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Abstract: We present a simple method of simulating the effect of the
pumping process in spontaneous parametric down-conversion (SPDC) by
modulating a classical laser beam with two spatial light modulators through
a back projection setup. We simulate a wide range of pump beams for
quantum state engineering and confirm that the results are in agreement
with theory. Our approach offers high photon count rates, is quick to yield
results and can easily be converted back to a SPDC setup. It is likely to
be a useful tool before starting more complicated SPDC experiments with
custom pump profiles.
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27. E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton
wave packet,” Phys. Rev. Lett. 82, 2868 (1999).

28. S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital
angular momentum in spontaneous parametric down-conversion,” Phys. Rev. A 69, 023811 (2004).

29. T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, “Experimental violation of Bells inequality in
spatial-parity space,” Phys. Rev. Lett. 99, 170408 (2007).

30. T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, “Synthesis and analysis of entangled photonic
qubits in spatial-parity space,” Phys. Rev. Lett. 99, 250502 (2007).

31. R. M. Gomes, A. Salles, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Observation of a nonlocal optical
vortex,” Phys. Rev. Lett. 103, 033602 (2009).

32. J. Romero, D. Giovannini, M. G. Mclaren, E. J. Galvez, A. Forbes, and M. J. Padgett, “Orbital angular momentum
correlations with a phase-flipped Gaussian mode pump beam,” J. Opt. 14, 085401 (2012).

33. D. Klyshko, “A simple method of preparing pure states of an optical field, of implementing the EinsteinPodol-
skyRosen experiment, and of demonstrating the complementarity principle,” Sov. Phys. Usp. 31, 74 (1988)

34. R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd and M. J. Padgett, “Experimental demonstration of Klyshkos
advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Opt.
10.1080/09500340.2014.899645 (2014).

35. F. M. Miatto, A. M. Yao, and S. M. Barnett, “Full characterization of the quantum spiral bandwidth of entangled
biphotons,” Phys. Rev. A 83, 033816 (2011).

36. Y. Zhang, and F. S. Roux, “Modal spectrum in spontaneous parametric down-conversion with noncollinear phase
matching,” Phys. Rev. A 89, 063802 (2014).

37. Y. Zhang, F. S. Roux, M. Mclaren, and A. Forbes, “Radial modal dependence of the azimuthal spectrum after
parametric down-conversion,” Phys. Rev. A 89, 043820 (2014).
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1. Introduction

Entanglement is a distinct phenomenon of quantum mechanics. A proper understanding and use
of entanglement can lead to significant technological advances in communication, computing
and cryptography [1]. In recent years there has been much interest in the entanglement among
optical modes that carry orbital angular momentum (OAM) [2]. These modes are capable of
carrying large amounts of information due to the infinite-dimensional nature of OAM and thus
are of significant interest for quantum information. They have been used to demonstrate the vi-
olation of Bell’s inequality [3–5] and Leggett inequalities [6] as well as demonstrating Hardy’s
paradox [7,8]. Typically, OAM carrying modes such as Laguerre-Gaussian (LG) [9,10], Bessel-
Gaussian [11–13] and Ince-Gaussian [14] have been used to demonstrate high-dimensional en-
tanglement. An increase in the dimensionality of an entangled system offers an increase in
information capacity per photon. As such, a variety of work, from increasing the measured spi-
ral bandwidth [15,16] to increasing the number of entangled degrees of freedom [17], has been
experimentally demonstrated. Alternatively, the direct measurement technique has shown en-
tanglement up to 27 dimensions using both weak and strong measurements [18]. More recently,
high-dimensional spatial entanglement was achieved by transferring the dimensionality of path
entangled photons to the OAM degree of freedom [19]. The advantages of high-dimensional en-
tanglement include an increased tolerance to eavesdropping in quantum key distribution [20,21]
as well as an increased efficiency in computing logic gates in quantum computation [22]. The
potential for high-dimensional entanglement with OAM modes has been used to show a quan-
tum random walk up to 4 steps [23] and has been proposed to demonstrate high-dimensional
teleportation [24].

