
Active Object Recognition using Vocabulary Trees

Natasha Govender ∗

MIAS (CSIR)
South Africa

ngovender@csir.co.za

Jonathan Claassens
MIAS (CSIR)
South Africa

jclaassens@csir.co.za

Fred Nicolls
University of Cape

Town
South Africa

fred.nicolls@uct.ac.za

Jonathan Warrell
University of

Oxford Brookes
United Kingdom

jwarrell@brookes.ac.uk

Abstract

For mobile robots to perform certain tasks in human en-
vironments, fast and accurate object classification is es-
sential. Actively exploring objects by changing viewpoints
promises an increase in the accuracy of object classifica-
tion. This paper presents an efficient feature-based active
vision system for the recognition and verification of objects
that are occluded, appear in cluttered scenes and may be
visually similar to other objects present. This system is de-
signed using a selector-observer framework where the se-
lector is responsible for the automatic selection of the next
best viewpoint and a Bayesian ‘observer’ updates the belief
hypothesis and provides feedback. A new method for au-
tomatically selecting the ‘next best viewpoint’ is presented
using vocabulary trees. It is used to calculate a weight-
ing for each feature based on its perceived uniqueness, al-
lowing the system to select the viewpoint with the great-
est number of ‘unique’ features. The process is sped-up as
new images are only captured at the ‘next best viewpoint’
and processed when the belief hypothesis of an object is be-
low some pre-defined threshold. The system also provides a
certainty measure for the objects identity. This system out
performs randomly selecting a viewpoint as it processes far
fewer viewpoints to recognise and verify objects in a scene.

1. Introduction
Reliable object classification is essential for robots to

perform tasks in human environments. Many recognition
systems operate on single views [1] [2]. In real-world situa-
tions a single viewpoint may be of poor quality and simply
not contain sufficient information to reliably recognise or
verify the object’s identity unambiguously. This is espe-
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cially true if they are occluded or appear in cluttered en-
vironments. There may also be a great variety of relevant
objects with significant similarity. In such cases multiple
viewpoints are necessary for recognition [3] [4]. Active
vision allows a robot to actively search an environment to
obtain more informative views to increase the accuracy of
object identification and verification.

The two focus areas of active object recognition are: se-
lecting the next best viewpoint and integration of relevant
information. For selecting the next best viewpoint many
systems simply use active vision to select the sequence in
which a set of pre-captured images should be processed for
recognition [5]. Often these sequences are of fixed length
and optimization of appraisal time is not considered. To the
authors’ knowledge, no systems explicitly consider the pos-
sibility of occlusion or extremely cluttered environments.

We propose a unique framework for feature-based ac-
tive object recognition and verification, which is comprised
of an automatic viewpoint selector and an independent ob-
server. The automatic viewpoint selector uses a vocabulary
tree structure [6] to weight the uniqueness of each feature in
a viewpoint. Every viewpoint of all objects in the database
are then given a value which is obtained by summing the
uniqueness measure of all its features. The higher the value,
the more unique the viewpoint. This quantity is then used to
select the subsequent view. The vocabulary tree also facili-
tates quick matching and provides a method to discretize the
feature space to reduce feature dimensionality when con-
sidered in the observer component. Following the approach
used in [7], the observer component updates an object be-
lief probability with current view information in a recursive
Bayesian manner using a prior determined from previous
views. These two components are designed to be indepen-
dent of each other. The advantage of this framework is that
the algorithm for the next viewpoint selection can be altered
or completely rewritten and it would not affect the observer
component and vice-versa.

Interest points, which have the advantage that the rep-
resentation is more robust to occlusions, clutter and noise,



have successfully been used in 3D object recognition [8]
[9] [10]. Our system uses the Scale Invariant Feature Trans-
form (SIFT) [11] detector and descriptor to extract relevant
object features. SIFT is robust to changes in illumination
and affine transformation. The structure of our system is,
however, not SIFT dependent and thus any other descriptor
or detector can be used for feature extraction.

