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Abstract  16 

Invasive species usually colonize canopy gaps in tropical and sub-tropical forests, which results in 17 

loss of native species. Therefore, an understanding of the location and distribution of canopy gaps will 18 

assist in predicting the occurrence of invasive species in such canopy gaps.  We tested the utility of 19 

WorldView-2 with eight (8) spectral bands at 2 m spatial resolution to delineate forest canopy gaps in 20 

a subtropical Dukuduku coastal forest in South Africa. We compared the four (4) conventional 21 

visible-near infrared bands with the eight (8) band WorldView-2 image. The 8-band WorldView-2 22 

image yielded higher overall accuracy of 86.90% (kappa = 0.82) than the resampled conventional 4 23 

band image which yielded an overall accuracy of 74.64% (kappa = 0.63) in pixel-based classification.  24 

We further compared the vegetation indices which were derived from four conventional bands with 25 

those derived from WorldView-2 bands. The Enhanced Vegetation Index (EVI) yielded the highest 26 

overall accuracy in the category of conventional indices (85.59% at kappa = 0.79), while the modified 27 

Plant Senescence Reflectance Index (mPSRI) involving the red-edge band showed the highest overall 28 

accuracy (93.69%) in the category of indices derived from an eight band WorldView-2 imagery in 29 

object-based classification. Overall, the study shows that the unique high resolution WorldView-2 30 

data can improve the delineation of canopy gaps as compared to the conventional multispectral bands. 31 

 32 

Keywords: Enhanced vegetation index, invasive species, modified plant senescence 33 

reflectance index, 34 

 35 

1. Introduction 36 

Globally, subtropical coastal forest constitutes one of the smallest vegetation biomes. In 37 

South Africa, subtropical forest patches are reported to be disproportionally rich in 38 

biodiversity when compared to other dominant biomes such as the savannahs (Geldenhuys, 39 

1989). Over the years, the forests have been fragmented into patches of various sizes as a 40 

result of anthropogenic activities such as subsistence farming, commercial agriculture and 41 
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human settlement expansions (Fourcade, 1889; Geldenhuys, 1989).  Some of the patches are 42 

intensively managed e.g. the Dukuduku coastal forest (Van Gils et al., 2006) to avert further 43 

degradation and loss of biodiversity. However, the sustainability of indigenous biodiversity in 44 

the remnant patches is threatened by the presence of alien invasive species (Van Gils et al., 45 

2006; Moore, 2004). These species take advantage of canopy gaps that occur within the 46 

patches for their establishment and proliferation.  Canopy gaps can be formed from the fall of 47 

dead trees (Kupfer and Runkle, 1996; Brokaw and Grear, 1991), selective timber harvesting 48 

(Suarez et al., 1997), or tree fall from disturbance events such as strong winds (Brokaw, 49 

1982; Whitmore, 1989).  Naturally, in a stable subtropical forest, canopy gaps are closed up 50 

by the regeneration of indigenous species through a process of succession (Orians, 1982).  51 

However, in South Africa, forest canopy gaps in coastal forests may be invaded by light-52 

loving alien invasive species such as Chromolaena odorata (Weiss and Noble, 1984; Goodall 53 

and Erasmus, 1996). This species has an allelopathic influence to the seedlings of the 54 

indigenous species, and therefore hindering their recruitment by shading the seedlings and 55 

altering the chemical composition of the soil beneath it (Codilla and Metillo, 2011). 56 

Therefore, knowledge of the location and distribution of canopy gaps is crucial for 57 

controlling the proliferation of invasive species in the remaining subtropical forest patches in 58 

South Africa.  59 

Conventionally, the delineation of forest canopy gaps is done through field surveys 60 

(Brokaw and Grear, 1991).  However, field based methods are limited to areas that are easily 61 

accessible, and are seldom used for larger and wider areas (Runkle, 1982).   On the other 62 

hand, remote sensing has been recommended as a more cost effective and less laborious 63 

alternative to field-based methods for broad areas (Woodcock et al., 2001). The detection of 64 

forest canopy gaps has been studied previously using Landsat imagery with a spatial 65 

resolution of 30 meters (Negrón-Juárez, 2011; Asner et al., 2004). The limitation of this type 66 

of coarse resolution sensor lies in its inability to map canopy gaps that are less than 30 m in 67 

size (Clark et al., 2004). The use of high spatial resolution multispectral sensors such as 68 

Système Pour l’Observation de la Terre (SPOT) (10 m spatial resolution) and IKONOS (4m 69 

spatial resolution) has mitigated the spatial resolution problem by improving accuracy for 70 

characterizing vegetation (Clark et al., 2004). However, several studies (Knipling, 1970; 71 

