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Abstract 11 

The growing energy crisis has necessitated the expansion of thermal power stations to meet 12 

South Africa’s electricity needs. Possessing vast amounts of coal deposits, the Waterberg region 13 

of the Limpopo Province is set to undergo rapid transformation as new power stations and coal 14 

mines are built, expected to exacerbate water shortages. Detailed baseline information to assess 15 

future impacts on key plant species is lacking compromising biodiversity conservation efforts in a 16 

region where eco – tourism is a major source of livelihood. In this study we evaluated the spatio 17 

– temporal distribution plant status during wet and dry seasons using two measures of plant 18 

stress namely the midday leaf water potential (LWP), and leaf nitrogen (N) concentrations. At leaf 19 

level, spectral indices such as the moisture stress index (MSI), normalized difference water index 20 

(NDWI), and the water index (WI) predicted more than 70% of LWP variation using leaf 21 

reflectance data. At landscape level, red edge based simple ratio indices were selected for 22 

mapping leaf water potential and leaf N for wet and dry season using RapidEye data. We 23 

conclude that remote sensing images can be applied for the long term vegetation monitoring for 24 

future biodiversity conservation efforts. 25 

 26 

Key words: Leaf Nitrogen, Leaf water potential, Hyperspectral, Leaf reflectance, Plant stress, 27 

RapidEye imagery, Red Edge band, Vegetation indices. 28 
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1. Introduction  30 

   Global change including land cover or use and climate changes due to increasing economic 31 

activities and growing populations as well as alterations in temperature and precipitation regimes 32 

pose major threats to freshwater ecosystems and biodiversity in many catchments (Dye et al., 33 

2008; Everson et al., 2012; Staden and Bredenkamp, 2005; Zhu and Ringler, 2012). These 34 

influence water availability to vulnerable ecosystems such as plant communities which are vital 35 

sources of food and shelter for animal, bird, and aquatic species.  For example, Waterberg 36 

region which is relatively pristine in South Africa is set to experience drastic transformation. New 37 

thermal power stations and coal mines are being developed to stem a growing energy crisis in 38 

South Africa (Corbett et al., 2008; Orbeholster et al., 2010). Waterberg region constitutes close to 39 

50% of the remaining coal reserves in South Africa, and has a huge economic development 40 

potential to allay some of the highest unemployment levels (Mgojo, 2012). Besides the coal 41 

deposits, the region is also rich in biodiversity inhabiting rare freshwater fish species such as the 42 

Ophrydium versatile, which are not known to occur anywhere else on the African continent 43 

(Orberholster et al., 2010) and rare wetland plant species such as the Oryza longistaminata 44 

(DWA, 2008), among others. 45 

   The planned large scale land use changes in the Waterberg will inevitably have adverse 46 

impacts on the environment given that the region is already severely water stressed (Staden and 47 

Bredenkamp, 2005). The goal of our study is to provide detailed quantitative information on 48 

typical water stress levels of dominant indigenous plant species in the region under the current 49 

land and water allocation practices thereby filling an important information gap. We use this 50 

information to identify potential remote sensing tools that can be used for future monitoring of 51 

plant stress which is expected to worsen as pressure on the limited water resources intensifies. 52 

Remote sensing techniques have been used to estimate biophysical parameters (e.g. leaf area 53 

index - LAI, biomass) and biochemical parameters (e.g. leaf water content, leaf N and leaf 54 

pigments) at scales ranging from local (Dzikiti et al., 2011; Stuckens et al., 2011; Ramoelo et al. 55 

2011) using portable spectrometers to regional scales using air or space-borne sensors 56 

(Ramoelo et al. 2011; 2012; 2013). Commonly used approaches employ empirical statistics that 57 
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correlate vegetation indices with biophysical or biochemical parameters (Eitel et al., 2008; 58 

Ramoelo et al. 2012). 59 

   A common challenge in using broad band vegetation indices for plant parameter estimation is 60 

the saturation problem (Tucker, 1977). This phenomenon normally occurs during peak vegetative 61 

growth phases when the ability of the vegetation indices to detect small changes in plant 62 

attributes such as the LAI diminishes (Tucker, 1977; Mutanga and Skidmore, 2004). The 63 

saturation problem has been circumvented with the advent of the red edge position (Mutanga 64 

and Skidmore, 2004). The red edge position is a second generation of vegetation indices and is 65 

known to be positively correlated to pigments and nutrients, mainly chlorophyll and leaf N, 66 

minimize background effects (Horler et al., 1983; Cho and Skidmore, 2006). Confirming the 67 

importance of the red edge position is the fact that modern satellite sensors are strategically 68 

equipped with the red edge band to enable the quantification of biochemical properties of plants 69 

such as leaf N concentrations at larger spatial scales (Eitel et al., 2008; Ramoelo et al., 2012). 70 

Leaf N concentration is often used as a surrogate measure of vegetation condition or quality 71 

(Clifton et al., 1994; Wang et al., 2004). Use of this biochemical property assumes a linear 72 

relationship between leaf N and chlorophyll whose concentrations are known to be highly 73 

sensitive to plant satus (Yoder and Pettigrew-Crosby, 1995; Hansen and Schjoerring, 2003). 74 

 The main objective of the study was to assess the potential of remote sensing tools to monitor 75 

plant stress of dominant indigenous woody plant species in the Waterberg region. We used two 76 

independent in situ measures namely the midday leaf water potential (LWP) (Dzikiti et al., 2013a; 77 

Jones, 2004) and the leaf nitrogen concentration (Ramoelo 2011; 2012) as indicators of plant 78 

stress.  79 

2.  Materials and methods 80 

2.1. Study area 81 

The study was done in riparian and non – riparian areas in the Mokolo River Catchment of the 82 