Such entangled states are routinely created in the laboratory by spontaneous parametric
down-conversion (SPDC) [9, 25, 26], where the states are post selected with spatial light mod-
ulators. To date there have been very few studies making use of quantum states that have been
prepared at the source by modulating the pump profile. In [9] where entanglement of photons
in OAM states was first demonstrated, LG0,±1

0 modes were used in the pump beam. In [27],
the pump profile was modified by placing a wire in its path to measure the de Broglie wave-
length of a multiphoton packet. The coincidence profile of pump beams in the LG1,2

0 modes
was measured and compared to theory in [28], while in [29, 30] Bell’s measurement were per-
formed on pump beams with modified spatial parity. Nonlocal optical vortices were observed
in [31] where pump beams in the HG01 and LG±1

0 were used, and in [32] the OAM and angular
position correlations of a HG01 pump was measured. The dearth of such experiments is likely
due to the prohibitive cost and time, requiring custom optics likely resulting in low count rates.
Consequently, quantum state engineering is largely restricted to post selection processes.

Inspired by the advanced-wave representation of Klyshko [33], it has recently been shown
that back projection with classical light can mimic the post selection of modes in a SPDC ex-
periment [12, 34]. In this paper we show that the Klyshko concept may be extended to include
the pump beam too, the first time this is suggested, so that the effect of both pre and post se-
lection of modes may be simulated. The advantage of this is that the tool becomes complete
for the testing of quantum state engineering approaches. We modulate a classical laser beam
with two spatial light modulators (SLM) where both the pump beam and down-converted beam
profiles to be generated are encoded on the SLMs. The advantage of such a setup is that the
photon count rate is many orders of magnitude larger than in a typical SPDC experiment result-
ing in better photon statistics and easier alignment. We show that the effect of using different
pumps on the OAM spectrum can be investigated simply by reprogramming the SLMs with
the corresponding pump profile. This can be used to give an indication of whether a SPDC
experiment with a novel pump beam will be feasible or not. The back projection setup can also
be easily converted into a SPDC setup by replacing just two of its components. We compute
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theoretically the effect of Laguerre-Gaussian, Hermite-Gaussian and flat-top pump profiles and
show experimental results consistent with the predictions. This approach will be useful tool in
the engineering of entangled quantum states.

2. Coincidence amplitude of SPDC

The coincidence counts in a SPDC experiment are proportional to the modulus square of the
down-converted probability amplitude, |M |2 = |〈Ψ f |P|Ψin〉|2, where P represents the SPDC
process and Ψin and Ψ f are the initial and final photon states, respectively. For type I phase
matching, with collinear signal and idler beams and degenerate signal and idler frequencies
(ωs = ωi =

1
2 ωp), the probability amplitude in the paraxial limit is given by the overlap integral

[35, 36]:

M = Ω0

∫
M∗

s (qs)M
∗
i (qi)Mp(qs +qi)S(qs −qi)

d2qs

(2π)2

d2qi

(2π)2 (1)

where Ω0 is an overall constant that determines the conversion efficiency, q = qxx̂+qyŷ is the
two-dimensional transverse part of the three-dimensional wave-vector k, the angular spectra of
the mode profiles of the signal, idler and pump beams are given by Ms(q), Mi(q) and Mp(q),
respectively, and S(qs −qi) is the phase matching function.

In the case of collinear signal and idler beams the phase matching function is given by [35,
36]:

S(qs −qi) = sinc

(
noLw2

p

8zR
|qs −qi|2

)
, (2)

where we define sinc(a) = sin(a)/a with no the ordinary refractive index of the nonlinear crys-
tal, L is the crystal length and zR is the Rayleigh range of the pump beam. In most typical SPDC
experiments L � zR and in this limit the phase matching function can simply be approximated
by unity. As a result, one can Fourier transform Eq. (1) [37] to the coordinate domain which
gives

M = Ω0

∫
mp(x)m∗

s (x)m
∗
i (x) d2x, (3)

where mp,s,i(x) represents the mode profile of the pump, signal or idler beam.
In a conventional SPDC experiment ms(x) and mi(x) are each encoded on a SLM to select

the signal and idler modes to be detected, while the pump mode, mp(x), is the standard output
from the pump source, a Gaussian function. Here we show that a classical system described
by the same integral Eq. (3) can be produced by also encoding mp(x) onto the SLMs allowing
pre- and post-selection mode experiments to be done with a classical laser beam and only two
SLMs.

In this paper three different pump beam types are simulated. The first is a pump beam with a
vortex beam profile where

m�
p(x) =

1
wp

(
2|�p|

|�p|!