Mutanga and Skidmore 2004; Chen et al. 2009; Cho et al., 2009) have documented that these 72 

multispectral sensors suffer from the saturation of the visible-near infrared signal in dense 73 

vegetation. This problem could potentially make it difficult to discriminate between tree 74 

canopies and vegetated gaps in closed canopy coastal forest (Figure 1) (Weiss and Baret, 75 

1999).  76 

Recently, hyperspectral data and Light detection and ranging (LiDAR) have been utilized 77 

to mitigate the saturation problem common in conventional multispectral sensors (Treitz et 78 

al., 2003; Ustin and Trabuco, 2000). The Normalized Difference Vegetation Index (NDVI) 79 

derived from broad-band imagery has been shown to saturate in in high density vegetation 80 

e.g. leaf area index > 3, a typical habitat condition of vegetated tropical forest gaps.  The red 81 

edge bands (700 – 740 nm) present in hyperspectral sensors have been shown to solve the 82 

saturation problem, e.g. the red edge NDVI has been used to improve the estimation of 83 
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vegetation biomass at high canopy density (Mutanga and Skidmore, 2004; Smith et al., 2004; 84 

Sellers, 1985; Cho and Skidmore 2009). This is due to the fact increasingvegetation density 85 

causes saturation in the red (680 nm) absorption trough but a broadening of the absorption 86 

trough, causing shifts in the red edge slope towards longer wavelengths  (Dawson and 87 

Curran, 1998).  88 

There have been a number of successful studies that have incorporated LiDAR technology 89 

for mapping forest gaps in tropical forests. For example, Kellner et al. (2009) used LiDAR 90 

technology to study the structural characteristics of canopy gaps in tropical rainforest gaps. 91 

On the other hand, Vepakomma et al. (2008) have delineated forest gaps in the boreal forest 92 

using LiDAR technology, resulting in mapping accuracy of 96%. More recently, Asner et al. 93 

(2013) highlighted the significance of LiDAR technology in studying the distribution of 94 

canopy gaps in the Amazon area. However, both the hyperspectral and LiDAR technologies 95 

have not been fully explored due to the high cost associated with acquiring these data (Asner 96 

et al., 2004). Moreover, the question of whether all hundreds of contiguous spectral bands of 97 

hyperspectral data are needed to delineate vegetated forest canopy gaps arises, given the 98 

reported redundancy in hyperspectral data (Cho et al., 2012; Mutanga et al., 2012).  99 

 100 

Figure 1.  A subset of WorldView-2 image showing forest canopy gaps (vegetated and non-101 

vegetated)     surrounded by tree canopies and shadow gaps. 102 

 103 

The development of high spatial and spectral resolution multispectral sensors such as 104 

WorldView-2 (Ozdemir and Karnieli, 2011) and RapidEye (Ramoelo et al., 2012) has opened 105 

new opportunities for diverse vegetation characterization in terms of its biophysical and 106 

biochemical properties. The red edge band present in these sensors (Figure 2) has been 107 

successfully used to estimate leaf nitrogen (Ramoelo et al., 2012; Cho et al., 2013) and 108 

biomass in a dense canopy environment (Mutanga et al., 2012). WorldView-2 sensor consists 109 
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of spectral bands that are strategically designed to maximize the sensitivity of signal to plant 110 

characteristics such as biomass, health and productivity. The question that arises is whether 111 

the presence of red edge band in WorldView-2 can provide improved discrimination of forest 112 

canopy gaps in a closed canopy coastal forest when compared to the conventional red, green, 113 

blue and NIR bands present in conventional sensors such as SPOT, IKONOS or Landsat?  114 

In addition, canopy gap delineation requires classification techniques that will aid in 115 

separating canopy gaps from the rest of the forest canopies. A number of studies have 116 

delineated forest gaps using conventional pixel-based classifiers such as maximum-likelihood 117 

and spectral angle mapper classifiers (Fox et al., 2000; Negrón-Juárez et al., 2011; Betts et 118 

al., 2005). Pixel-based classification methods have their own short-comings when applied to 119 

closed canopy forests. These techniques only consider spectral information and not the 120 

geometry and size of individual canopy gaps (Mallinis et al., 2008; Kim et al., 2009).  The 121 

question arises whether object-based image analysis can assist in minimizing the short-122 

comings of pixel-based classifications in delineating forest gaps, and thereby improve 123 

classification.  An object-based classifier has some advantages in that it requires less 124 

computational space compared to methods such as Artificial Neural Network and Random 125 