Waterberg District Municipality adjacent to Lephalale town, South Africa (S 23°41’39.24”; E 83 

27°43’46.06”, 843 m asl - Fig 1). Most of the water for the proposed developments is expected to 84 
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be drawn from the Mokolo dam (S 24°00’53.94”, E 27°46’16.35”, 915 m asl). Therefore the 85 

Mokolo catchment and adjacent areas are expected to experience significant transformation in 86 

the coming years. The area has a very dry climate with mean annual rainfall in the range 285 to 87 

560 mm and most of the rain is received during the summer months (October to March). 88 

Potential evapotranspiration ranges from 1 800 to 2 000 mm per year (Vermuelen et al., 2011) 89 

and maximum temperatures can exceed 40 °C in summer. 90 

  The study area had six vegetation types according to the classification by Mucina and 91 

Rutherford, (2006). The dominant groups were the Sub tropical alluvial vegetation (AZa 7) found 92 

in the south and central parts of the study area (Fig 1). These were dominated by species such 93 

as the water berries (Syzigium spp) and reeds (Phragmites spp) along river courses and 94 

Combretum – Terminalia spp, Ziziphus mucronata, and grasses e.g. Panicum spp further away 95 

from the river channel. Table 1 provides further details on the sampled plant species. The 96 

northern region of the study area was characterized by low lying or flat areas and the southern 97 

region was predominantly hilly with the Mokolo river flowing northwards through the middle of the 98 

catchment towards the Limpopo river. 99 

October 2011 was the warmest month (Fig 2a) during the period July 2011 to June 2012 100 

reaching a maximum temperature of 42.7 °C just before the onset of the rainy season. The 101 

minimum temperature of about 11.9 °C was recorded in July 2011. Total rainfall was about 338 102 

mm (Fig 2b) during the entire year (July 2011 to June 2012) which was slightly lower than the 103 

long term annual average of about 420 mm. As expected, the annual reference 104 

evapotranspiration (ETo) far exceeded rainfall, being 1 611 mm. By the time the summer 105 

campaign commenced on 5 December 2011 about 116 mm of rainfall had been received in the 106 

Mokolo Catchment with more rainfall (~80 mm) having been received in October. The duration of 107 

our summer data collection (5 – 9 December 2011) was dominated by clear skies with no rainfall. 108 

Insert Fig 1, Fig 2, Table 1 109 

2.2. Field data collection 110 

2.2.1. Sampling methods  111 
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   Data was collected using a purposive and road sampling design because of limited access to 112 

the high – fenced game reserves and mine properties that dominate the land use in the study 113 

area. We conducted the campaigns during the wet summer season from the 5
th
 to the 9

th
 of 114 

December 2011 and again during the dry season from the 18
th
 to the 22

nd
 of June 2012. 115 

Sampling of the grasses was done only during the summer season when the grass was green 116 

and actively transpiring while trees were sampled during both seasons. However, fewer trees 117 

were sampled during the winter season as some species had either shed their leaves or had 118 

been cut in some cases. During summer, grass samples were collected in homogenous patches 119 

or plots of about 10 – 20 m. In each plot, at least two to three samples were collected from a 120 

quadrant sized 50 cm x 50 cm. Five leaves were randomly clipped around the perimeter of the 121 

canopy of each sampled tree using a leaf clip to ensure adequate biochemical variability. 122 

Samples were collected only from big trees with a canopy diameter of at least six meters to 123 

ensure a complete coverage of the RapidEye satellite pixel (~ 5 m x 5 m). For each sampled 124 

tree, GPS coordinates were recorded. 125 

 126 

2.2.2 Leaf water potential measurements 127 

    The grass and tree leaf samples were collected around midday between 1100 and 1500 (Local 128 

time = GMT + 2h). The midday LWP was measured within five minutes of the leaves being 129 

picked using a Scholander – type pressure chamber (PMS Systems, USA) on between three and 130 

five leaves during the summer campaign. A special adapter with a longitudinal slit was used on 131 

the head piece of the pressure chamber to measure the water status of natural grass which has 132 

rarely been quantified in South Africa as far as we are aware. The measured leaves were 133 

immediately cold stored in a cooler box packed with ice blocks to prevent desiccation of the 134 

leaves for later measurements of the leaf reflectance. 135 

 136 

2.3 Remote sensing data 137 

2.3.1 Hyperspectral remote sensing data 138 
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  The hyperspectral reflectance spectrum of all the picked leaves was measured using the leaf 139 

probe of a portable Analytical Spectral Device (ASD) spectroradiometer (ASD Inc. Boulder, CO, 140 

USA) that detects reflectance in the 350 - 2500 nm spectral region. Measurements of the leaf 141 

reflectance spectrum were taken as a first step to establish whether the level of water stress on 142 

the different vegetation types could be detected using spectral data without background 143 

interference as is the case with canopy or catchment level satellite imagery. The 144 

spectroradiometer is characterized by a spectral resolution of 3 nm (full-width-at-half-maximum, 145 

FWHM) and a 1.4 nm sampling interval across the 350 – 1050 nm spectral range. The FWHM 146 

and the sampling interval for the 1051-2500 nm spectral range are 30 nm and 2 nm, respectively. 147 

