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Abstract

A fully-coupled partitioned finite volume—finite volume ahwbrid finite volume—finite
element fluid-structure interaction scheme is presentee.flliid domain is modelled
as a viscous incompressible isothermal region governeakbiavier-Stokes equations
and discretised using an edge-based hybrid-unstructemekvcentred finite volume
methodology. The structure, consisting of a homogeneaisjsic elastic solid un-
dergoing large, non-linear deformations, is discretisgdgieither an elemenfabdal-
strain finite volume approach or isoparametric Q8 finite eets and is solved us-
ing a matrix-free dual-timestepping approach. Couplingrighe solver sub-iteration
level leading to a tighter coupling than if the subdomaires @nverged separately.
The solver is parallelised for distributed-memory systersisig METIS for domain-
decomposition and MPI for inter-domain communication. Tegeloped technology
is evaluated by application to benchmark problems for gfiyanoupled fluid-structure
interaction systems. It is demonstrated that the schefeete full coupling between
the fluid and solid domains, whilst furnishing accurate sohs.

Keywords: Fluid-structure interaction, Partitioned solution, Arbry Lagrangian
Eulerian (ALE), Finite volume methods, Finite element noet, Parallelisation

1. Introduction

While the field of Computational Mechanics has traditiopdiéen dominated by
structual and fluid modelling in isolation, many problemswérest are in truth strongly
dynamic systems where there is a close coupling between dhidsolid domains.
Fluid—Structure Interaction (FSI) modelling is a branchG@mputational Mechan-
ics which aims at accurately calculating the$keets in a quantitative manner. For
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example, in aeroelastic systems, one important phenomisrmaon-linear flutter re-
sponse which has spawned the field of Computational Aeriedd4, 2]. Computa-
tional Biomechanics is another major area in which comphaxadhic structural re-
sponses are intimately coupled with fluid flow in cardiaceaal and respiratory sys-
tems[3, 4, 5, 6]. Other examples of such problems includetiral loads on ships [7],
flow induced vibrations in nuclear power plants [8] and wiadponse of buildings [9].
Though recent years have seen much research going intowadment of FSI mod-
elling technology [10, 11, 12, 13, 14], théieient and robust modelling of large-scale,
strongly-coupled systems which involve complex geomeisstill a work in progress.
In this paper, we develop and evaluate a fully-coupled, im#itee methodology as
a contribution towards this challenge. This is incorpaidteo the Elementat flow
solver developed for multiphysics applications [15].

This work focusses on FSI systems where there are stromgatitens between the
fluid and structural domains and weakly-coupled methodsthezefore, not consid-
ered as they may diverge or result in inaccurate solutioBs]Z, 18, 19]. As a result,
recent research in the field has been devoted to developorgéy-coupled modelling
technologies. Strongly-coupled methods can be sub-fieds$nto separate or parti-
tioned and single or monolithic solution methods. The athge of a monolithic over
a partitioned approach is that all the equations are coreiid@multaneously and a sin-
gle system of equations is solved, which ensures stabititycnvergence. However,
this approach may sier from ill conditioning and convergence is generally sIQ][
The advantage of a partitioned approach is that it allowsueeof two independent
solution techniques for the fluid and solid equations inasoh. The drawback of
partitioned approaches is that they generally require arsép coupling algorithm or
additional outer iterations between the fluid and solid tuee strong-coupling, which
places an additional computational cost on the scheme [1,&1. The most popular
partitioned coupling algorithms use fixed-point iteratinathods or interface Newton-
Krylov methods [22, 20]. Fixed-point methods generally maise of Gauss-Seidel
iterations which are slow to converge and methods to aateleonvergence, includ-
ing Aitken and steepest descent relaxation and coarsggg@nditioning, have been
used [22, 19, 23, 24, 21]. The Newton-Raphson methods rethgr computation of
Jacobians, which may beficult to compute exactly and various methods have been
developed that use approximate Jacobians [25, 26, 27].

For the purpose of this work the fluid and structural domaresta be solved in a
strongly-coupled partitioned manner, where the trandf@rformation occurs at solver
sub-iteration level leading to a tighter coupling than & subdomains are converged
separately and negating the need for a separate couplingthlg. This leads to a
fully-converged solution at each timestep where both dyin@md kinematic continu-
ity — i.e. continuity of forces and velocities — are satisfegdhe fluigsolid interface.
Our approach allows independence with respect to spasateatisation of the fluid
and solid domains. Many recent FStats have made use of a single discretisation

1Elementalreferred to in this paper was a scientific toolbox founded b@.AValan and has been dep-
recated in its entirety. A new Elementdl has since been developed at Univ. of Cape Town which is being
commercialised by Elemental Numerics (Pty) Ltd.



scheme, either finite volume [28, 17, 29, 30] or finite elenj&6t 18, 31, 32, 33, 34],
to solve the entire domain, which simplifies the treatmenhbatinterface of the fluid
and solid domain. However, each method contains certaier@mt advantages and
should be used as such. In this work we have chosen to use itieevitlume method
for the fluid domain. For the solid domain, we use both thedielement method and
an enhanced finite volume method [35, 36]. The enhanced finitene method is
essentially a hybrid between the traditional node-baséi fimlume method, which
suffers from locking with high aspect-ratio elements [35], damelélement-based strain
method [29], which sfiers from odd-even decoupling. The fluid physics is described
with the incompressible Navier-Stokes equation writtendo Arbitrary Lagrangian
Eulerian (ALE) coordinate frame. A total Lagrangian for@uidn is employed in the
case of the solid. This prevents discretisation errors femtumulating over time.
Dynamic unstructured fluid mesh movement technology is ldgeel using a simple
interpolation method in the interests of computatiorfaceency and parallisability.
For the finite volume method, the non-linear, unified govegrequations are spatially
discretised via a compact unstructured, edge-based fioitene method whose spa-
tial accuracy is notionally of second order. In the intesedtboth computational and
programming #iciency, the chosen spatial discretisation algorithm sthdn@ natu-
rally applicable to any part of a fluid or solid mesh. In theeca$ the fluid, this is
achieved by employing an edge-based compact [37, 38] disatien methodology,
which holds the additional advantage of being computatipicansiderably more ef-
ficient than element-based approaches [39] while beindljdaaplicable to massively
parallel distributed memory machines. For the solid doma@use both the enhanced
finite volume method, which is a hybrid of the traditional eeolased approach and
the element-based strain method, as well as a higher-or@din@e element solver.
The coupling of a higher-order finite element formulationtfee structure and a linear
finite volume formulation for the fluid leads to non-matchimgdes at the flujgolid
interface and the transfer of information at these nodelsalgib be addressed in this
paper. Dual-timestepping [40] is employed for the purpdgemporal discretisation.