Forest (Blaschke and Strobl, 2001). 126 

 127 

Figure 2. Spectral profile of five averaged spectra of four classes from WorldView-2 imagery of the 128 

Dukuduku forest. This figure shows that four forest classes are distinguishable from the red 129 

edge to NIR regions, by observing their spectral profiles. 130 

The aims of this study were to: 131 

a) assess the suitability of WorldView-2 multispectral bands in delineating forest gaps, 132 

when compared to conventional visible-near infrared bands common in conventional 133 

sensors.  134 
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b) determine the best vegetation indices for delineation of forest gaps in closed canopy 135 

coastal forest using object-based classification 136 

c) investigate the performance of an object-based classification technique over pixel-137 

based classification methods for delineating forest canopy gaps. 138 

2. Methods 139 

2.1 Study area 140 

The study was undertaken in Dukuduku indigenous coastal forest located near St. Lucia, 141 

north eastern part of KwaZulu-Natal, South Africa.   It is located within the Mtubatuba Local 142 

Municipality between the geographical coordinates of 28°38’33”S and 32°31’67” E, about 143 

226 km north of Durban (Figure 3).  The forest covers a land area of about 3 200 hectares.  144 

 145 

Figure 3.  Location of the study area adjacent to the Indian Ocean, north-eastern sea-shore of 146 

KwaZulu-Natal, South Africa. 147 

 148 

The area was chosen for the study because it is the largest remaining patch of indigenous 149 

forest on the north-eastern coastal shoreline of KwaZulu-Natal. Alien species invasion 150 

especially by Chromolaena odorata poses a major threat to the indigenous forest in this area. 151 
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This forest is surrounded by sugar plantation farms, Eucalyptus plantations and villages that 152 

practise subsistence farming. 153 

2.2 Image acquisition and pre-processing 154 

The WorldView-2 image with 8 multispectral bands (Table 1) acquired on the 1 December 155 

2010 was used for the study. WorldView-2 has four new additional bands that are not present 156 

in well-known sensors such as SPOT, IKONOS or Landsat. This sensor has spectral bands 157 

that are strategically located to aid in vegetation analysis. The spectral bands have 158 

wavelength ranges of 400 – 450 nm (absorbed by chlorophyll), 450 – 510 nm (absorbed by 159 

chlorophyll), 510 – 580 nm (sensitive to plant health such as greenness), 585 – 625 nm 160 

(absorbed by carotenoids – detects ‘yellowness’ of vegetation), 630 – 690 nm (absorbed by 161 

chlorophyll), 705 – 745 nm (sensitive to subtle variations vegetation greenness), 770 – 895 162 

nm (sensitive to leaf mass and moisture content), 860 – 1040 nm (sensitive to leaf mass and 163 

moisture content) (Ustin et al., 2009).  The WorldView-2 (WV-2) imagery was geometrically 164 

corrected by the supplier (Updike and Comp, 2010). To assess the accuracy of geometric 165 

correction, coordinates of some iconic points on the ground, including road junctions and 166 

isolated tree canopies were extracted from the image and loaded onto handheld GPS, with 167 

maximum spatial accuracy of 4m.   168 

Table 1. WorldView-2 bands and their respective band centers in nanometers, compared to bands 169 

present/absent in SPOT and Landsat. 170 

 171 

Atmospheric correction was carried out using ATCOR 2/3 version module (developed and 172 

distributed by ReSe Applications).  This software was used for its availability and for being 173 

one of the widely used image atmospheric correction algorithms (San and Suzen, 2010). An 174 

ATCOR2/3 is based on a MODTRAN 5 code (Berk et al., 1998). A MODTRAN 5 code 175 

(MODerate resolution atmospheric TRANsmission) is an algorithm designed to model 176 

atmospheric propagation of electromagnetic radiation by calculating the databases of 177 

atmospheric look-up tables for the spectral regions of between 0.2 and 100 µm (Berk et al., 178 

1998) . The atmospheric conditions specified in ATCOR software for this image processing 179 

was the ‘tropical rural’ conditions. Figure 4 shows the stages through image analysis and 180 

eventual gap delineation using WorldView-2 imagery of the Dukuduku forest.  181 

Band Name Wavelength (µm) Band Centers (nm) Present in 

SPOT Landsat 

     