While the measurement of the reflectance spectrum of tree leaves was straightforward, the 148 

reflectance of the grass leaves was more difficult given the thin nature of the blades relative to 149 

the size of the leaf probe (~ 20 mm diameter). To achieve a full cover of the black spectralon 150 

background on the leaf probe we stacked a number of grass blades together forming a thin matt 151 

whose thickness was equivalent to that of the individual grass leaves so as not to distort the 152 

reflectance in the near infrared wavelengths.    153 

2.3.2 Satellite remote sensing data 154 

The mission to collect the RapidEye satellite images was tasked to coincide with the in situ data 155 

collection campaigns in December 2011 and June 2012, respectively. The satellite data was 156 

required to predict the status of the indigenous vegetation at the tree and catchment scales. The 157 

RapidEye sensor is a multispectral push broom imager with a spatial resolution of 6.25 m and 158 

samples light in the spectral bands: blue(440-550 nm), green (520-590 nm), red (630-685 nm), 159 

red edge (690-730 nm), and near infrared (760-850 nm) (RapidEye, 2010). The RapidEye Ortho 160 

product (Level 3A) was provided with radiometric, sensor, and geometric corrections applied 161 

using the digital terrain elevation data (DTED) level 1 Shuttle Radar Terrain Mission (SRTM). The 162 

orthorectification accuracy of 1 or less pixel was achieved (RapidEye, 2010). The RapidEye 163 

Ortho product was acquired at 5 m x 5 m resampled spatial resolution and this ensured that 164 

individual tree canopies could be captured. To retrieve the surface reflectance atmospheric 165 

correction was executed using the atmospheric and topographic correction software (ATCOR 2) 166 
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implemented in the IDL Virtual Machine (Richter, 2011). ATCOR 2 models reflectance for flat 167 

surfaces was selected because the study area was not characterized by very rugged terrain. 168 

ATCOR 2 was developed specifically for satellite remote sensing data and includes a large 169 

database of atmospheric correction functions (look-up-tables computed with the Modtran® 5 170 

radiative transfer code) which entails a wide range of weather conditions, sun angles, and ground 171 

elevations (Richter, 2011). The Modtran® standard aerosols for “rural” were selected to compute 172 

the aerosol type, and “visibility” was computed according to Richter (2011). RapidEye metadata 173 

were used to obtain additional information for reflectance retrieval such as satellite and solar 174 

zenith angle, satellite and solar azimuth angle, as well as relative azimuth angle. The workflow 175 

for implementing ATCOR atmospheric correction in any terrain is articulated in Richter (2011). 176 

2.4 Chemical analysis: leaf nitrogen extraction 177 

Finally the leaf samples were taken to the laboratory for leaf N retrieval. The samples were dried 178 

at 80 
0
C for at least 24 hours and were taken to Bemlab laboratories for chemical analysis. Leaf 179 

N values were extracted using a Leco FP528 nitrogen analyser (Horneck & Miller 1998). Climate 180 

data was obtained from an automatic weather station located at Werkendam farm situated within 181 

the study area.  182 

2.5. Spectral indices  183 

For each GPS tagged sampling point, the reflectance data was carefully extracted from the 184 

RapidEye image for analysis. More than 40 commonly used indices for predicting leaf biophysical 185 

and biochemical properties were evaluated in this study and these are summarized by Rodriguez 186 

– Perez et al (2007). These include some of the most commonly used vegetation indices such as 187 

normalized difference vegetation index (NDVI) (Rouse et al. 1976), soil adjusted vegetation index 188 

(SAVI) (Huete (1988), MERIS terrestrial chlorophyll index (MTCI) (Dash and Curran 2004), 189 

simple ratio (SR) (Jordan 1969; Rodriguez – Perez et al. 2007), enhanced vegetation index (EVI) 190 

(Huete et al. 2002) as well as the Structure Intensive Pigment (SIPI) (Penuelas et al.1995). The 191 

incorporation of the red edge band in computing vegetation indices is known to improve the 192 
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prediction of leaf biochemical properties (Ramoelo et al., 2012). Table 2 shows vegetation 193 

indices applied on the RapidEye extracted reflectance. 194 

Insert Table 2 195 

2.6. Data analysis 196 

Univariate statistical techniques were used to predict the in situ plant stress levels depicted by 197 

the LWP and leaf nitrogen concentration (N). To determine which vegetation index highly 198 

predicts leaf N or LWP, bootstrapping simple regression was used. Bootstrapping is an unbiased 199 

validation technique which iteratively samples data sets from the population with or without 200 

replacement (Bunke and Droge, 1984; Efron and Tibshirani, 1997). It samples about two-third of 201 

the data sets and predicts a parameter and validates with the remaining one-third iteratively and 202 

in this case 1000 times. The bootstrapped Pearson r was reported and the corresponding 203 

significance level (p<0.05). Grass samples were not used when analysing two season RapidEye 204 

data for both leaf N and leaf water potential, because the data were collected only in summer. 205 

NDVI thresholding was used to separate trees from non-tree cover (i.e. water, grass, built-up 206 

areas and agriculture). The variability of NDVI for different land cover classes was studied and 207 

thresholds were selected. It was difficult to remove some of the irrigated agricultural areas, 208 

because their NDVI values were similar to those of trees (NDVI>0.4 and 0.5 in dry and wet 209 

seasons, respectively). Therefore, a threshold of NDVI<0.4 and <0.5 was used to mask all non-210 

tree features for winter (2012) and summer image (2011) respectively. The method was chosen 211 

because it is basic and easy to implement (Cheng et al. 2008).  212 

3. Results 213 

3.1. In situ Leaf water potential and leaf N 214 

     The leaves were mature and fully expanded on most tree species that we sampled during the 215 

summer campaign and Table 3 shows how the midday LWP varied among the species. 216 

Generally the grasses tended to have higher levels of water stress than the trees with Eragrostis 217 

rigidior being the most severely stressed with a mean LWP of – 2.31 MPa. Despite water not 218 
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being a limiting factor, the consistently high levels of water stress in Phragmites species (< - 1.75 219 