As noted, the proposed partitioned modelling method alltwscomplete flexi-
bility in terms of the solution strategy employed for the dlind solid domains as
these contain widely varying characteristic velocitiese-fluid may be incompressible
while the solid may range from compressible to almost inc@sgible. In the case of
the fluid, the Artificial Compressibility Characteristic 8d Split (CBS-AC) algorithm
[41, 42, 43] is used. This scheme combines two historicgllyosing methodologies
viz. pressure basefpressure projection — PP) proposed by Patankar [44] andethe
sity based(artificial-compressibility — AC) method introduced by Ghmo[45]. The
scheme allows matrix-free solution of compressible as aglincompressible flows,
which is of key value to large scale distributed memory cotimgu In this work the
CBS-AC algorithm has been extended to an ALE co-ordinatadraThe solid equa-
tions are solved via a Jacobi iterative dual-timesteppamgme which is implemented
such as to ensure matrix-free and robust solution. Fintid,modelling technology
outlined above is validated by application to problems friwe literature. The cou-
pled solver is applied to strongly-coupled large-disptaeat FS| benchmark problems.
Rigorous temporal and mesh independent studies are pedsent

The outline of this paper is as follows: in Section 2 we prélem govering equa-



tions for fluid and solid domains, then describe the dissa¢itbn, numerical solution
and coupling algorithm in Section 3. In Section 4 we deta! tfiesh movement algo-
rithm used, and in Section5 discuss parallelisation of tiaec We present numerical
applications in Section 6 before concluding in Section 7.

2. Governing equations

The fluid-structure interaction to be modelled consists wisaous incompressible
isothermal fluid domain and homogeneous isotropic elastid segion. The mechan-
ics of each is described via the appropriate governing émuaét, which is detailed in
this section. Note that for the purposes of this work, thelflibundary mesh is fitted
to the deforming solid.

2.1. Fluid equations

The fluid flow is governed by the Navier-Stokes equations.elimegal, these equa-
tions are expressed in an Eulerian or spatial frame of reéerewhich entails a fixed
spatial region with fluid flowing through it. For fluid-struce interaction problems the
solid deforms and displaces the fluid domain and the fluid gopusare written in a
manner which allows a Lagrangian description at the fluitdsaterface interpolat-
ing to an Eulerian description at the outer boundaries. Rigrgurpose an arbitrary-
Lagrangian-Eulerian (ALE) reference frame is used, whictoants for the motion
of the FSl interface. The ALE approach was first described by é4 al. [46] and
later adopted by many others and is now widely used for FSlicgijpns [47]. A
dynamic mesh movement algorithm that deforms the fluid meshdrefore required
and is described later. The deforming-spatial-dorfspace-time procedure [48, 49]
is another popular method for treating moving boundariekiaterfaces, while other
formulations that utilise a fixed mesh, including immersedrdary [50] and fictitious
domain [51] methods, can also be used to perform FSI sinounigti

Assuming a viscous, incompressible and isothermal fluel gtijuations governing
the fluid flow are given by the continuity and Navier-Stokesa@pns:
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wherep, Vi, p, oij and f; are the fluid density, fluid velocity, pressure, stress aray/bo
forces respectivelyy are the fixed Eulerian coordinates avidis the mesh velocity.

The term ¢; - v;) is an ALE convective velocity that results from dfeérence between
the fluid velocity and the mesh velocity. We write the goveghequations in weak
form over an arbitrary and time-dependent volutvig) as

9 wmuf (Fj+Hi—Gj)nde=f QdV, 3)
at Jy S(t) V()



where
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In the aboveS(t) denotes the surface of the volurfi&t), with n; being the outward
pointing unit normal vectow;; is the Kronecker delta ar@ is a vector of source terms
(e.g. body forces).

To close the fluid governing equations, a constitutive i@tator the stress is re-
quired. Assuming a Newtonian fluid, the relationship betwsteess and rate of strain
is given by

oV 6Vi
Go= o — + L), 6
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wherey is the fluid viscosity.

2.2. Solid equations

The partial diferential equations that describe a homogeneous isotrdgstice
solid undergoing large non-linear deformation are givendauchy’s first equation
of motion (balance of linear momentum) [52], which in a tdtagrangian formulation

IS
f(—+fi)d(Vo=f poaidq/o, (7)
v, VOX| Vo

where Pjj, fi, po anda; are the first Piola-Kirchfh stress, body force, density and
acceleration, respectively ard, is the volume of the solid body in the undeformed
configuration.

Assuming an isotropic hyperelastic St-Venant-Kirfihmaterial model, the consti-
tutive stress-strain relationship is given by

Sij = Ciju Eij, (8)

whereE;; is the Green-Lagrange strafs; is the second Piola-Kirclbstress and;j
is the fourth order elasticity tensor.

The first Piola-Kirchd stress,P;j, in Eq. (7) is then obtained by multiplying the
second Piola-Kirchfh stressSy;, with the deformation gradienty:

Pij = FikSkj. 9

The deformation gradient relates quantities in the undaeéorconfiguration to their
counterparts in the deformed configuration:

9%

Fik = w0
ik 6Xk

(10)

whereXy andx; are the coordinates of the solid in the undeformed and defdrcon-
figurations, respectively.