)1/2(
r

wp

)|�p|
exp

(
− r2

w2
p

)
exp(i�pφ), (4)

with wp being the radius of the pump beam waist and �p the azimuthal index of the pump.
Secondly, we introduce a flat-top beam

mp(x) =

{
1√
πwp

for r < wp

0 for r > wp
, (5)
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and lastly we employ a Hermite Gaussian (HG) pump beam

mm,n
p (x) =

1
wp

(
1

2n+mn!m!

)1/2

exp

(
−x2 + y2

w2
p

)
Hn

(√
2x

wp

)
Hm

(√
2y

wp

)
, (6)

where Hn,m(x) are the Hermite polynomials of order n and m respectively.
LG modes are used for the signal and idler beam profiles and are given by

m�,p
s,i (q) =

1
w

[
2|�|p!

(p+ |�|)!

]1/2( r
w

)|�|
exp

(
− r2

w2

)
L|�|

p

(
2r2

w2

)
exp(i�φ), (7)

where w is the radius of the beam waists and L|�|
p (x) is the generalized Laguerre polynomial

with radial index p and azimuthal index �. For simplicity we assume that the radii of the beam
waists of the signal and idler beams are equal ws = wi = w.

Equation (3) shall then be solved numerically using the beam profiles Eq. (4-7) and compared
to experiment.

3. Experimental concept and setup

The back-projection setup is inspired by the advanced-wave representation of Klyshko [33].
The Klyshko picture shows that the probability of detecting a photon in detector B given that
another photon is detected in detector A is the same as if a photon propagates in reverse from
detector A back to the crystal plane and is reflected through the system to detector B. The
typical back-projection setup is just applying the Klyshko picture experimentally where one of
the detectors is replaced by a laser source.

Mirror

SLM B

SLM A

Detector B

SMF B

SMF A

Laser

(a)

BBO

SLM B

SLM A

Detector B

SMF B

SMF A

Detector A

Coincidence
CounterPump

(b)

SLM B

SLM A

Detector B

SMF B

SMF A

Laser

SLM Pump

(c)

Fig. 1. Schematic diagram of a typical back-projection setup (a) compared to that of a
SPDC setup (b). Back-projection setup to simulate the pump profile is shown in (c) where
the mirror in (a) is replaced by a SLM.

A schematic of a typical back-projection setup is shown in Fig. 1(a) with the corresponding
SPDC experiment in Fig. 1(b). An obvious difference is that the pump beam from the SPDC
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experiment is not incorporated in any way. This leads to the overlap between the pump and
the modes to be detected to be ignored, and moreover, and does not allow for pre-selection of
quantum states to be simulated. We overcome these disadvantages by conceptionally replacing
the pump beam and BBO crystal not with a mirror but with a third SLM, as seen in Fig. 1(c).
In this way the pump beam is programmed as an appropriate hologram on the SLM, so that
we realise a true simulation of Eq. (3). An important aspect of the SPDC experiment is that the
planes of the crystal and SLMs are all image planes. As such, in the back-projection experiment
the field at SLM A is relay imaged to the mirror (BBO crystal), and then relay imaged to SLM
B. As a result the final field after SLM B is the overlap of the modes programmed on SLM A
and B. To include the effect of the pump we have imagined an additional SLM in the place of
the BBO crystal. For convenience we split the pump effect across the two existing SLMs (A
and B) taking care of the imaging magnification. As one can see in the schematics in Fig. 1, the
back-projection setup can be easily converted to the SPDC setup by replacing the mirror with
a BBO crystal and replacing the laser with another avalanche photodiode (APD). Coincidence
counts of the photon pairs can then be registered by a coincidence counter attached to the APDs.

In our setup a 710 nm laser beam was first coupled into a single mode fibre (SMF) A. The
beam was then imaged onto SLM A via a telescope. SLM A was encoded to convert the Gaus-
sian beam from the SMF into

√
mp(x)m∗

s (x). The beam was then imaged onto a mirror and was
reflected onto SLM B with

√
mp(x)m∗

i (x) encoded. Finally the beam was coupled into SMF B
which was connected to an APD that registers the photon counts. The type-3 intensity masking
technique detailed in [38] was used to generate the hologram on the SLMs. The LG mode size
w and the pump mode size wp encoded on the hologram was 0.250 mm and the beam size of
the Gaussian mode from the SMF when imaged onto the SLM was 0.575 mm.