The structure of the paper is as follows. Section 2 dis-
cusses related work and Section 3 elaborates on how the
datasets for the experiment were collected. A complete de-
scription of the system’s architecture is presented in Sec-
tions 4 and 5. Sections 6 and 7 present the experimental
results and conclusions. Finally, possible future work is dis-
cussed in Section 8.

2. Related Work
Image processing methods used to create object models

for classification include appearance-based methods [12],
aspect graphs [13] [14] [15] [16], histogram of gradients [5]
and neural networks [17]. Following [18] we use SIFT to
model objects, which provides robustness to affine transfor-
mations and variable illumination.

Using multiple views for object recognition improves the
accuracy of the recognition system [15]. The focus of ac-
tive object recognition and verification is how to select the
“next best viewpoint” which will provide the most amount
of information to complete the task as quickly and as ac-
curately as possible. Most active object recognition sys-
tems are based on selecting viewpoints that will minimise
ambiguity using Shanon entropy [17] or Dempster-Shafner
theory [13], minimise a weighted error [5] or maximise a
defined activation function [18].

In our system, views are selected based on promised
abundance and uniqueness of features. In contrast to ex-
isting approaches we rely on an efficient bag-of-words ap-
proach to organize the training feature database. This data
structure is called a vocabulary tree and provides a measure
of feature uniqueness per object and discrimination poten-
tial. The system also provides a confidence/certainty mea-
sure for the objects identity.

Vocabulary trees have been traditionally used in object
recognition and Simultaneous Localization and Mapping
(SLAM) approaches for matching similiar images and for
loop closure [19]. Our application of the data structure dif-
fers in that we use it to calculate weightings for features to
determine the next best viewpoint. We also use it to gener-
ate statistics to update the object belief. Following [12] [18]
our system relies on a Bayesian framework for updating a
belief function.

With the exception of [12], many of these systems use
a pre-determined number of images and merely use active
vision to select the sequence in which they should be used.
Our system is different: it only captures a new image when

Figure 1. An example of two different objects used in the database
that share similar views

required and thus optimises the number of views needed for
reliable recognition or verification.

When classifying objects, all of the above systems, ex-
cept for [18], consider scenes with a single object. In [18]
the target object is placed in the centre of the image with
no occlusions or clutter. Our system recognizes and veri-
fies objects which not only occur in cluttered environments
but are also occluded. Few systems in the literature con-
sider datasets with objects that share many visual similari-
ties. Exceptions include [12] [20]. Our database contains a
number of visually similar objects which can only be differ-
entiated by appraising specific viewpoints.

3. Data Collection
The training database used consists of twenty everyday

objects. This is much larger than other databases used for
active vision experiments. To assemble the training set for
the vocabulary tree, images were captured every 20 degrees
against a plain background on a turntable using a Prosilica
GE1900C camera. Verifying or recognising objects tends
to become more complicated if two or more objects have
views in common with respect to a feature set. These types
of objects may be distinguished only through a sequence of
images which the viewpoint selection algorithm is required
to determine. For this reason, objects that share a number
of similar views were included in the dataset, as shown in
Figure 1. The database used is available on request.

For the test set, the objects used in the training data were
captured at every 20 degrees in a cluttered environment with
significant occlusion. In all the presented experiments, im-
ages are captured around the y-axis, which represents 1
degree-of-freedom (DoF). This is not a limitation of our
proposed system. Our viewpoint selection system can eas-
ily be applied to several degrees-of-freedom with a modest
increase in required computation.

4. Active Viewpoint Selection
The aim of the automatic view selection algorithm is to

select the ‘next best viewpoint’ for object recognition and



Figure 2. A schematic of the modified vocabulary tree

verification i.e. the viewpoint which will provide the most
amount of useful information to optimally complete the pro-
cess. The proposed scheme uses a vocabulary tree [6]. This
structure is typically used in bag-of-words object recogni-
tion and visual loop closure approaches as an efficient al-
ternative to Sivic and Zisserman’s Video Google [21]. The
idea is to gather all features in the training set, cluster them
hierarchically and calculate a uniqueness weighting for each
feature. The vocabulary tree data structure was designed for
large volumes of data and thus will scale easily if more ob-
jects are to be added to the database.