Coastal Blue  0.40 – 0.45 425 NO NO 

Blue 0.45 – 0.51 480 NO YES 

Green 0.51 – 0.58 545 YES YES 

Yellow 0.59 – 0.63 605 NO NO 

Red 0.63 – 0.69 660 YES YES 

Red-Edge 0.70 – 0.75 725 NO NO 

Near Infrared-1 0.77 – 0.89 833 YES YES 

Near Infrared-2 0.86 – 1.04 950 NO NO 
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 182 

Figure 4.  A flow diagram showing the processing scheme for delineating forest gaps adopted in the 183 

present study. 184 

 185 

2.3  Field data collection 186 

Two field data collection trips were undertaken in order to record data on forest gaps, 187 

invasive plant species, and the surrounding indigenous vegetation. The first field data 188 

collection trip was undertaken between 24 July 2011 and 4 August 2011, while the second 189 

one was from the 21 October to 2 November 2011.  These dates were primarily dictated by 190 

the condition of the atmosphere to avoid rainy weather at the coast and the logistical 191 

constraints, and not necessarily the phenological characteristics of the forest. Thirteen line 192 

transects were randomly pre-selected across the entire forest, which represented the general 193 
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trend of vegetation characteristics and to maximize area that is covered within the forest 194 

boundaries (Eberhardt, 1986; Battles et al., 1996). Each transect was had a minimum length 195 

of 1 km, and the canopy gaps were recorded within 10 m width of the transects. Forest 196 

canopy gaps were identified along these transects (Figure 5), which included vegetated forest 197 

gaps (with/without invasive plant species), bare forest gaps, and the individual tree crowns of 198 

forest vegetation. Transects were numbered accordingly from 1 to 13, with transect 12 199 

sampled for forest gaps along the edges. Sampling was done starting from deep inside the 200 

forest towards forest edges, according to individual transect orientation. We have adopted 201 

line transects method for its simplicity, its popularity for ecological modelling (Forbes and 202 

Gross, 1921; Buckland et al. 2001), its efficiency and it is relatively inexpensive for many 203 

biological populations (Anderson et al. 1979).  204 

 205 

Figure 5.  Distribution of line transects followed during field sampling 206 

A standard Global Positioning System (GPS) named Garmin Vista eTRax™ was used to 207 

record the location of each forest gap and the surrounding vegetation type. A total of 276 208 

samples or cases were collected. The data were randomly split into 60% calibration (n = 165) 209 

and 40% (n = 111) for validation. We have decided on this split in order to maximize the 210 

model training performance and to avoid model over-fitting when validation dataset is too 211 

large. The calibration dataset was used for training the classifiers. The validation dataset was 212 

used to assess the accuracy of the classification techniques.  213 

 214 

2.4 Image processing 215 
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In image processing two classification approaches on WorldView-2 image were tested for 216 

this study, namely pixel-based classification and object-based image analysis. For pixel-based 217 

image analysis, classification methods such as maximum likelihood (MLC), support vector 218 

machines (SVM) and Random Forests (RF) were explored to determine the best commonly 219 

used pixel-based classifier for forest gap delineation.  In object-based analysis, a multi-220 

resolution segmentation algorithm was explored for creating image objects at different scale 221 

parameters (10, 25, and 35), shape and compactness. The shape range between 0.0- 0.9 was 222 

tested, while compactness factor was tested in the same manner as shape in eCognition 223 

software.The higher the value assigned to shape factor (value >0) the more the shape of an 224 

object in an image is considered. In addition, the threshold values from computed vegetation 225 

indices were used to discriminate forest vegetation into separate classes. 226 

2.4.1  Pixel-based classification 227 

Three pixel-based classification methods were tested for the study, namely, maximum 228 

likelihood (MLC), support vector machines (SVM) and Random Forest (RF) classifiers. 229 

MLC classifier is based on a normalized (Gaussian) estimate of the probability density 230 

function of each class. It is known to be the most powerful classification method when 231 

accurate training data is provided and one of the most widely used algorithms (Zhou and 232 

Robson, 2001; Lillesand et al, 2004). SVM are algorithms based on the statistical learning 233 

theory and have the aim of determining the location of decision boundaries that provide the 234 

optimal separation of classes (Vapnik, 1995).  On the other hand, RF algorithm is 235 

increasingly being used today due to its high prediction accuracy and information on variable 236 

importance for classification (Touw et al, 2012). RF are non-parametric, relatively robust to 237 

outliers and noise algorithms that train an ensemble of individual decision trees based on 238 

samples, their class designation, and variables for classification and regression (Touw et al., 239 

2012).  240 

MLC and SVM classifiers were performed in ENVI 4.8 software with IDL (Exelis Visual 241 