MPa) was not expected. Regarding the trees, the marulas (Sclerocarya birrea) had consistently 220 

low levels of water stress (> - 0.70 MPa) while the Combretum – terminalia spp occurring in non 221 

– riparian areas had the highest levels of water stress (< - 1.50 MPa). A mean LWP value as 222 

high as -1.31 MPa in summer was also not expected for the water berries (Syzigium spp) as the 223 

trees were growing along the river channel. The summer data set shows a tendency for the water 224 

status of both the trees and grasses to vary between sites although it appeared as if water 225 

availability was not always the limiting factor.   226 

Insert Table 3.         227 

  There were clear differences in the water status between the winter and summer seasons for 228 

most tree species except for the water berries (Syzigium spp). Despite the much lower 229 

atmospheric evaporative demand in winter, most plants (mainly trees) showed higher levels of 230 

water stress with a mean LWP of – 2.31 MPa (for all the tree species) than in summer when the 231 

mean LWP was – 1.30 MPa (Table 3). On the other hand, leaf N concentrations varied in the 232 

summer and winter seasons with the coefficient of variation (CV) of 33.90 and 20.0%, 233 

respectively (Table 4). Leaf N was generally high in the wet than in dry the season, with mean 234 

values of 1.78 and 1.47%, respectively (Table 4).  235 

Insert Table 4. 236 

3.2. Correlation of leaf water potential with hyperspectral reflectance data 237 

For leaf level, leaf water potential levels were well predicted by at least six out of the forty 238 

spectral indices that we reviewed using the leaf reflectance data (Fig 3). Details of the indices are 239 

summarized in Rodriguez – Perez et al (2006) and best performing ones include: 1) the simple 240 

ratio 2 (SR2 = R1070/R1340) in Fig 3a; 2, the moisture stress index (MSI = R870/R1350) in Fig 3b; 3) 241 

the normalized difference water index (NDWI = [R859-R1240]/[R859+R1240]) in Fig 3c; 4) the water 242 

band index (WBI = R970/R900) in Fig 3d; 5) the water index (WI = R900/R970 ) in Fig 3e; and; 6) the 243 

enhanced vegetation index (EVI = [R859-R645]/[R859+6.R645-7.5.R469+1]) in Fig 3f.  244 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

10 

 

Insert Fig 3. 245 

3.3. Correlation between leaf water potential and satellite remote sensing data 246 

Using spectral indices derived from the RapidEye satellite, the LWP was highly and significantly 247 

predicted by the Greenness index (GI), the Red/Green index (RGI), the Green/ Red Ratio (GRR) 248 

and the Normalized Green/Red Ratio (NGRR) index which explained over 70% of the variation 249 

measured by Pearson r during the dry season (June 2012) (Table 5). The Normalized Difference 250 

Vegetation Index (NDVI), Simple Ratio (SR), EVI and the Soil Adjusted Vegetation Index (SAVI) 251 

explained over 60% of the LWP variation. For the summer data set (December 2011), the MTCI 252 

explained over 60% of the LWP variation followed by the RapidEye band (555 nm) predicting 253 

about 40% of the variation. For the combined data sets (2011+2012), SR and SIPI1 significantly 254 

estimated the LWP explaining about 38% of the variation. The red edge based SR (RE-SR) and 255 

EVI were the second best indices for estimating the LWP and performance of the other indices 256 

are reported in Table 5. The mathematical formulations of the vegetation indices are given by 257 

Rodriguez – Perez et al (2007).  258 

Insert Table 5 259 

3.4. Correlation between leaf nitrogen concentration and satellite remote sensing data 260 

Leaf N concentration was significantly estimated using the Simple Ratio 4 (SR4) and Red Edge 261 

based RE_NDVI, explaining 27 and 26% of variation, respectively in 2011 (wet season). For 262 

2012 (dry season) vegetation indices did not significantly explain the variation in leaf N, though 263 

the Red Edge Simple Ratio (RE_SR) yielded over 30% of the variation. The combined 264 

(2011+2012) data set yielded significantly higher leaf N estimation potential than either the 2011 265 

(wet season) or 2012 (dry season) results alone. The highest prediction was achieved by 266 

RE_NDVI and NDVI, explaining over 40% of leaf N variation. SR, RE_SR, 555 nm, 710nm and 267 

805 nm explained over 30% of leaf N variation, and detailed results are presented in Table 6. 268 

Insert Table 6. 269 

3.5. Mapping the spatial variation of plant status using RapidEye 270 
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Wet and dry season leaf water potential model based on SR4 (Eq. 1) was used to create leaf 271 

water potential maps. Other significant models are based on 555nm, SR, RE_NDVI, SR4 and 272 

SIPI1. These models were significant and also have highest Pearson r=0.55, RMSE=0.34 MPa.  273 

Leaf water potential (wet/dry) = 2.5476 x SR4 – 2.8027     (1) 274 

For developing leaf N maps, a model based on the RE_SR was used (Eq. 2). A pooled or 275 

combined model was selected because of the non-significant model in winter or dry season 276 

(2012). Several models were significant and qualified for creating a map, e.g. NDVI, RE_NDVI, 277 