Finally, to close the governing equations, the relatiopdigtween strain and the
displacement field is given by

1
Eij = 5 (Hij + Hji + HiaHiq), (11)
whereH;; is the displacement gradient defined as

Hij = (12)

dx;

andu; is the total displacement of the solid, ixg.= u; + X;.

3. Discretisation and solution method

3.1. Spatial discretisation

Considering the fluid ALE governing equations (3), all soegfantegrals are cal-
culated in an edge-wise manner. For this purpose, boundirigce information is
similarly stored in an edge-wise manner and terraege-coficients The latter for a
given internal edg&n,, connecting nodes andn, is defined as a function of time as

Cinn(t) = NS, (1) + "™ S, (1) (13)

whereSmp, is @ bounding surface-segment intersecting the edge @igpand the
normal unit vectors are similarly a function of time. Thealete form of the surface
integral in Eq. (3), computed for the volume surroundingrtbdem, now follows as

f {Fi +HI _Gj}ndez Z {Emn+mmn—amn}crjnn (14)
Sm(®) Trn N Vin(t)

where alle, quantities denote edge-averaged values which are cadusatich that
second-order accuracy of the overall scheme is ensured [3The case of the fluid,
Gimpn = [Gjmn + Glmn
tang

derivatives andG/|
derivative terms.

When considering the solid governing equation, Eq. (7)h e finite volume and
finite element methods of discretisation are used. For tlite frolume method, Eq. (7)
is written in weak form as

0
—f POVid(VZf Pi,-n,-dS+f Qid(V, (15)
ot J, So Vo

wherey; is the solid velocity and); a vector of source terms. The above method of
discretising the stress term would enforce continuousigrasl at nodes and element
boundaries. To remedy this we consider the element-basaid-approach of Xia and
Lin [29], and utilise a hybrid technique. Here, straias and E,, are evaluated at
nodes and averaged to obtain face values (as per the abdergatE;, is evaluated

], whereG/|__is calculated by employing directional
norm 9

norm 1S @pproximated by employing the standard finite volume first



at the element centre and averaged with the neighbourimgegies value to obtain
the value at the shared face. This approach was found to bparaivlie in accuracy
to the cited element-based approach while eliminating @&t decoupling from the
solution.

Next, the standard Galerkin finite element method of diggagbon is used for spa-
tial discretisation of the solid governing equations. Asgwg the body forces to be
negligible, casting Eg. (7) into weak form based on the me¢thfoveighted residuals
and applying the divergence theorem of Gauss gives the glemeak form of the solid
mechanics boundary value problem:

Ay Vo o

where A, is the boundary surface where the surface tradfjas prescribed and is
the weighting field. Instead of solving for all possible setwaighting functions for
w to obtain an exact solution, we consider only a finite set atfions forw. These
functions are chosen as piecewise-continuous low-ordgnpmial functions defined
on sub-domains (elements) within the total don&nand are referred to as basis or
shape functionsN]. The weighting field is now interpolated between nodal vaéity
values{W} using these shape functions, i.e.

w = [N] {W}. (7)

The primary variable, viz. the displacement fields interpolated over an element
using the same shape functions (Bubnov-Galerkin method):

u=[N]{U}, (18)

Figure 1. Schematic diagram of the construction of the medizal-mesh on hybrid
grids. HereX'nn depicts the edge connecting nodeandn.
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Figure 2: Isoparametric Q8 element in physical space @eift) reference space (right).

where{U} is the vector containing the nodal displacements. The domaliscretised
into a finite number of non-overlapping control volumes eneént domaingd/e, which
are defined in the undeformed configuration. Simplifying @&, and expressing it as
the sum over all the elements within the domain gives

T T — T _ T
gpo L NN d(vo{U}-; fﬂ RS Z B Pave. (9)

where B] is a matrix containing the derivatives of the shape funiand{P} is a
vector containing the first Piola-Kirclfitstress.

In this work the solid domain is discretised into eight-nd@®parametric quadri-
lateral elements. Figure 2 (left) shows an actual Q8 elenmephysical space and
(right) is the reference element mapped or transformedyusiference or natural co-
ordinates andn. The integral of the spatial term in Eq. (19) is performed puoally
using Gauss quadrature, i.e. the integral is evaluated peeife number of Gauss
points, the result is then multiplied by a weighting fadfdsp and the results summed
over all the Gauss points. The discrete equation is thexefor

Spo [ NI INIAVolU) = Do fFent = Y| Y BT PIdetOMen . (20)

e e \Gauss pts

where the external loads are simply denotedFag:} and det) is the determinant of
the Jacobian matrix and is used to transform the integr&lérphysical coordinates to
that in the reference coordinates.

3.2. Geometric conservation

In order for the fluid solution to be as transparent as posdiblthe movement
of the mesh, an identity known as the Geometric Conservaigon(GCL) should be
obeyed [53, 54, 55]. It asserts that the momentum flux intolladce to the motion
of the faces should be consistent with the change in momeaofuhe cell due to its
changing volume. That is, the discretised version of

0

—f dv=| vnds. (21)
ot Jg S0
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should hold exactly, which implies that constant spatidtifewill be undfected by
arbitrary mesh deformations. The GCL can therefore be saithpose a specific
relationship between mesh deformation and the mesh-welfieid. In order for the
GCL to hold we could discretise the equation above at nods

ViVl Vi

At LmnNV(t) At

(22)

wheresV},, is the volume swept out by the face lying between nadesidn between
time-stepg andt + At, as in [55], andV, the volume of the dual-cell containing node
m. Alternatively, to second order accuracy

BV - 4VE + VRS 5 36V, — SV (23)
2At <.

So, in order for our discretisation to be consistent with@&L, the mesh velocity flux
ViChnin the discretisation of (3) is set equal t&{&,, — Vi) /2At.