Information Solutions, Boulder, Colorado).  RF classification was done in EnMap, through 242 

the IDL module. For the RF, the default settings were accepted for classification, with 100 243 

trees chosen in EnMap for classification in RF.  244 

2.4.2  Object-based classification 245 

In object-based image analysis (OBIA) the process of classification began with image 246 

segmentation where similar pixels are merged together using homogeneity criteria such as 247 

spectral similarity, weight or compactness (Baatz et al., 2004). The performance of OBIA 248 

relies on the quality of individual image segments and the accuracy of the segmentation 249 

process, and this depends on segmentation parameters such as scale, shape and compactness 250 

(Blaschke and Strobl, 2001). A multi-resolution segmentation algorithm was used to begin 251 

the segmentation process, where three scale parameters (10, 25, and 35) were tested. The 252 

scale parameter of 10, a compactness factor of 0.1 and a shape factor of 0.7 were selected 253 

because the objects created were not very different in size and shape from what was observed 254 

in the field, and the accuracy of class discrimination decreased with increasing scale 255 
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parameter and compactness (Figure 6). A multi-resolution algorithm is embedded in 256 

eCognition software, which is an object-based processing program made available in 2000 257 

from Definiens Imaging GmbH (Blaschke and Strobl, 2001). Vegetation indices were 258 

calculated in eCognition and were used to discriminate four (4) forest classes, using 259 

individual index’s decision tree, where thresholds were defined at each level to allocate 260 

segmented objects to a particular class. These classes were decided by considering the fact 261 

that the indigenous forest is a protected area, and that some other possible classes were not of 262 

interest.  263 

 264 

Figure 6:  Segmentation of WorldView-2 image of Dukuduku forest at different scale parameters (A 265 

= 10, B = 25 and C = 35). 266 

We tested established vegetation indices that were derived from spectral bands present in 267 

conventional satellites such as Landsat and SPOT, and those that can be derived from 268 

WorldView-2 new bands for delineation of forest gaps. Vegetation indices were selected 269 
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from those that were sensitive to broadband greenness, narrowband greenness and plant 270 

senescence (Asner et al., 2002).  Table 2 shows vegetation indices that are derived from 271 

conventional Red, Green, Blue and Near-Infrared bands, and also the vegetation indices 272 

derived from new WV-2 bands. 273 

Tables 2.  Vegetation indices explored for delineating forest canopy gaps, derived from conventional 274 
sensors and WorldView-2 sensor. 275 
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2.4.3 Accuracy Assessment 280 
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Classification accuracies were used to assess the reliability of the results; namely, 281 

producer, user and overall accuracies. Producer accuracy is derived from calculating the total 282 

number of correctly classified cases in one class divided by the total number of cases of that 283 

class as indicated by reference data (Congalton, 1991). The user accuracy is derived from 284 

calculating the total number of correctly classified cases of one category divided by the total 285 

number of cases classified in that category (Story and Congalton, 1986). Finally, overall 286 

accuracy is computed by dividing the number of correctly classified cases by the total number 287 

of cases in the error matrix. Error matrix tables were computed as part of the accuracy 288 

assessment procedure. The procedure of computing error matrices is a very effective way to 289 

present accuracy in that accuracies are described along with both errors of inclusion 290 

(commission errors) and errors of exclusion (omission errors) present in the classification 291 

(Congalton, 1991). 292 

2.4.4 Comparing Classifier Performance 293 

In order to compare the performance among the classifiers, a McNemar’s test was applied 294 

on the results of each classifier against another.  The McNemar’s test was used to test for the 295 

performance of the classifiers since the same samples were used for classification tests, and 296 

were therefore not independent as would be required for the Kappa difference test (Foody, 297 

2004). The McNemar’s test is preferable since it is a parametric test and very simple to 298 

understand. The test is based on a chi-square (χ2) statistic, computed from two error matrices 299 

as follows: 300 

   
         

 

       
         Eq: 1 301 

where f12 denotes the number of cases that are wrongly classified by classifier 1 but correctly 302 

classified by classifier 2, and f21 denotes number of cases that are correctly classified by 303 

classifier 1 but wrongly classified by classifier 2. Additional f11 and f22 were included to 304 

indicate the number of cases wrongly classified by both classifiers, and the number of cases 305 

correctly classified by both classifiers, respectively.  306 

 307 

3. Results 308 

 309 

3.1 Pixel-based classification 310 

MLC classifier showed the highest overall classification accuracies (86.90%) when 311 

compared to SVM (80.18 %) and RF (84.68%) classifiers.  MLC also showed the highest 312 

average producer and user accuracies for all four classes (86.33% and 87.54%, respectively) 313 

when compared to SVM (80.28% and 82.26%, respectively) and slightly higher than RF 314 