555nm and 710 nm. The equation of the selected model (Pearson r=0.36, RMSE = 0.40%) was 278 

the following; 279 

Leaf N (%) = 0.16996 x RE_SR + 1.42649       (2) 280 

Plant stress is prevalent in the northern part of the study as depicted by low red edge based 281 

simple ratio values in both wet and dry season (Fig. 4). The central and southern part show 282 

relatively moderate stress. In essence, about 80 to 90% of the study area does not show water 283 

stress in summer. The riparian zones and hilly areas are consistently not stressed in both wet 284 

and dry season, as depicted by Figure 5. Figure 6 shows a moderate plant stress in the study 285 

area in both dry and wet season, as depicted by leaf water potential. These maps show baseline 286 

information about the plant stress in the Waterberg region. 287 

Insert Fig 4, 5 and 6. 288 

4. Discussion 289 

       The LWP was successfully estimated and mapped using vegetation indices derived from the 290 

RapidEye satellite. Vegetation indices are well known proxies of vegetation greenness (Broge 291 

and Leblanc, 2000; Rodriquez – Perez et al., 2007). The vegetation greenness is underpinned by 292 

the concentration of pigments, mainly chlorophyll, and water plays an essential part (Eitel et al., 293 

2011). As a result, the correlation between the LWP and the vegetation indices was higher in the 294 

dry than in the wet season. The red edge band embedded in the RapidEye spectral data 295 

predicted leaf N with higher accuracy in the wet season. Field spectroscopic studies indicated 296 
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that the red edge inflexion point, in this context the red edge band, is insensitive to atmospheric 297 

and background effects (Ramoelo et al., 2012) and this likely explains why this band was able to 298 

predict the leaf N and hence water stress in this study. The results of this study are consistent 299 

with other studies that have estimated leaf N at the regional scale (Ramoelo et al. 2012) and 300 

using laboratory or field spectroscopy (Mutanga and Skidmore 2007; Gong et al. 2002; Cho and 301 

Skidmore 2006; Ramoelo et al., 2013). 302 

   Unlike the LWP, estimation of leaf N using vegetation indices was rather difficult during the dry 303 

season and we suspect this was because the relationship between leaf N and chlorophyll 304 

deteriorated as the leaves senesced (Wenjiang et al. 2004). The univariate models for estimating 305 

leaf N were all not significant during the dry season. This shows that phenology plays a crucial 306 

role in the estimation of leaf bio-chemical constituents especially associated with leaf greenness 307 

and senescence (Knox et al. 2010; Wenjiang et al. 2004). Combining the dry and wet season leaf 308 

N data in the model development enabled dry season estimation and mapping of leaf N (Ullah et 309 

al. 2012).  310 

      For the past three decades hyperspectral remote sensing championed the estimation of leaf 311 

biochemical and biophysical parameters at the local scale (Plummer 1988; Mutanga and 312 

Skidmore, 2007). A major short coming of this approach has been the failure to estimate 313 

biophysical or biochemical parameters at the regional scale to inform decision makers. 314 

Nevertheless, the new upcoming satellite sensors with the red edge band such as WorldView 2, 315 

RapidEye and SumbandilaSat as well as the upcoming European Space Agency (ESA)’s 316 

Sentinel-2 offers opportunities to estimate leaf biochemicals at a regional scale, as demonstrated 317 

by this study and Ramoelo et al. (2012) and Cho et al. (2013). These technologies will benefit 318 

future biodiversity conservation in the Waterberg and this study provides a useful first step in the 319 

early detection of stress in indigenous plants which can be used for designing future early 320 

warning systems to inform decision makers on the state of the environment. 321 

    Regarding the spatial distribution of plant stress, the northern parts of the study area (Figs 4, 5 322 

& 6), showed the most water stress during both seasons while the central areas had low levels of 323 

stress likely because of the prevalence of irrigated agricultural crops. Differences in the dominant 324 
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vegetation types between the northern and southern parts of the catchment likely explain the 325 

observed variations in the observed stress levels. For example, the northern parts of the 326 

catchment in the neighbourhood of Lephalale town has experienced extensive land use changes 327 

while riparian areas in the Mokolo river are extensively impacted by rampant sand mining. 328 

Grasses and reeds are therefore the dominant vegetation cover in the northern areas and this 329 

likely explains the observed higher stress levels. The southern parts of the catchment, on the 330 

other hand, were still relatively pristine with a higher density of tree cover in the game farms and 331 

nature reserve and these showed less consistent with our in situ stress measurements. During 332 

the dry season, some of the irrigated agricultural areas were not as visible as the wet season as 333 

no winter crops are grown in the area while summer crops are often irrigated due to the 334 

infrequent rains. Riparian areas showed minimal changes between the wet and dry periods as 335 

water for the plants was always available. Comparison of wet and dry season water stress levels 336 

could help to identify naturally induced stresses in order to develop the baseline information that 337 

could be used to assess the impact of new land use activities. 338 

This study quantified the water status of dominant tree and, for the first time in the Waterberg, 339 

grass species under the current land and water management practices. Grasses appeared to 340 

experience more pronounced water stress during the summer season than the adjacent trees. 341 

One reason for this could be the fact that trees have access to different sources of water (Dzikiti 342 

et al 2013b; Hultine and Bush, 2010) e.g. soil water, groundwater and in some cases river water 343 

because of their relatively extensive and deep root system compared to grasses. This 344 

observation is supported by results from other studies that have reported higher 345 

evapotranspiration rates in tree than grass dominated catchments (Dye et al., 2008; Everson et 346 

al., 2011) suggesting that trees likely maintain higher transpiration rates (open stomata) for 347 

longer than grasses. Plants rely on the internally stored water to meet the atmospheric 348 

evaporative demands during parts of the day (Steppe et al., 2006; Dzikiti et al., 2007). However, 349 

high levels of stress can be readily experienced by those species that exhibit anisohydric 350 

tendencies when transpiration rates far exceed the rate of water up take leading to the depletion 351 

of the internally stored water. The transient imbalance between water uptake by the roots and 352 
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transpiration by the canopies can also be a result of a high hydraulic resistance in the 353 

transpiration stream (Steppe et al., 2004) although we do not have evidence that this is the case 354 

with grasses. 355 

 356 

       Inefficient hydraulic systems in terms of water transport also quite likely explain the 357 

unexpectedly high levels of water stress that we observed on the reeds (Phragmites spp) and the 358 