The vocabulary tree is constructed using hierarchical k-
means clustering where similar features are clustered to-
gether. k defines the number of children of each node of the
tree. Initially, for the root of the tree, all the training data
is grouped into k clusters. The training data is then used to
construct k groups, where each group consists of SIFT de-
scriptors closest to a particular cluster centre. This process
is recursively applied to each group up to some depth D.
This process is illustrated in Figure 2.

For each node in the tree a TFIDF-like (Term Frequency
Inverse Document Frequency) metric is calculated to cap-
ture the node’s uniqueness:

wi = ln
M

Mi
(1)

where M is the total number of images in the database and
Mi is the number images in the database with at least one
feature that passes through node i.

Using this quantity, a feature’s uniqueness may be cal-
culated. This is done in the following way. The feature’s

Figure 3. Viewpoint weightings for a spice bottle object in the
database.

path through the vocabulary tree is determined by evaluat-
ing the closest cluster centers at each level. A measure of
uniqueness is given by the sum of all the TFIDF numbers,
or weights, of the nodes it passes through. The higher the
weighting, the more unique the feature. The uniqueness of
the viewpoint may then be given by summing these totals
for all the SIFT features extracted from that viewpoint. We
term this metric the viewpoint weighting. This calculation
is performed for every viewpoint in the dataset.

It is important to note that SIFT features detected on the
background will not negatively effect the weighting since
all images were captured using the same background and
their uniqueness weighting will be extremely low. Figure 3
is an example polar plot of viewpoint weightings for a spice
bottle object in the database. The polar plot indicates that
the most distinctive viewpoints (highest weightings) are at
340 degrees and at 0 degrees and the most indistinguishable
(lowest weighting) viewpoint is at 180 degrees.

The view selection component of the proposed active vi-
sion system functions as follows. For object verification,
an input image is provided to the system with the neces-
sary object hypothesis. The input image is matched using
standard SIFT matching and a hough transform to the hy-
pothesized object’s training images to determine the closest
training image which provides the initial pose estimate of
the object. Relative to the pose estimate the view selection
component selects a view that it has not previously visited
and has the largest uniqueness weighting for that object.

For object recognition, no object hypothesis is given to
the system. The criteria for selecting the next best viewpoint
is based on the viewpoint which has the highest combined
weighting across all objects in the database and has not been
previously visited. In the experiments section, we will show
that both these selection methods significantly outperform
randomly selecting the next viewpoint.



5. Observer Component

In our framework, the observer component updates the
system’s object belief. The vocabulary tree used in the view
selection component is altered to store the statistics neces-
sary for the observer component. This is explained in the
next subsection.

5.1. Calculation of feature statistics

The vocabulary tree is built by the view selection com-
ponent using features from all dataset images. At each leaf
node a discrete density function which represents the like-
lihood of the feature appearing at least once given a cer-
tain object, is added. These densities are represented as
P (N |O) where O is an integer. A representation of the
modified tree in shown in Figure 2.

The discrete density elements are determined as follows.
If any feature from an object’s training set, when passed
through the vocabulary tree, reaches a leaf node N5, say,
then the corresponding element of P (N5|O) is assigned
po. Elements that are not reached by this object’s train-
ing set are assigned pno. Constants po and pno are as-
signed in a ‘soft’ manner, i.e. no elements are assigned zero.
This avoids over committed densities. In our experiments,
po = 2 and pno = 1 appeared to work well. Once the leaf
node densities are populated they are normalized so that all
elements sum to one.

5.2. Pipeline

With the tree constructed, the observer component will
proceed in the following manner to update its belief:

1. Initialization - A uniform prior is assumed over all
object hypothesis:

P (O) = 1/N (2)

where N is the number of objects (this initialization is
used for both verification and recognition).