(85.68% and 80.73%, respectively) (Table 3). The MLC also showed higher overall (86.90%) 315 

for the 8-band WorldView-2 imagery when compared to the spectrally resampled 4 band 316 

image similar to SPOT, IKONOS and Landsat (74.64%) as seen in table 3. The classification 317 

results of MLC (8 bands) show that the highest confusion (4.35%) was found between 318 

vegetated gaps and other forest vegetation class (Table 6), while marginal error was found 319 



13 
 

between all other classes (<2.17%).  The lowest classification accuracies were obtained using 320 

MLC applied on 4 spectral bands resampled from WorldView-2 image.   321 

Table 3. Classification accuracies of three (3) pixel-based methods applied to WorldView-2 image 322 

(with 8 bands), and compared to spectrally resampled 4 band image e.g. Landsat. 323 

 324 

 325 

3.2 Object-based classification 326 

The results of vegetation indices were divided into two groups: (i) vegetation indices that 327 

can be derived from conventional sensors (typical Red, Green, Blue and Near-Infrared 328 

bands), and (ii) vegetation indices that can be derived from the 8-band WorldView-2 329 

imagery. Amongst the vegetation indices derived from conventional sensors, the enhanced 330 

vegetation index (EVI) computed from conventional R.G.B and NIR bands yielded the 331 

highest average producer (85.07%), average user (79.73%) and overall classification 332 

accuracies (85.59%) on all forest classes. On the contrary, the atmospherically resistant 333 

vegetation index (ARVI) yielded the lowest average user and overall classification accuracies 334 

(60.42% and 67.57%, respectively).  335 

Amongst the indices derived from WorldView-2 bands, the modified plant senescence 336 

reflectance index (mPSRI) showed the highest average producer (92.10%) and average user 337 

accuracy (93.50%) for all classes and overall classification accuracy (93.69%). The 338 

difference between high performing vegetation index from conventional bands (overall 339 

classification accuracy of 85.59 %) and that from WorldView-2 bands (overall classification 340 

accuracy of 93.69%) is 8.1%.  Table 4 shows the comparison between object-based classifiers 341 

and pixel-based methods. 342 

 343 

Classifier Kappa 

Coefficient 

Mean Producer 

Accuracy 

(%) 

Mean User 

Accuracy 

(%) 

Overall Accuracy 

(%) 

     

Maximum Likelihood (8 

bands) 

0.82 86.33 87.54 86.90 

Maximum Likelihood (4 

bands) 

0.63 70.53 70.83 74.64 

Random Forests 0.78 85.68 80.73 84.68 

Support Vector Machines 0.72 80.28 82.26 80.18 
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Table 4. Comparison of the best classifiers in per-pixel based group and object-based group, comprising of conventional bands and new WorldView-2 bands 344 

respectively. PA = producer accuracy, UA = user accuracy 345 

 346 

Table 5.  Comparison of the classifier performance for both pixel-based and object-based classifiers using McNemar’s test 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

Class name Pixel-based classification 

MLC (4 bands) 

Pixel-based classification MLC 

(8 bands) 

Object-based classification 

(EVI) 

Object-based classification 

(mPSRI) 

      PA (%)       UA (%)      PA (%)      UA (%)      PA (%)       UA (%)      PA (%)      UA (%) 

Bare gaps 83.5 73.6 95.4 97.4 79.4 100 96.2 96.3 

Vegetated gaps 73.2 61.3 84.1 90.4 78.5 57.9 84.2 84.2 

Shadow gaps 67.1 62.6 84.6 81.2 92.3 63.2 90.4 100 

Others 71.2 85.6 81.0 81.0 90.0 97.8 97.7 93.5 

         

Overall accuracy 

(%) 

74.64 86.90 85.59 93.69 

         