Syzigium spp given the high atmospheric evaporative demand in the Waterberg. More detailed 359 

studies are clearly needed to better understand the water relations and the stress dynamics of 360 

the riparian species in the Waterberg. The drought adapted and deep rooted species like the 361 

marula (Sclerocarya birrea) showed smaller changes in the water status between the wet and the 362 

dry seasons compared with other species such as the Combretum and Terminalia spp. This 363 

study also demonstrates that several spectral indices can be used to detect the levels of water 364 

stress in indigenous vegetation using leaf reflectance data. While the leaf reflectance information 365 

may be used for the rapid assessment of stress levels in situ, this leaf level spectral data is 366 

unlikely to be useful in the long term monitoring of plant status. Therefore we scaled up our data 367 

to the whole plant level using multispectral RapidEye satellite data.  368 

 369 

5. Conclusions  370 

   Remote sensing techniques can be applied for the long term monitoring of the water status of 371 

indigenous vegetation to guide future biodiversity conservation efforts under changing land and 372 

water use practices in the Waterberg. Several vegetation indices were found to be significant in 373 

predicting the LWP of trees using leaf reflectance data and different sets of spectral indices were 374 

obtained that could explain the observed stress levels using canopy level spectral data. This 375 

study demonstrated that the LWP and leaf N concentrations are useful measures of stress for the 376 

indigenous vegetation in the Waterberg. Significant differences in the water status also occurred 377 

between different tree species depending on the hydraulic properties of the plants and also on 378 

the site characteristics. Catchment scale maps of the water status of indigenous plants during 379 

specific periods were produced based on detailed ground measurements and these maps will be 380 
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likely useful references for future assessments of the impacts of the land use changes on the 381 

indigenous vegetation in the Waterberg after the planned developments have been implemented.  382 
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Highlights 

· Leaf water potential and leaf nitrogen used as an indicator of plant stress 

· Vegetation indices with red-edge band provide opportunity to monitor plant stress 

· Leaf water potential mapped for the first time at landscape level 

· Remote sensing has potential for environmental monitoring  
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Tables 1 

Table 1: Plant species whose stress levels were determined during both the summer and winter 2 

periods. Grasses were sampled only during the rainy season as they had senesced during the 3 

dry season (2012).  4 

Scientific name Common name Biome 

Combretum zeyheri Large fruited bush willow SVcb 19/ SVcb 17 

Sclerocalya birrea Marula Aza 7/ SVcb 12/ SVcb 19 

1
Panicum maximum Buffalo grass Aza 7/ SVcb 12 

1
Setaria sphaselata African bristle grass SVcb 19 

Combretum imberbe Leadwood Aza 7 

1
Eragrostis rigidior Curly leaved love grass Aza 7 

1
Panicum coloratum White buffalo grass Aza 7 

1
Aristida spp - Aza 7 

Ziziphus mucronata Buffalo thorn Aza 7 

Combretum terminalia - SVcb 17 

1
Phragmites Australis Common reed Aza 7 

Lannea discolour Dikbas SVcb 16/ SVcb 17 

Heteropogon contorntus Tussock grass SVcb 19 

Superba contorntus - - 

Syzigium cordatum Water berry Aza 7 

Lannea. Stuhlmannii False marula SVcb 16 

1 denotes grasses. 5 
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Table 2: broadband based vegetation indices used in this study 12 

Indices Equation Reference 
Normalized Difference Vegetation 
index (NDVI) (R805-R657.5)/(R805+R657.5) Rouse et al., (1974) 

Red edge based NDVI (R805-R710)/(R805+R710) Ramoelo et al., (2012) 

Simple Ratio (SR) R805/R657.5 Jordan, 1969 

Red edge based SR (RE_SR) R805/R710 Ramoelo et al., (2012) 

SR3 R657.5/R805 
Rodriguez-Perez, et al., 
(2007) 

SR4 R710/R805 
Rodriguez-Perez, et al., 
(2007) 

MERIS Terrestrial Chlorophyll 
Index (MERIS) (R805-R710)/(R710-R657.5) Dash and Curran, (2004) 

Greenness Index (GI) R555/R657.5 Smith et al., (1995) 

Red/Green index (RGI) R657.5/R555 Feutes et al., (2001) 

RGI1 R710/R555 Zarco-Tejada et al., (2005) 

Blue/Green Index (BGI) R475/R555 Zarco-Tejada et al., (2005) 

Blue/Red Index (BRI) R475/R710 Zarco-Tejada et al., (2005) 

Green/Red Ration (GRR) R555/R657.5 Feutes et al., (2001) 
Normalized Green/Red Ratio 
(NGRR) (R657.5-R555)/(R657.5+R555) 

Rodriguez-Perez, et al., 
(2007) 

NGRR1 (R710-R555)/(R710+R555) 
Rodriguez-Perez, et al., 
(2007) 

Difference Vegetation Index (DVI) R805-R710 Jordan, 1969 

DVI1 R805-R657.5 
 Simple Ratio Pigment Index (SRPI) R475/R710 Penuelas et al., (1995) 

Structure Insensitive Pigment 
Index (SIPI) (R805-R475)/(R805-R657.5) Penuelas et al., (1995) 