3.3. Temporal discretisation and solution procedure

The solution procedure is to allow for fully coupled solutiof all descritised equa-
tions while allowing independence in terms of discret@atnd solution strategy em-
ployed for the fluid and solid domains. We therefore advoeateatrix-free iterative
solution process where fluid-solid interface nodes compaigeivelocities and tractions
at each iteration. The resulting solution procedure isitet&elow.

For the purpose of transient calculations, a dual-timpgsitey temporal discreti-
sation [40] is employed such that second-order temporalracy is achieved while
ensuring that all equations are iteratively solved simmdtausly in arimplicit fashion.

3.3.1. Fluid

The real-time temporal term is accordingly discretised athded as a source term
to the right-hand-side of the discretised fluid equation as

3\IVITVT _ 4Vvltvt + Vvi[—Atvt—At

VT =
Q 2At

(24)

fori = 1,2 whereAt denotes the real-time-step size, th&uperscript is the previous
(existing) real time-step anddenotes the latest known solution to the time-step being
solved for viz.t + At.

Considering next the solution procedure, we observe thidgriirst instance, spa-
tial discretisation of the convective terms via linear iptdation results in destabilising
odd-even decoupling. Second, the incompressibility oflthié results in an overly fi
system. These are circumvented in this work without the ddsmtional second-order
accuracy via the Artificial Compressibility Characteddtiased Split (CBS-AC) algo-
rithm [41, 42, 43], which has been demonstrated to be robfistient and accurate.



To adapt the CBS-AC algorithm to ALE domains we consider Bjyjw(th a time-
dependent dual-cef/(t) which is moving at velocityu;, from which the first incre-
mental solution step written in semi-discrete form folloags

LRV (R SN
V7= (FI -Ghn;ds

+ QiVI" (25a)
AT S(t)

T At 0
+ —(Vk — V) —(pVivj)nd S
»[S(t) 2 K 6XJ t
fori = 1,2, where ther superscript denotes the previous (existing) solution eugde

time-step and\r is calculated as in Eq. (32)AW is an auxiliary variable which is
used in the second step as:

1 T+AT _ AT
1otepy |
¢z Ar ()

Herec, denotes the pseudo-acoustic velocity which is given by

T

AW OH)
PVk + AT nds| . (25b)

At _6—)(j

¢? = max[e?; 1.2v;vj]

wheree is typically chosen as.Qumax Where umax is the peak flow velocity in the
domain [40].

The third and final incremental solution step written in seliscrete form now
follows:

T+AT

VviT+AT _ Vvl‘r AVVI* )
Vi AV —f HindS
AT AT S(t) !

Finally, the fluid mesh velocityy is calculated via second-order backwartfet-
ence as follows:

=R((W) fori=1,2 (25c)

3% — 4% + X
k- 2At
where the nomenclature is as defined previously.

(26)

3.3.2. Solid
For the solid equation using the finite volume method, a sinsburce term is
added to the right-hand side of the discretised version of E5), namely

3V — 4Vt VA
2At

where the nomenclature is as defined previously.
With the finite element method and using the same approach@asaEq. (19)
becomes

Q'Vo = —po Vo (27)

VIFAT v VAT — 4y 4 Vit
ze:[Me]lumpedT =RHS - ;[Me]cons AL s (28)

where Me]cons = 0o f% [N]T [N] dV, is the element consistent mass matrix aMd]fumped
is the lumped mass matrix obtained from the HRZ lumping apging56].

10



For the solid domain, a second-order accurate single-swgedure [57] is em-
ployed:

3urtAT — qun + Ut
u;’+AT — uiT + AT(V}H—AT _ | i i )+

2At

1, VAT — 4y 4 vt
EAT Po(Vm(RHShiT - Ze:[Me]cons AL q/m). (29)

AT VAT _ 4y 4yt
j{'+AT — T - RH . M | ] | (V ) 30
K i Ze[Me]lumpeJVm( Slu' Ze:[ elcons 2At m)- (30)

wherel’ denotes a projected displacement which is calculated as
. _BurtAT— A + Ut

Ui =uf + Ar(vi - AT ) (31)

3.3.3. Pseudo-timestep calculations

The pseudo-timestep local to each computational cell isetddtermined in the
interest of optimal convergence while ensuring a stablet&wsl process. An accurate
estimation is therefore required for which the followingeassion is employed:

At = CFL

* -1
Ui — U7 | + Cynifi
|Ui i | unified . 2/1 } (32)

K
AX; ,oAXi2

where CFL denotes the Courant-Friedrichs-Lewy numbey,is the dfective mesh
spacing in directiom andk is equal to 1 in the fluid domain and 0 in the solid domain.

Further,
Cunified = KC- + (1= ) (VK/po + V1/po). (33)

Finally, in the case of transient analyses, we treat the-tion@stepping term im-
plicitly, i.e., changer to r + At in (24) and (27), in order to maintain stability in cases
whereAr is comparable to or larger that [58].

3.4. Fluid-solid interface treatment

At the fluid-solid interface, the following equations foattion, displacement and
velocity are prescribed:

Tj = pnj —oijhi

f_ s
Xj =X
where the superscripfsands respectively denote fluid and solid angdis the related
normal unit vector pointing outward from the fluid domain.eT&bove are prescribed
as part of the pseudo-stepping iterative procedure in a eramhich dfects a stable
solution process.

11



Figure 3: Arbitrary solid edge along the FSl interface.