Models Compared f11 f12 f21 f22 Total chi-sq. (χ2) p value df 

         mPSRI vs. MLC (8 bands) 6 0 9 96 111 9.00 <0.05 1 

mPSRI vs. MLC (4 bands) 5 1 28 77 111 25.00 <0.05 1 

mPSRI vs. EVI 5 1 16 89 111 13.23 <0.05 1 

mPSRI vs. RF 4 1 13 93 111 10.29 <0.05 1 

mPSRI vs. SVM 4 0 19 88 111 19.00 <0.05 1 

MLC (8 bands) vs. MLC (4 bands) 14 1 19 77 111 16.20 <0.05 1 

MLC (8 bands) EVI 10 5 10 86 111 1.66* <0.05 1 

MLC(8 bands) vs. RF 8 7 9 87 111 0.25* <0.05 1 

MLC(8 bands) vs. SVM 13 2 10 86 111 5.33 <0.05 1 

EVI vs.RF 7 14 10 80 111 0.67* <0.05 1 

EVI vs. SVM 11 6 15 79 111 3.85 <0.05 1 

EVI vs. MLC(4 bands)  13 8 20 70 111 5.14 <0.05 1 

RF vs SVM 6 11 15 79 111 0.62* <0.05 1 

RF vs MLC(4 bands) 12 4 23 72 111 13.37 <0.05 1 
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Figure 7 shows the results of the delineated gaps and the confusion matrix is shown by Table 357 

6. The mPSRI showed average producer accuracy of 90.25 % and average user accuracy of 358 

90.26 % for forest gaps. 359 

 360 

Figure 7: Delineated forest gaps resulting from mPSRI in object-based classification 361 

Table 5 shows McNemar’s test results with the number of cases correctly and incorrectly 362 

classified by pixel based methods (8 band WorldView-2 image and conventional 4 band image), 363 

and object-based methods (Enhanced Vegetation Index and modified Plant Senescence 364 

Reflectance Index). The results showed that there was a statistical difference between pixel-365 

based and object-based classification techniques. Most of the comparisons showed statistical 366 

difference amongst each other at ρ < 0.05 and at 1 degree of freedom. There is no significant 367 

difference between MLC (8 bands) vs EVI, MLC (8 bands) vs RF, EVI vs RF, and RF vs SVM.  368 

Table 7 shows the results of three (3) best vegetation indices derived from (i) conventional 369 

R.G.B and NIR bands common in Landsat, and (ii) WorldView-2 sensor. This table indicates 370 

that higher overall accuracies were obtained from mPSRI (93.69%) derived from new 371 

WorldView-2 bands than the conventional EVI (85.59%). The EVI yielded the highest producer 372 

accuracy (85.05%) in the list of conventional vegetation indices, while the mPSRI yielded both 373 

the highest producer accuracy (92.18%) and user accuracy (93.50%) in the list of new 374 

WorldView-2 indices.  375 

 376 
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 377 

Table 6: Confusion matrix resulting from mPSR Index in object-based image analysis 378 

 379 

Table 7: Comparison of classification results obtained from vegetation indices derived from 380 
conventional sensor and those from WorldView-2 imagery. (PA= mean producer accuracy, UA= mean 381 
user accuracy, OA= overall accuracy) 382 

 383 

 384 

4. Discussion and Conclusions 385 

 386 

Canopy gaps form an important part of forests and have been mapped using different methods 387 

(Runkle, 1982: Emborg, 1998; Vepakomma et al., 2008) but rarely in subtropical forests 388 

(Brokaw, 1985).  Most of the successful studies focused on delineating forest gaps from 389 

combined optical and hyperspectral data (Hodgson and Bresnahan, 2004). To the best of our 390 

knowledge, high resolution multispectral data alone has not been used for delineating forest 391 

canopy gaps in closed canopy environment. Findings from this study highlight the possibility of 392 

using high spatial resolution WorldView-2 imagery for delineating forest canopy gaps in the 393 

subtropical forest environment.   The suitability of 8 band WorldView-2 imagery to delineate 394 

canopy gaps was assessed and compared with resampled conventional 4 bands (visible-near 395 

Infrared) common in Landsat imagery. Higher classification accuracies were achieved from an 8-396 
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Shadows 

 

Others 

 

Total 

User 

Accuracy 

 

Bare gaps 26 1 0 0 27 96.30 

Vegetated                      

gaps 

1 16 1 1 19 84.21 

Shadows 0 0 19 0 19 100.00 

Others 0 2 1 43 46 93.48 

Total 27 19 21 44 111  

  

Producer 

Accuracy% 

 

96.29 

 

84.21 

 

90.48 

 

97.73 

 

 

 

 

 Kappa Index     0.91  

 Overall 

Accuracy 

    93.69  

  Index PA (%) UA (%) OA (%) 

     

Conventional R.G.B, NIR 

Indices 

EVI 85.05 79.73 85.59 

NDVI545 83.50 80.70 84.69 

NDVI660 75.13 73.85 82.93 

        