SIPI1 (R710-R475)/(R710-R657.5) 
 

Enhanced Vegetation Index (EVI) 
2.5*(R805-R657.5)/R805+(6*R657.5)-

(7.5*R475)+1 Huete et al., (1997) 

Nitrogen Reflectance Index (NRI) (R555-R657.5)/(R555+657.5) Schleicher et al., (2001) 
Soil-Adjusted Vegetation Index 
(SAVI) 

((1+0.2)*R805-
R710)/((R805+R710)+0.2) Huete, 1988) 

SAVI1 
((1+0.2)*R805-

R657.5)/((R805+R657.5)+0.2)   

 13 

 14 

 15 

 16 

 17 

 18 
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Table 3: Midday leaf water potential for plant species in the Mokolo catchment on typical clear 19 

days during wet (summer) and dry (winter) seasons. 20 

 

Species YL max (MPa) YL min (MPa) YL ave (MPa) Biome 

Terminalia-combretum (n=15) -1.35 -1.80 -1.56 SVcb 12 

Sclerocarya birrea (n = 15) -0.35 -0.65 -0.52 Aza 7 

1
Panicum maximum (n = 3) -2.25 -4.00 -3.03 Aza 7 

Combretum zeyheri (n = 10) -0.65 -2.80 -1.35 SVcb 19 

Sclerocarya birrea (n = 5) -0.75 -0.95 -0.84 SVcb 12 

1
Panicum maximum (n = 11) -0.80 -1.25 -1.11 SVcb 12 

1
Setaria sphacelata (n = 3) -1.26 -1.78 -1.53 SVcb 19 

1
Heteropogon contorntus (n=3) -1.65 -2.25 -1.85 SVcb 19 

Sclerocarya birrea (n = 10) -0.50 -0.90 -0.68 SVcb 19 

1
Eragrostis rigidior (n = 3) -3.35 -3.70 -3.58 Aza 7 

1
Panicum coloratum (n = 3) -2.00 -2.45 -2.16 Aza 7 

1
Aristida spp (n = 3) -2.25 -3.00 -2.54 Aza 7 

Combretum imberbe (n = 15) -1.14 -1.72 -1.35 Aza 7 

Sclerocarya birrea (n = 5) -0.30 -0.65 -0.46 Aza 7 

Ziziphus mucronata (n = 5) -1.45 -2.10 -1.73 SVcb 17 

1
Phragmitise Australis (n = 4) -1.75 -3.36 -2.60 Aza 7 

Lannea stuhlmanni (n = 5 -1.20 -1.48 -1.37 SVcb 16 

Syzigium cordatum (n = 15) -0.85 -2.00 -1.33 Aza 7 

Combretum zeyheri (n = 6) -2.25 -3.70 -2.88 SVcb 19 

Sclerocarya birrea (n = 6) -1.45 -3.90 -2.76 SVcb 19 

Combretum imberbe (n = 6) -1.73 -3.15 -2.43 Aza 7 

VGT (Unknown)  -1.15 -3.55 -2.09 Aza 7 

Syzigium cordatum (n = 15) -0.60 -2.10 -1.43 Aza 7 

1
Phragmitise Australis (n=15) -3.20 -3.65 -3.48 Aza 7 

Sclerocarya birrea (n = 6) -0.75 -3.20 -1.70 SVcb 16 

Lannea discolor (n = 6) -1.45 -1.65 -1.55 SVcb 16 

Lannea discolor (n=6) -1.25 -3.30 -2.51 SVcb 17 

1 Denotes grasses and the numbers in brackets in column 1 depict the number of leaves. 21 
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Table 4: Summary of the descriptive statistics for leaf water potential (trees only) and leaf 22 

nitrogen concentrations (trees + grasses) 23 

Variables Data Min Max mean SD CV 

Leaf Water Potential (MPa) 2011 -2.60 -0.46 -1.31 0.62 - 

 

2012 -3.48 -1.43 -2.31 0.68 - 

 

2011+2012 -3.48 -0.46 -1.74 0.81 - 

Leaf Nitrogen (%) 2011 0.93 4.18 1.78 0.60 33.90 

 

2012 0.93 2.08 1.47 0.29 20.00 

  2011+2012 0.93 4.18 1.66 0.53 32.00 

CV=coefficient of variance, SD=standard deviation 24 

 25 

 26 

 27 

 28 

 29 
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Table 5: Simple correlation between the midday leaf water potential and various vegetation 38 

indices derived from the RapidEye spectral data. 39 

Data 2011 (Wet Season) 2012 (Dry Season) Combined (2011+2012) 