3.4.1. Consistent nodal loads

For the purpose of this work fluid and solid interface nodeaade, which sim-
plifies the transfer of information between the fluid anddalomains. However, the
Q8 element contains an additional node at the mid-point efyegdge, which means
there is an unconnected solid node for every element alaminthrface. Therefore,
the transfer of traction from the fluid to the solid domain take evaluated in terms of
conservation of momentum and accuracy on the overall soi(if9, 60]. Two options
exist: the traction from every fluid node on the interfacer@sferred to the corre-
sponding solid node and the mid-nodes are ignored, whidfisata global conserva-
tion of forces, or the traction from the fluid nodes are rettigted to every solid node,
which locally is consistent with the finite element methodr the latter approach, and
referring to Figure 3 which shows the traction imposed onraitrary solid edge along
the FSl interface, the consistent FEM nodal loads are giyen b

(F} = beL[N]TtdL (35)

where N] contains the shape functions associated with each nodg #ie edgel. is
the length of the edge aris the depth of the element.

Assuming the tractiom varies linearly betweety andt, (which is the case with
the fluid discretisation [61]), Eq. (35) can be expanded as

lel N]_ 0

lez 0 N]_

Fo, | (| N2 O ty,, t, |]dL
o] el el e e
Fs, N: O

F3X2 0 N3

where the integral is transformed to the natural coordiapstem ands; are the linear
shape functions assumed for the traction.

12



Substituting the quadratic shape functions associatddesith node along the edge
and simplifying gives

Fi, ~3¢(1-8) 0

Fi, 0 ~36(1-9)
Foo | _p fl le@+¢) 0

Fa, -1 0 %f(l +&)
Fs, (1-8) 0

Fs, 0 (1-8%

{ (1-9t, +3(1+ 9,
(1-9t, + 31+ 9ty

The integrand is a fourth-order polynomial. Analyticaldgtation gives the closed
form expressions:

}(—%(1—2§)x1+%(1+ 26)%p — 26x3)dé. (37)

Fi,, — 2513ty + 22Xty + 3oty + 2Xoty, — 16Xsty, — 4Xats, )
Fi, —3%(13x1tlx2 + 2%ty + 3Xoty, + 2oty — 16Xty — 4Xatz, )
Fa, | _ ] @ty +3xt, +2%t, +13%t, —4xst, — 16Xty )
F2X2 - ﬁ)(le'[]_x2 + 3X1t2x2 + 2X2'[;|_X2 + :|.3X2t2x2 - 4X3'[;|_X2 - 16X3t2x2)
F3><1 _%(7X1tlx1 + 3X1t2xl — 3X2t1x1 - 7X2t2xl - 4X3t1x1 + 4X3t2x1)
F3x2 —%(7X1t1x2 + 3X1t2x2 - :.";Xz'[]_x2 - 7X2t2x2 - 4X3t;|_x2 + 4X3t2x2)
(38)

The expressions above give the consistent FEM nodal loadsafth node along
the FSI interface as a function of the tractions imposed byfltlid domain.

3.5. Solution procedure

For the purpose of simultaneous solution of the discrefilsgdsolid equations in
a manner whichféects strong coupling, the following solution sequence ipleyed
in an iterative fashion:

1. The fluid and solid discrete equations are solved conctlyreia a single itera-
tion of (25), (29) and (30).

2. The calculated fluid traction is then applied to the sobdrdary and the solid
velocities to the fluid boundary.

3. The above is repeated until convergence, with the meshrooled if a solid
mesh boundary node displacement exceeds 30% of the eleizept $he resid-
ual of the fluid or solid mesh has been reduced by four ordersagfnitude (a
real-time-step is considered converged when the residual 8uid and solid
equations have dropped by at least 5 orders of magnitude).

4. The residuals are now calculated for all equations, aladlder than the conver-
gence tolerance steps 1-3 are repeated.

5. If the residuals are below the convergence tolerancegtieimestep is termi-
nated, and the next time-step entered by proceeding to step 1

13



4. Dynamic mesh movement

The mesh movement strategy employed is an interpolatiozegltare which, while
offering no guarantees about element quality, has no signiftcemputational cost and
is well suited to parallel computing. This approach entagtiistributing internal fluid
nodes via the following interpolation function:

AXj = TAX + (1= T1)AXS,

whereAxt and Ax? denote the displacements of, respectively, the closest flade
at the fluid-solid interface, and the closest external bamdode, from their initial
locations. Alsoy, which varies between zero and one, is computed as

Dp
r=——=2— withp=23/2.
D! + D

Here,D; andD; are the distances between the node being moved and itstdluses
nal and external boundary points, respectively, in the fordeed configuration. This
formula was tuned to the geometry of the large-displacemetilems considered be-
low, although it has been found to perform well for more gah@roblems which
involve small to moderate displacements. Since the clgga@nats and the values of
are calculated only once at the beginning of the analysésatiplication of the mesh
movement function is essentially instantaneous, and ttehml also not deteriorate
due to repeated oscillations as it will always return to thigal configuration.

5. Parallelisation

Because of the fully matrix-free nature of the numerical hmodtat solver sub-
iteration level, data reference is local (nodes only seghi®uring nodes) meaning
that the mesh can be decomposed into separate subdomapasdtiel operation. As
the operation count for each edge is very nearly identibalnumber of edges in each
domain was balanced fofficient operation. This is done by weighting each node with
an integer equal to the number of edges which connect talibwed by applying the
METIS library [62] to its connectivity graph. For the purgosf interdomain commu-
nication, a system of “ghost nodes” is used in this work, \eitle layer of overlapping
nodes at domain boundaries, where ‘slave’ nodes are updétethe values from cor-
responding ‘master’ nodes in the neighbouring domain. Hwoiency, data transfer is
consolidated into the largest possible packets and conwatad using MPI.

An example of the overlap of domains due to the inclusion afsgihodes is shown
in Figure 4. The inset shows extended overlap near the boymtie to the larger
stencil required for certain types of boundary conditions.

6. Application and evaluation

The developed FSI algorithms have been benchmarked witlicappn to two-
dimensional problems from the literature for which the tesscan be compared with

14
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Figure 4. Example of domain decomposition showing one-el@noverlap due to
ghost nodes and extended overlap near the boundaries.

analytical solutions or the results of others. The extengicthree-dimensional prob-
lems follows easily, apart from the expected additional potational cost. The meshes
employed range from structured to hybrid-unstructured,soiutions were only con-
sidered converged once the residual had been reduced bgEsafinagnitude. Vali-
dation of the fluid solver for stationary meshes has preWydusen performed in [41].