New WorldView-2 Indices 

NDVI725 75.42 80.79 82.90 

mPSRI 92.18 93.50 93.69 

NPCI 73.15 74.35 78.37 
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band WorldView-2 image when compared to the conventional 4 band imagery (red, green, blue 397 

and near infrared bands) similar to those found in SPOT, IKONOS and Landsat. In addition,  the 398 

best three highest performing indices derived from WorldView-2 imagery (NPCI, mPSRI and 399 

NDVI725) yielded the highest average user accuracy (82.83%) for all forest classes (Table 7) 400 

compared to the three best performing indices derived from conventional sensors (EVI, NDVI545 401 

and NDVI660) (78.07%) in object-based image analysis. These findings therefore support the 402 

assertion that the utility of WorldView-2 sensor provides improved estimations of vegetation 403 

biophysical characteristics in subtropical environments such as biomass and tree species 404 

discrimination (Mutanga et al., 2012; Cho et al., 2012). The improved results utilizing the red 405 

edge band (centered at 725 nm) in WorldView-2 sensor might be attributed to the fact that the 406 

reflectance in this shows less saturation in dense vegetation when compared to the red band 407 

(660-680 nm) reflectance that is common in conventional sensors such as Landsat and IKONOS 408 

(Mutanga and Skidmore, 2004). 409 

The maximum likelihood classifier applied on a spectrally resampled 4-band imagery, 410 

common in SPOT, IKONOS and Landsat, showed a drop in average user and overall 411 

classification accuracies (from 86.33% to 70.83%, and from 86.90% to 74.64% respectively), 412 

which is an indication that new WorldView-2 bands provide spectral enhancements to the 413 

common RGB and NIR bands (Mutanga et al., 2012; Cho et al., 2012; Ozdemir and Karnieli, 414 

2011). The pixel-based overall classification accuracy resulting from WorldView-2 bands is 415 

15.50% higher than the overall classification accuracy derived from conventional RGB and NIR 416 

bands. This evidence also highlights the spectral saturation that poses a major challenge when 417 

using conventional bands (Cho et al., 2008) and shows that the presence of new WorldView-2 418 

bands can minimize this problem. This also signifies the spectral enhancement provided by 419 

additional bands such as coastal, yellow and NIR-2. On the other hand, there was no statistical 420 

difference between the observed results from the classification by RF (commonly used 421 

algorithm) and MLC, due to the conditions under which MLC performs. The MLC requires that 422 

the cells in each class in the multidimensional space be normally distributed so as to allow the 423 

decision based on the Bayesian theorem for classification (Jeon and Landgrebe, 1999). 424 

The mPSRI which is derived from new bands of WorldView-2 yielded the highest overall 425 

classification accuracy than all the selected indices. The mPSRI index is derived from a plant 426 

senescence reflectance index (PSRI) proposed by Merzlyak et al. (1999), where the red edge 427 

band was used instead of a red band. Although this index was initially proposed for estimating 428 

stages of leaf senescence and fruit ripening, our study indicated that it can also be used to 429 

delineate forest gaps in closed canopy forest. Additionally, we have observed the increased 430 

average user and overall classification accuracies of red edge NDVI over the conventional 431 

NDVI. The saturation problem that is prevalent in conventional sensors is minimized when the 432 

red edge band is used in vegetation indices such as NDVI, and this characteristic was crucial for 433 

our study since the confusion between vegetated gaps and tree crown was minimized (Mutanga 434 

and Skidmore, 2004). This confirms our hypothesis that separability of forest gaps from forest 435 

tree crowns can be increased by using indices that are derived from WorldView-2 than those 436 

derived from conventional sensors. 437 

Although the results obtained from high resolution WorldView-2 data offer a promising hope 438 

to the delineation of forest canopy gaps in tropical indigenous forest, they cannot, however be 439 

comparable to those obtained from LiDAR technology. This is primarily so due to the fact that 440 
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LiDAR data also addresses the tree height characteristic in which optical sensors fail to capture 441 

(Dubuyah and Drake, 2000; Harding et al., 2001; Nelson et al., 1997). However, although 442 

LiDAR technology provides very accurate measurements the application of this technology is 443 

limited by its high data acquisition costs and high data dimensionality (Mutanga et al., 2012). 444 

Based on the results, we conclude that the use of 8-band WorldView-2 imagery increases 445 

classification accuracies (average producer, user and overall) for delineating forest canopy gaps 446 

when compared to the conventional VNIR bands present in SPOT, IKONOS and Landsat. We 447 

also conclude that vegetation indices derived from new WorldView-2 red-edge band (NDVI725 448 

and mPSRI) yielded higher average user accuracy than those that are derived from conventional 449 

sensors, highlighting the significance of new WorldView-2 bands.  450 
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