1. (a) Results on the 50 000 node fluid mesh and 320× 24 solid mesh with a timestep size
∆t = 0.005 s compared with the results of Hübneret al. [16]. (b) 6 000, 25 000 and 50 000 element fluid
meshes with 40× 12, 120× 12 and 160× 12 solid elements respectively.∆t = 0.005 s. (c) 160× 12 and
320× 24 element solid meshes. 50 000 fluid elements and∆t = 0.005 s. (d)∆t = 0.01 and∆t = 0.005 s
with 50 000 fluid elements and 160× 12 solid elements.

Fluid mesh Solid mesh Timestep (s)Amplitude (cm) Frequency (Hz)
6 000 40× 12 0.005 2.03 0.86
25 000 120× 12 0.005 2.22 0.83
50 000 160× 12 0.01 2.22 0.83
50 000 160× 12 0.005 2.21 0.83
50 000 320× 24 0.005 2.20 0.82

Hubner et al. [16] 1.98 0.79

Table 2: Comparison of amplitude and frequency of limit-cycle oscillation for the
block-tail test-case in first mode of vibration with variousmeshes and timestep sizes
using the finite volume method.
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Figure 16: Tip displacement for the block-tail test-case infirst mode of vibration with various meshes
and timestep sizes using the finite element method.
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Fluid mesh Solid mesh Timestep (s)Amplitude (cm) Frequency (Hz)
6 000 40× 1 0.001 2.04 0.84
6 000 80× 2 0.001 2.04 0.84
25 000 120× 1 0.001 2.17 0.83
50 000 160× 1 0.001 2.18 0.82
6 000 40× 1 0.0005 2.04 0.84

Hubner et al. [16] 1.98 0.79

Table 3: Comparison of amplitude and frequency of limit-cycle oscillation for the
block-tail test-case in first mode of vibration with variousmeshes and timestep sizes
using the finite element method.

induces larger displacements of the beam. Within each period, two vortices develop
on one side of the beam while a larger vortex develops on the other side, as shown in
Figure 17. The system builds up to large oscillations of the beam in its second mode of
vibration as vortices are shed periodically from either side of it.

The finite volume and finite element FSI formulations, once again, produced very
similar results. Using the finite volume method FSI formulation, the 25 000-element
fluid mesh and 160× 12 solid mesh for this problem, and a time-step of 0.001s, the
expected match of results compared to those reported in [16]are shown in Figure 18:
The amplitude (0.76 cm) and frequency (2.87 s−1) of second-mode vibrations are within
4% and 7% respectively. Note that the results of Hübneret al. were temporally offset
to align limit state results. This is because the initial onset of the oscillations is thought
to be an artifact of a particular numerical scheme as the system is in a state of unstable
equilibrium to begin with. Using the finite element formulation, the time history of
the tip displacement of the beam is plotted in Figure 19(a), together with the results of
Hubner et al. [16]. There is a good correlation between the two sets of results, with
the amplitude and frequency differing by less than 3% and 4% respectively as shown
in Table 4. A comparison of the results using three fluid meshes of 6 000, 25 000 and
50 000 elements is shown in Figure 19(b). A small change in solution is observed
from the 6 000 to the 25 000 element mesh, but a further doubling of the number of
elements results in a negligible difference. Next, to evaluate mesh independence of
the solid a finer solid mesh of 80× 2 Q8 elements was used and it was found that the
results are identical to the 40× 1 solid mesh case (see Figure 19(c)). Finally, temporal
independence was evaluated by using four different timestep sizes varying from 0.005s
to 0.0005s. The time history in Figure 19(d) as well as the result in Table 4 show
good convergence and independence in the results. The frequency and amplitude for
different meshes and timestep sizes are summarised in Table 4.

6.4. Consistent nodal loads

An evaluation of the transfer of traction forces from the fluid to the solid domain
was conducted. Since the Q8 element contains an additional node at the mid-point of
every edge there is an additional unconnected solid node at the FSI interface. This
complicates the transfer of the traction forces: either thetraction at every fluid node
on the interface is transferred to the corresponding solid node, which will satisfy a
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Figure 17: Pressure (left) and velocity contours (right) for the block-tail test-case with the beam oscil-
lating in its second mode of vibration.

global balance of force, or FEM nodal loads, as described in the previous section and
which are consistent with the finite element method, are calculated and the traction
distributed to every solid node at the interface. Both approaches were implemented
and a comparison of the tip displacement is shown in Figure 20. There is a negligible
change in result and for practical purposes a simple transfer of traction from every fluid
node to the corresponding solid node on the interface is sufficient, if structural stresses
on the interface are not of primary concern.

6.5. Parallel efficiency

The evaluation of parallelisation speed-up is of particular importance to this work,
as it serves to assess the value and impact of the purely matrix-free edge-based method-
ology developed. This was done by considering the reductionin wall-clock time in per-
forming a set number of iterations. Problem sizes of 9 000 and25 000 elements were
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Figure 18: Tip deflection of block with flexible tail using thefinite volume method with
no initial tip load compared to the results of Hübneret al. [16].

Fluid mesh Solid mesh Timestep (s)Amplitude (cm) Frequency (Hz)
6 000 40× 1 0.001 0.78 2.98
6 000 80× 2 0.001 0.78 2.98
25 000 120× 1 0.001 0.76 2.97
50 000 160× 1 0.001 0.76 2.97
6 000 40× 1 0.0005 0.78 2.97

Hubner et al. [16] 0.8 3.1
Xia et al. [29] 0.81 3.3

Table 4: Comparison of amplitude and frequency for the block-tail test-case in second
mode of vibration using the finite element method with various meshes and timestep
sizes.
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Figure 19: Tip displacement for the block-tail test-case insecond mode of vibration
using the finite element method with various meshes and timestep sizes.
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Figure 20: Tip displacement for the block-tail test-case insecond mode of vibration
using consistent and lumped traction forces at the interface.
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Figure 21: Parallelisation speed-up for the block-tail problem.

considered. Calculations were perfomed on an IBM E1350 cluster with AMD Opteron
2.6 GHz processors and Infiniband interconnects at the Centre for High Performance
Computing (CHPC), Cape Town.

The results of the study are depicted in Figure 21, where the number of iterations
achieved per second has been normalised to the value for a single processor. As shown,
increasing the number of CPUs results in a super-linear speed-up region followed by
the eventual loss in parallel performance due to inter-corecommunication becoming
dominant over computing time, which occurs only if assigning less than circa 500
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elements to a CPU.

7. Conclusions

In this paper we have developed a partitioned scheme to modelthe interaction of
incompressible viscous fluids with homogeneous elastic solids undergoing large non-
linear displacements. In the case of the fluid, an ALE Artificial Compressibility Char-
acteristic Based Split (CBS-AC) algorithm was developed, and discretised via an edge-
based hybrid-unstructured compact vertex-centered finitevolume methodology. For
the solid, both a hybrid elemental/nodal-strain approach and isoparametric Q8 finite
element methodology were used and solved via a matrix-free dual-timestepping ap-
proach. The entire fluid/solid system is solved in a manner which prioritises scalable,
matrix-free parallel computing. Coupling is on the solver sub-iteration level leading to
a tighter coupling than if the subdomains are converged separately. The scheme was
evaluated by application to benchmark problems for strongly-coupled fluid-structure
interaction problems. It was demonstrated to effect full coupling between the fluid and
solid domains, whilst furnishing accurate solutions in allcases.
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