6.1. Dynamic piston-channel system

The first test-case considered was that of a piston-chagaeda with a varying
fluid domain. The system geometry and boundary conditiomdgescribed in Figure 5.
The channel is 11 m long and is partially filled with an invésaaicompressible fluid
with an elastic piston situated to its left. A prescribededly, v(t), was imposed on the
piston, which pushes the fluid out of the domain. A zero pnesboundary condition
was imposed at the outflow boundary and slip boundary canditivere imposed along
all the channel walls. The piston has a Young’s modulus ef 10 Pa and density and
Poisson’s ratio of zero. A linear elastic solid model wasdui® this problem for
comparison with others [16]. The fluid has a dengity= 1 kg n2.

This problem was chosen as the coupling between the fluid alid domain is
strong and partitioned FSI solution schemes usually de/ésgsuch a problem, even
with large under-relaxation [16, 47]. An analytical sotutiexists for this system,
which can be considered as a simple 1D problem.

To obtain an analytical expression for the displacementwahakity of the inter-
face, the system can be treated as a 1D spring-mass systehovas in Figure 6. The
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Figure 5: Geometry and boundary conditions for the pistoartel system.
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m(t)

 ——

v(t) = 0.2t

Figure 6: Representative spring-mass system for the pidtannel configuration.

elastic piston acts as a linear spring and the incompred$ild as a variable mass [16].
Applying a balance of forces at the interface gives:

Fspring+ Fmass= 0 (39)
therefore,
_ dVint
K(Uint — u(t)) = _mW (40)

whereFspring and Fnassare the forces exerted by the spring and megsandviy; are
the displacement and velocity of the interfang) is the prescribed displacement of the
left wall, k is the equivalent spring constant amds the mass of the fluid. Substituting
the properties of the piston and fluid for the spring and maspectively, yield the
following expressions for the velocity and displacemerhatinterface of the system:

det _ 10(uint - 01t2)
dt (U - 10) (41)

% = Vint-

The fluid domain is discretised using three cells. The sotichdin is discretised
using either a single finite volume cell or a single Q8 finiteneént. The resulting
computed time history of the displacement and velocity &f ititerface is shown in
Figure 7 for the finite volume method and in Figure 8 for thetémlement method. As
shown, both the schemes results in an accurate solutiontdbr o achieve stability
for this problem, under-relaxation was necessary by reduitie CFL number by an

(42)
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Figure 7: Displacement (left) and velocity (right) of thedrface of the piston and
channel using the finite volume method. The lines show theilsitad response and
the circles the analytical solution. This is identical te tlesult presented in [16].
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Figure 8: Displacement (left) and velocity (right) of thedrface of the piston and
channel using the finite element method.
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Figure 9: Displacement (left) and velocity (right) of theédrface of the piston-channel
using various meshes.

order of magnitude. However in all other more realistic Fllgbems considered, no
under-relaxation was found to be required.

Figure 9 shows the results obtained usinfjedtent meshes for the fluid and solid
domain, i.e. one solid and ten fluid cells ¥110), one solid and twenty fluid cells
(1 x 20), and five solid and ten fluid cells ¢610). This demonstrates stability and
robustness in the scheme.

Velocity contours of the solid and pressure contours of thid fit various times are
shown in Figure 10. The velocity field is linear in the solidyile the pressure field is
linear in the fluid. A second-order accurate scheme is thlsstalpredict the solution
exactly.

An investigation was conducted on this problem to deterriiresensitivity of the
average number of iterations required per time step withaetsto the fluid-structure
density ratio. The result, shown in Figure 11, indicateg tha FSI system is less
stable numerically when the density of the solid decreasésjve to the fluid. As the
solid mass increases (or fluid density decreases) the katcatided masstiect’ [63]
becomes less significant and the system converges quicker.

6.2. Block-tail in first mode of vibration

The second test-case considered was that of an elastic bethmivake of a rigid
square block. This is a popular FSI benchmark test-casenthsitfirst proposed by
Wall [64] and studied by many other researchers [16, 34, 98,18 these publications,
various diferent combinations of material properties, initial coiwtis and Reynolds
numbers have been considered. In this work, we have coesidlee cases studied by
Hubneret al. [16]. The geometry and boundary conditions are shown inreidi2.
The properties of the incompressible fluid are: densjty= 1.18 x 102 g cnT2 and
viscosityus = 1.82x 10 g cntt s, while that of the beam are: densjty = 2.0 g
cm 3, Young’s modulu€ = 2.0 x 10° g cnTt s72 and Poisson’s ratie = 0.35.
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Figure 10: Velocity contours of the piston and pressureaanstof the fluid at various times.
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Slip boundary condition

Vin = 3L5cms?
Pout = 0

lcm : @z : 0.06 cm 12cm

45cm lcm 4cm 10 cm

Slip boundary condition

Figure 12: Geometry and boundary conditions for the bl@kRSI test-case.

Three meshes with varying density were employed (Figurdri8)e interests of
finding a mesh-independent solution. The fluid meshes doos&000, 25000 and
50000 fluid cells respectively. For the analyses using thieefiolume method for
the solid, structured meshes consisting of 12 elementsigfrthe thickness were em-
ployed, as this was found to produce a solution within 1% efdhalytical solution
for a static cantilever beam undergoing large displacesaéltie number of elements
along the length of the beam was respectively selected &28nd 160 for the three
different fluid meshes, in order to line up with the fluid nodes.dditon, to evaluate
solution independence with respect to the solid mesh, aa exialysis was performed
with a 320x 24 solid mesh — i.e. half the mesh spacing in both directiomscen-
junction with the 50 000 fluid mesh. With the finite element ot for the solid, the
structure was discretised using a single layer of 40 Q8 el¢srend a finer mesh of
80x 2 Q8 elements was used to evaluate mesh independence. Eistémsize used
in the aforementioned analyses wets= 0.001 s, and the accuracy of this was verified
by comparing with additional analyses with varying timepssizes.