Bands/Indices Pearson r P Pearson r P Pearson r P 

R475 nm 0.34 0.1424 0.15 0.5936 0.33 0.0529 

R555 nm 0.44 0.0522 0.06 0.8318 0.37 0.0287 

R657.50 nm 0.17 0.4737 0.45 0.0924 0.32 0.0609 

R710 nm 0.36 0.1190 0.03 0.9155 0.25 0.1475 

R805 nm 0.09 0.7059 -0.43 0.1096 -0.10 0.5676 

NDVI -0.16 0.5004 -0.61 0.0157 -0.32 0.0609 

RE_NDVI -0.37 0.1083 -0.53 0.0421 -0.36 0.0337 

SR -0.19 0.4224 -0.64 0.0102 -0.38 0.0243 

RE_SR -0.38 0.0984 -0.55 0.0337 -0.37 0.0287 

MTCI -0.61 0.0043 -0.11 0.6963 -0.29 0.0910 

GI 0.38 0.0984 -0.79 0.0005 -0.01 0.9545 

RGI -0.38 0.0984 0.78 0.0006 0.05 0.7755 

RGI1 -0.29 0.2149 -0.01 0.9718 -0.26 0.1315 

BGI -0.05 0.8342 0.16 0.5689 0.04 0.8195 

BRI 0.28 0.2318 -0.44 0.1007 -0.01 0.9545 

GRR 0.38 0.0984 -0.79 0.0005 -0.01 0.9545 

NGRR -0.38 0.0984 0.79 0.0005 0.03 0.8642 

NGRR1 -0.42 0.0652 0.35 0.2009 -0.32 0.0609 

SR3 0.15 0.5279 0.59 0.0206 0.30 0.0800 

SR4 0.36 0.1190 0.52 0.0469 0.55 0.0393 

DVI -0.07 0.7693 -0.57 0.0265 -0.26 0.1315 

DVI1 -0.28 0.2318 -0.57 0.0265 -0.31 0.0699 

SRPI 0.28 0.2318 -0.44 0.1007 -0.01 0.9545 

SIPI -0.24 0.3081 -0.54 0.0377 -0.36 0.0337 

SIPI1 -0.35 0.1303 -0.49 0.0637 -0.38 0.0243 

EVI -0.22 0.3513 -0.60 0.0181 -0.37 0.0287 

SAVI -0.16 0.5004 -0.61 0.0157 -0.32 0.0609 

SAVI1 -0.37 0.1083 -0.53 0.0421 -0.36 0.0337 

 Values highlighted in BOLD depict significant correlations (p<0.05) 40 
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Table 6: Simple correlation between Leaf Nitrogen and the RapidEye vegetation indices. 41 

Leaf N (%) 2011 (Wet Season) 2012 (Dry Season) Combined (2011+2012)  

Bands/Indices Pearson r p Pearson r p Pearson r P 

R475 nm 0.13 0.3351 0.12 0.4990 0.32 0.0020 

R555 nm 0.20 0.1357 0.22 0.2112 0.38 0.0002 

R657.50 nm 0.09 0.5055 0.17 0.3364 0.24 0.0210 

R710 nm 0.29 0.0286 0.18 0.3083 0.33 0.0014 

R805 nm 0.13 0.3351 -0.04 0.8223 0.32 0.0020 

NDVI -0.04 0.7676 -0.21 0.2332 -0.45 0.0000 

RE_NDVI -0.26 0.0507 -0.30 0.0847 -0.48 0.0000 

SR -0.06 0.6575 -0.24 0.1715 0.34 0.0010 

RE_SR -0.25 0.0607 -0.31 0.0743 0.36 0.0005 

MTCI -0.38 0.0266 -0.21 0.2332 0.02 0.8507 

GI 0.09 0.5055 0.01 0.9552 0.23 0.0283 

RGI -0.12 0.3739 -0.01 0.9552 -0.23 0.0283 

RGI1 0.12 0.3739 -0.16 0.3660 -0.24 0.0219 

BGI -0.04 0.7676 -0.10 0.5736 -0.05 0.6378 

BRI -0.10 0.4592 -0.01 0.9552 0.13 0.2193 

GRR 0.09 0.5055 0.01 0.9552 0.23 0.0283 

NGRR -0.11 0.4153 -0.01 0.9552 -0.23 0.0283 

NGRR1 -0.06 0.6575 0.07 0.6940 0.17 0.1071 

SR3 0.02 0.8826 0.20 0.2567 -0.07 0.1071 

SR4 0.27 0.0422 0.29 0.0961 -0.01 0.9250 

DVI -0.15 0.2654 -0.18 0.3083 0.20 0.0573 

DVI1 0.08 0.5541 -0.12 0.4990 0.26 0.0128 

SRPI -0.10 0.4592 -0.01 0.9552 0.13 0.2193 

SIPI -0.05 0.7118 0.15 0.3971 -0.15 0.1558 

SIPI1 -0.21 0.1169 0.07 0.6940 -0.07 0.5096 

EVI -0.02 0.8826 0.14 0.4297 -0.06 0.5721 

NRI 0.11 0.4153 0.01 0.9552 0.23 0.0283 

SAVI -0.26 0.0507 -0.30 0.0847 0.00 1.0000 

SAVI1 -0.04 0.7676 -0.21 0.2332 0.05 0.6379 

Values highlighted in BOLD depict significant correlations (p<0.05) 42 
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Figure captions 43 

Figure 1: Map of the study area and the location of sampling sites at the Waterberg region, 44 

Limpopo 45 

Figure 2: Climatic variables during the study period from July 2011 to June 2012 with (a) showing 46 

the trend in the maximum (Tmax) and minimum (Tmin) temperatures and (b) shows the 47 

evolution of the reference evapotranspiration (ETo) and the rainfall, respectively. 48 

Figure 3: The relationship between leaf water potential and several vegetation indices 49 

(MSI=Moisture Stress Index, EVI=Enhanced Vegetation Index, NDWI=Normalized Difference 50 

Water Index, WI=Water Index, WBI=Water Band Index) 51 

Figure 4: Spatial distribution of plant greenness based on red edge-based simple ratio vegetation 52 

index during the wet and dry season in the Waterberg (December 2011 and June 2012). 53 

Figure 5: Spatial distribution of leaf nitrogen as an indicator of plant stress during the wet and dry 54 

seasons in the Waterberg. 55 

Figure 6: Spatial distribution of leaf water potential as an indicator of plant stress during the wet 56 

and dry seasons in the Waterberg. 57 
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KML File (for GoogleMaps)

Click here to download KML File (for GoogleMaps): Study Area_Waterberg Regionn_Tertiary catchment A42.kml