4. Encoding the SLM

A slight complication in both back projection and SPDC experiments is that the beam emerging
and coupling into the SMFs must be Gaussian beams; when this is taken into account the
overlap integral to describe the back-projection setup becomes [37]

M = Ω0

∫
mp(x)m∗

s (x)m
∗
i (x)G

2(x) d2x, (8)

where

G(x) =
(

2
π

)1/2 1
w0

exp

(
−x2 + y2

w2
0

)
(9)

is the mode of the SMF, with radius w0 when imaged onto the SLMs. It is mentioned in the
experimental setup that w0 = 0.575 mm for this experiment.

The effect of G2(x) has to be cancelled and this can be done by modifying the encoded
functions on the SLMs. We can do this by modifying Eq.(7) into

m�,p
s,i (q) =

1
w

[
2|�|p!

(p+ |�|)!

]1/2( r
w

)|�|
exp

(
− r2

(w′)2

)
L|�|

p

(
2r2

w2

)
exp(i�φ), (10)

where
1

(w′)2 =
1

w2 − 1

w2
0

. (11)

We see that when using Eq. (10) in Eq. (8) we obtain the desired Eq. (3) for our overlap
integral.

One other thing to take note when using this modification is in choosing the size of w. To
demonstrate how the size of w can affect the beam quality we show in Fig. 2 the holograms
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(a) (b)

(c) (d)

Fig. 2. Generated hologram on the SLM with
√

mp(x)m∗
i,s(x) encoded for a flat-top pump

and LG signal and idler modes with p = 2, � = 4. (a) and (b) uses Eq.(10) as m∗
i,s(x) with

w = wp = 0.250 mm for (a) and w = wp = 0.450 mm for (b). (c) and (d) uses Eq.(7) as
m∗

i,s(x) with w = wp = 0.250 mm for (c) and w = wp = 0.450 mm for (d).

generated on the SLM with
√

mp(x)m∗
i,s(x) encoded for a flat-top pump and LG signal and idler

modes with p= 2, �= 4. Figures 2(a) and 2(b) uses Eq. (10) as m∗
i,s(x) with w=wp = 0.250 mm

for (a) and w = wp = 0.450 mm for (b). Figures 2(c) and 2(d) shows the desired situation where
Eq. (7) is used for m∗

i,s(x) with w = wp = 0.250 mm and w = wp = 0.450 mm respectively. We
can see that the inner rings are less visible in Figs. 2(a) and 2(b) (especially in 2(b) where they
are almost invisible) when compared to Figs. 2(c) and 2(d). This is the result of the modified
Gaussian term in m∗

i,s(x) being unable to suppress the Laguerre polynomial fast enough.
It has been shown in [39] that using intensity masking techniques one can in principle gen-

erate modes with very high purity (∼ 0.99 for the Arrizón technique [38]) however, as can be
seen in Fig. 2, that by accounting for the SMF Gaussian using the SLM hologram, the mode
generated will have significantly reduced beam intensity and due to the limited contrast levels
available on the SLM, the beam quality will also be reduced. We have found that the optimal w
to be used in our experiment is w ≈ 1

2w0.
Finally, we point out that this limitation is not intrinsic to our experiment but rather a general

limitation experienced by all SPDC and back-projection experiments when intensity masking
is used on the holograms. It is however not observed when azimuthal phase functions (i.e., no
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intensity masking) are programmed to realise the standard spiral bandwidth measurements.

5. Experimental results
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Fig. 3. Spiral bandwidth plots from the back-projection experiment for �p =−4 and �p = 6
is shown in (a) and (b) respectively. A cross-section along the diagonal of (a) and (b) is
shown in (c) and (d) respectively with the circles representing experimental data and the
solid line being the theory. Due to the high count rate of the back-projection experiment,
error from the Poisson distribution of the count rate is negligible and is therefore not visible.