The beam was given an initial deflection due to a temporargt bnad the plane
strain assumption was used. This problem was considerecubyét et al. [16]. In
order to fit the initial deflection of the beam as shown in [I6& piecewise-constant
tip-load as a function of time was determined empiricallg @shown in Table 1.

The large deflection of the beam causes a vortex to develdpeooyiposite side of
the deflection. This vortex moves along the beam and breakg asithe beam reaches
its maximum deflection. As the beam moves in the other dvact smaller vortex of
opposite rotation develops at its tip and also breaks awangd-amplitude oscillations
of the beam occur in its first mode of vibration. Plots of thegsure and velocity
contours are shown in Figure 14.

The tip displacement of the beam is compared with the restiliaibner et al. [16]
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Figure 13: Block with flexible tail: (a) 6 000 cell mesh; (b)erple of deformed mesh;
(c-e) Close up views of 6 000, 25 000 and 50 000 cell meshescagely.

Time (s): 0-0.1 0.1-0.15 0.15-0.2 0.2-0.3 0.3-0.4 0.4-0.55-006
Force (g cm 39): 0 0.35 1.5 2.3 3.1 4.2 6.5
Time (s): 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 1.0-1.1 1.1-1.22-113
Force (g cm 32): 6.5 5.5 5.0 4.0 3.0 2.0 1.0

Table 1: Piecewise-constant force as a function of timeiagpb tip of beam to repro-
duce initial deflection in results of [16].

in Figure 15 using the finite volume method and in Figure 1@g$he finite element
method. The finite volume and finite element FSI formulatiprevide very similar
results. When compared with published data [16], there igfarénce in the initial
response, but the results compare well as the limit-cyaleashed. Since the details
of the initial conditions imposed on the flow and the solid 18] are not known, the
initial discrepancy is not considered significant. A rigaganesh and temporal in-
dependence study was conducted. To evaluate mesh independethe fluid, the
simulations were carried out on all three fluid meshes anddhalts shown in Fig-
ure 15(b) and Figure 16(b). There is a significant changeenstiiution from the 6
000 to the 25 000 element mesh, but negligible change betéeed5 000 and 50
000 element mesh. Next, temporal independence was evéloyatesing four diferent
timestep sizes varying from 0.005s to 0.0005s. The timehjish Figure 15(c) and
Figure 16(c) show good convergence and independence ieshés. Finally, to eval-
uate mesh independence of the solid a finer solid mesh twicsizle was used and it
was found that the results are identical to the coarser sndish case (see Figure 15(d)

21



Pressure Velocity Magnitude
0.5 70

0 g | 60
1 : 40
20

=
-2
-3
-3.5 (0]

Pressure Velocity Magnitude
05 70

60
| a0
0

Pressure
0.5

0 3 60
I |8 & A0
f20

5 (0]

Velocity Magnitude
70 |

=1
-2
-3
-3.

Figure 14: Pressure (left) and velocity contours (right)f@ block-tail test-case with the beam
oscillating in its first mode of vibration.

and Figure 16(d)). A comparison of the frequency and angiditior diferent meshes
and timestep sizes is shown in Table 2 for the finite volumehoeand in Table 3 for
the finite element method.

6.3. Block-tail in second mode of vibration

In the final test-case, the same block-tail geometry as atvageconsidered but a
uniform constant fluid velocity;, = 315 cm s, or Reynolds numbeRe = ”fﬂ% =
204, was applied at the inlet while at the exit the pressure sea to zero. The plane
stress assumption was used. The inlet velocity results itices that are shed from
the corners of the block periodically at a frequency af Biz, which is close to the
second natural frequency of the beam & Blz. The fluid passes over the beam as
symmetric vortices develop on either side of it. The symynefrthe vortices breaks,
which results in uneven forces on the beam inducing vibnatiof small amplitude.
The oscillation of the beam results in further disturbantéhe flow, which in turn
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Figure 15: Tip deflection of block with flexible tail using tfiaite volume method with initial tip load
given in Table 1. (a) Results on the 50 000 node fluid mesh a@ick 22 solid mesh with a timestep size
At = 0.005 s compared with the results of Hubeéal.[16]. (b) 6 000, 25000 and 50 000 element fluid
meshes with 4& 12, 120x 12 and 160« 12 solid elements respectivelyt = 0.005 s. (c) 160« 12 and
320x 24 element solid meshes. 50 000 fluid elementsAtnd 0.005 s. (d)At = 0.01 andAt = 0.005 s
with 50 000 fluid elements and 16012 solid elements.

Fluid mesh Solid mesh Timestep (s§)Amplitude (cm)  Frequency (Hz
6 000 40x 12 0005 2.03 086
25 000 120x 12 0005 222 083
50 000 160x 12 001 222 083
50 000 160« 12 0005 221 083
50 000 320x 24 0005 2.20 082
Hubner et al. [16] 1.98 079

Table 2: Comparison of amplitude and frequency of limitieyoscillation for the
block-tail test-case in first mode of vibration with variomeshes and timestep sizes
using the finite volume method.
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Figure 16: Tip displacement for the block-tail test-caséirst mode of vibration with various meshes
and timestep sizes using the finite element method.
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Fluid mesh Solid mesh Timestep (§)Amplitude (cm)  Frequency (Hz
6 000 40x 1 0.001 2.04 084
6 000 80x 2 0.001 2.04 084
25 000 120« 1 0.001 217 083
50 000 160« 1 0.001 2.18 082
6 000 40x 1 0.0005 2.04 084
Hubner et al. [16] 1.98 Q79

Table 3: Comparison of amplitude and frequency of limitleyoscillation for the
block-tail test-case in first mode of vibration with variougshes and timestep sizes
using the finite element method.

induces larger displacements of the beam. Within each ghetva vortices develop
on one side of the beam while a larger vortex develops on ther gide, as shown in
Figure 17. The system builds up to large oscillations of t@h in its second mode of
vibration as vortices are shed periodically from eitheesidit.