2. Image processing - When given a new viewpoint
which is provided by the viewpoint selection com-
ponent the observer component proceeds to extract
SIFT features from the image. These features are then
matched using Lowe’s method [11] to the training im-
age of the hypothesized object which best matches the
given image. A Hough transform and voting scheme is
used, as described in [8], to select only those features
that agree with the training image feature geometry.
This additional filter removes spurious matches.

3. Fusion - Each feature provided by the previous step
is cascaded through the vocabulary tree by selecting

children with the closest centroids. The leaf node as-
sociated with each feature contains a density as de-
scribed above. Every feature’s density is fused recur-
sively with the prior using

P (O|N) =
P (N |O)P (O)

P (N)
(3)

where P (N |O) is the density at the leaf node. P (N)
is merely a normalizing coefficient. All nodes are con-
sidered independently.

4. Stopping criteria - If the posterior belief has a prob-
ability of greater than some threshold, ε, for the hy-
pothesized object the process terminates. We may also
stop if a maximum number of viewpoints have been
reached, otherwise we take the resulting posterior be-
lief, request a new view from the selector component
and return to step 2.

The pipeline steps described above are used for both ob-
ject verification and for object recognition.

6. Experiments
6.1. Verification

The main purpose of an active object recognition or ver-
ification system is to improve the processing time and accu-
racy required to determine an object’s identity. In addition
to this, our system also provides a measurement for how cer-
tain the system is of an object’s identity. Test images were
captured with the relevant objects in occluded locations in
cluttered environments as shown in Figure 4.

An initial test image is presented to the system at an arbi-
trary pose. The belief probability is updated at each subse-
quent view that is processed. The system retrieves the next
best viewpoint until a confidence or belief probability of
80% is reached. In accordance with previous state-of-the-
art active object recognition systems [18] [12] [7] [22] [20]
[17], we compare our results to randomly selecting the next
viewpoint. When randomly selecting the next best view-
point, the experiment was conducted ten times and the aver-
age number of views for each object was taken. Both meth-
ods correctly verify all objects. We are, however, more in-
terested in the number of views required to correctly verify
an object as this greatly influences the processing time of
the system. Table 1 displays the number of views required
by each method.

Table I describes the number of viewpoints required for
each object in the database to reach a confidence level of
80% for verification. For each of the twenty objects, our
method requires fewer viewpoints, in some cases signifi-
cantly so, to reach a confidence of 80%. This indicates that
our method is selecting more infomative viewpoints which
can significantly decrease the processing time of the system.



Figure 4. Examples of test images of occluded objects appearing in a cluttered environment which are to be verified

Table 1. Number of Views: Object Verification
Cereal Box Battery Can1 Can2 Curry1 Curry2 Elephant Handbag1 Jewelry 1 Jewelry 2

Our method 1 1 3 4 2 3 1 2 16 15
Random 1 1 6.8 7.5 4.4 7.5 1 2.3 18 16

Bottle MrMin Salad Bottle Sauce1 Sauce2 Spice1 Spice2 Can1 Can2 Can3 Average
Our method 9 1 15 3 3 6 16 5 5 11 6.1

Random 14.4 1.5 18 5.8 7.1 6.2 18 7.8 7.6 16.3 8.41

The difference in information provided by the varying
choice of viewpoints can be shown. Figure 5 displays the
increase in belief after each view for the ‘Curry 1’ object.
We can see that even after the second view our method has
a much higher belief than randomly selecting a viewpoint
for both verification and recognition. After four views in
the case of verification and five views for recognition, our
method reaches a confidence level of 1.