The finite volume and finite element FSI formulations, oncailagproduced very
similar results. Using the finite volume method FSI formiglaj the 25 000-element
fluid mesh and 16& 12 solid mesh for this problem, and a time-step @f(ds, the
expected match of results compared to those reported irgfE63hown in Figure 18:
The amplitude (0.76 cm) and frequency (2.8%) ®f second-mode vibrations are within
4% and 7% respectively. Note that the results of Hulated. were temporally Giset
to align limit state results. This is because the initialeirtd the oscillations is thought
to be an artifact of a particular numerical scheme as thesy# in a state of unstable
equilibrium to begin with. Using the finite element formudat, the time history of
the tip displacement of the beam is plotted in Figure 19¢aether with the results of
Hubner et al. [16]. There is a good correlation between tregets of results, with
the amplitude and frequencyftéiring by less than 3% and 4% respectively as shown
in Table 4. A comparison of the results using three fluid mestié 000, 25 000 and
50 000 elements is shown in Figure 19(b). A small change intiewi is observed
from the 6 000 to the 25 000 element mesh, but a further dogiloifrthe number of
elements results in a negligiblefidirence. Next, to evaluate mesh independence of
the solid a finer solid mesh of 802 Q8 elements was used and it was found that the
results are identical to the 401 solid mesh case (see Figure 19(c)). Finally, temporal
independence was evaluated by using fotfiedént timestep sizes varying from 0.005s
to 0.0005s. The time history in Figure 19(d) as well as thelltes Table 4 show
good convergence and independence in the results. Theefiegand amplitude for
different meshes and timestep sizes are summarised in Table 4.

6.4. Consistent nodal loads

An evaluation of the transfer of traction forces from thedlto the solid domain
was conducted. Since the Q8 element contains an additiodal at the mid-point of
every edge there is an additional unconnected solid nodeeafE$! interface. This
complicates the transfer of the traction forces: eithertthetion at every fluid node
on the interface is transferred to the corresponding sadiden which will satisfy a
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Figure 17: Pressure (left) and velocity contours (right)tfee block-tail test-case with the beam oscil-
lating in its second mode of vibration.

global balance of force, or FEM nodal loads, as describedémtevious section and
which are consistent with the finite element method, areutatied and the traction
distributed to every solid node at the interface. Both apphes were implemented
and a comparison of the tip displacement is shown in FigureTR@re is a negligible
change in result and for practical purposes a simple transfeaction from every fluid
node to the corresponding solid node on the interfaceficgnt, if structural stresses
on the interface are not of primary concern.

6.5. Parallel gficiency

The evaluation of parallelisation speed-up is of particirgortance to this work,
as it serves to assess the value and impact of the purelyxAfice edge-based method-
ology developed. This was done by considering the reduatiomll-clock time in per-
forming a set number of iterations. Problem sizes of 9 00025000 elements were
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Figure 18: Tip deflection of block with flexible tail using tfirite volume method with
no initial tip load compared to the results of Hibe¢al.[16].

Fluid mesh Solid mesh Timestep (s§)Amplitude (cm)  Frequency (Hz

6 000 40x 1 0.001 0.78 298

6 000 80x 2 0.001 0.78 298
25 000 120« 1 0.001 0.76 297
50 000 160« 1 0.001 0.76 297
6 000 40x 1 0.0005 0.78 297
Hubner et al. [16] 0.8 31

Xia et al. [29] 0.81 33

Table 4. Comparison of amplitude and frequency for the blailktest-case in second
mode of vibration using the finite element method with vasioveshes and timestep

sizes.
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Figure 19: Tip displacement for the block-tail test-cassecond mode of vibration
using the finite element method with various meshes and tepeszes.
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using consistent and lumped traction forces at the interfac

70 : : : .
9,000 cells  x
25,000cells &
60 _ . |
Linear speedup--------- -

50 |

40 |

30 |

Speed-up in CPU time

20 +

O 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Number of Processors

Figure 21: Parallelisation speed-up for the block-tailbeon.

considered. Calculations were perfomed on an IBM E135Qeiwgith AMD Opteron
2.6 GHz processors and Infiniband interconnects at the €émtHigh Performance
Computing (CHPC), Cape Town.

The results of the study are depicted in Figure 21, where tineber of iterations
achieved per second has been normalised to the value fagla pirocessor. As shown,
increasing the number of CPUs results in a super-lineardsppeaegion followed by
the eventual loss in parallel performance due to inter-coramunication becoming
dominant over computing time, which occurs only if assigniess than circa 500
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elements to a CPU.

7. Conclusions

In this paper we have developed a partitioned scheme to ntloeléhteraction of
incompressible viscous fluids with homogeneous elastidsaoindergoing large non-
linear displacements. In the case of the fluid, an ALE Ar@fic€ompressibility Char-
acteristic Based Split (CBS-AC) algorithm was developed, discretised via an edge-
based hybrid-unstructured compact vertex-centered finkeme methodology. For
the solid, both a hybrid elemengabdal-strain approach and isoparametric Q8 finite
element methodology were used and solved via a matrix-foeé-ttimestepping ap-
proach. The entire flujdolid system is solved in a manner which prioritises scalabl
matrix-free parallel computing. Coupling is on the solve-steration level leading to
a tighter coupling than if the subdomains are convergedragglg. The scheme was
evaluated by application to benchmark problems for stiyoglpled fluid-structure
interaction problems. It was demonstratedfi@et full coupling between the fluid and
solid domains, whilst furnishing accurate solutions incakes.
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