6.2. Recognition

The system was then tasked to recognise occluded ob-
jects in cluttered scenes. This differs from verification in
that, the object’s identity is not known to the system. It
has to determine the identity based on which object has ac-
cumulated the greatest belief probability given the current
database. The system retrieves the next best viewpoint un-
til a confidence or belief probability of 80% is reached for
any of the objects in the database. The next best viewpoint
is selected based on which viewpoint has the highest com-
bined weighting over all objects. Both methods for select-

Figure 5. Confidence values after each view for verification and
recognition

ing the next best viewpoint (our method and random selec-
tion) correctly recognize all objects. As mentioned before,



Table 2. Number of Views: Object Recognition
Cereal Box Battery Can1 Can2 Curry1 Curry2 Elephant Handbag1 Jewelry 1 Jewelry 2

Our method 1 1 5 10 4 7 2 3 16 15
Random 1 2 18 18 5.8 8.8 8.3 3.1 18 18

Bottle MrMin Salad Bottle Sauce1 Sauce2 Spice1 Spice2 Can1 Can2 Can3 Average
Our method 14 2 15 4 4 10 16 9 11 15 8.2

Random 16 2.1 18 10 7.1 11 18 17.5 13 18 11.58

the measure of interest is the number of viewpoints required
to correctly identify an object. Table 2 displays the number
of views required by each method.

Table II describes the number of viewpoints required for
each object in the database to reach a confidence level of
80% for object recognition. Our method clearly out per-
forms randomly selecting the next viewpoint. It requires
fewer views for all objects to attain a confidence of greater
than or equal to 80%. This leads to a significant decrease in
processing time for recognising objects which are occluded
in cluttered environments.

A number of methods have explored active object recog-
nition previously [18] [13] [5] [12] [17], but using experi-
mental set-ups not directly comparable to ours. We adapted
[18] to run on our data, and found our performance to be
comparable and better in a number of cases, but do not
quote results since we did not try to optimize their perfor-
mance on our problem. We will make our data and code
available on request to facilitate future comparisons.

7. Conclusions
Our experiments show the successful use of active ob-

ject exploration for 3D object verification and recognition
for significantly occluded objects in extremely cluttered en-
vironments. The active vision system performs consider-
ably better than randomly selecting the next viewpoint. The
system also provides a measure of certainty for the object’s
identity.

We introduce a new framework for active object verifi-
cation and recognition consisting of an selector and an ob-
server component. The selector determines the next best
viewpoint and the observer component updates the belief
hypothesis and provides feedback. The observer compo-
nent works independently from the selector and thus any
exploration or manipulation of an object can occur without
interfering with the observer component. This framework,
which has proven to work efficiently, can be applied to any
active vision task.

To select the next best viewpoint, features appearing in
every viewpoint were weighted based on their uniqueness
in the given dataset using a vocabulary tree. For verifica-
tion, the viewpoint with the highest weighting for the object
to be verified was then selected as the next view. In the

case of object recognition, the viewpoint with the highest
weighting over all objects was selected as the next view-
point. Both these methods proved to be significantly bet-
ter than randomly selecting the next viewpoint. Bayesian
methods are used to update the belief hypothesis and pro-
vide feedback. The path of each matched feature in the test
image was traced through the vocabulary tree and the statis-
tics contained in the leaf node were used to update the belief
hypothesis.

New images were only captured when the belief was be-
low a pre-defined threshold. This reduces the computational
time because only the minimal number of images will be
processed to perform the task.

Our system uses test images where the object to be ver-
ified or recognized is significantly occluded and appears in
a cluttered environment. Even with these difficulties, our
system correctly verifies and recognizes all objects requir-
ing fewer viewpoints than randomly selecting the next view-
point, in some cases significantly so.

To summarize, we have developed an active 3D object
recognition and verification framework which can be ap-
plied to any active vision task. The next viewpoint selec-
tion algorithm significantly outperforms randomly selecting
the next viewpoint. Our system only captures a new image
when necessary and successfully deals with occluded ob-
jects in cluttered environments which may be visually sim-
ilar to other objects contained in the database. It also pro-
vides a measure of certainly of the object’s identity.

8. Future Work

The robotic arm manipulator for which this system was
designed, does not have a complete 360 degree range. To
combat this problem we would like to create 3D models
of the objects, so in the event that the next view cannot be
executed by the arm, the object itself can be manipulated to
achieve the desired viewpoint.
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