Figure 3 shows the spiral bandwidth plots for experiment and theory of a vortex pump in
the full LG basis for �p = −4 [Figs. 3(a) and 3(c)], and �p = 6, [Figs. 3(b) and 3(d)], with
pi = ps = 0. It can be clearly seen in Figs. 3(a) and 3(b) that the orbital angular momentum
is conserved (�p = �s + �i), this is consistent with that observed in [9] when a non-zero OAM
pump was used in a SPDC experiment. The experimental result is compared to theory as shown
in Figs. 3(c) and 3(d), we see good agreement between the two. Note that while we plot the
normalized count rates the actual values are very high, ranging from a minimum of 6000 counts
per second through to a maximum of 40000 counts per second. This is orders of magnitude
larger than in an SPDC experiment. Consequently, the largest error in the data of Fig. 3 is
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approximately 1% and so the error bars are negligible. An interesting feature we observed here
is that in both plots the spiral bandwidth shows a narrow central peak with two broad lobes on
either side, with the peak of the side lobes located at �s − �i ≈ 2�p from the central maxima
of the spiral bandwidth. This feature has not yet been seen in an actual SPDC experiment. An
explanation as to the origin of this feature will require a more detailed theoretical investigation
and is not within the scope of this paper.
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Fig. 4. Spiral bandwidth plots measured for a flat-top pump in the LG basis. (a) is measured
for the radial index pi = ps = 0 and (b) is for pi = 3 and ps = 4, the diagonals are shown in
(c) and (d) respectively with circles representing experimental data and the solid line being
the theory. Due to the high count rate of the back-projection experiment, error from the
Poisson distribution of the count rate is negligible and is therefore not visible.

In Fig. 4 we show the measured spiral bandwidth for a flat-top pump in the LG basis with
the radial index pi = ps = 0 [Figs. 4(a) and 4(c)] and pi = 3 and ps = 4 [Figs. 4(b) and 4(d)].
We only show the spiral bandwidth up to |�i,s|= 5, for |�i,s|> 5 the quality of the beam modu-
lated by the SLM is no longer reliable due to reasons mentioned in Section 4. We see that the
measured spiral bandwidth is approximately flat, which agrees with what is expected theoret-
ically where the spiral bandwidth is a flat curve as seen in Figs. 4(c) and 4(d). This suggests
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that flat-top pump beams may be useful for generating high-dimensional maximally entangled
states.
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Fig. 5. Comparison of spiral bandwidth plots for experiment and theory (shown as small
inset) of a HG pump in the LG basis. (a), (b) and (c) are the experimental results for a
HG11, HG22 and HG31 pump respectively with pi = ps = 0.

In [32] a SPDC experiment was performed with an approximation to a HG10 pump using a
flipped Gaussian mode. We have reproduced this experiment and confirm that we obtain the
same results as observed in the SPDC experiment. We also perform this experiment with our
technique for a wider range of HG pump modes. Spiral bandwidth plots for a HG pump in the
LG basis is shown in Fig. 5. Results for the HG11, HG22 and HG31 pump with pi = ps = 0
are shown in Figs. 5(a)-5(c) respectively. Multiple bands are seen in the spiral bandwidth when
using a HG pump. We can see that our experimental results agrees very well with theory.

6. Discussion and conclusion

We have demonstrated that a typical SPDC experiment with L � zR can be simulated with
a back projection setup whereby a classical laser beam is modulated through two SLMs on
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which the pump mode is encoded together with the signal and idler modes. Three different
pump types, a vortex pump, flat-top pump and a HG pump, has been simulated with the signal
and idler beams in the LG mode.

For the vortex pump we have shown that there is good agreement between theory and exper-
iment. We indeed see conservation of angular momentum as observed in [9]. We also observed
in the spiral bandwidth a narrow central peak with two broad lobes on either side located at
�s − �i ≈ 2�p from the central peak, which we predict will be observed in future SPDC experi-
ments.

The spiral bandwidth generated from a simulated flat-top pump shows good agreement with
theory for |�i,s|< 5 however for larger �i,s the measured count rate drops too low to be reliable.

For the HG pump there is generally good agreement between theory and experiment for HG
modes with n and m less than 3. At large HG modes the resulting OAM spectrum becomes
much more complicated and our current setup does not have the accuracy to resolve some of
the finer details in the OAM spectrum. We observe multiple bands in the spiral bandwidth for a
HG pump, this is in agreement with [32].

The major advantages of using a back projection setup is that it can obtain photon count rates
many orders of magnitude larger than that for a typical down conversion experiment thereby
giving much better accuracy. The back projection setup is not as sensitive to alignment com-
pared to a down conversion experiment, this allows it to be set up in a relatively short time and
be used to give a preview on whether a down conversion experiment will be feasible or not.
Lastly one can turn a back projection setup into a down conversion setup simply by changing
two of its components.

Our results also hint at a major source of uncertainty in future SPDC experiments when
the full LG basis is used for the post-selected state: there is significant loss of beam quality
and count rate due to the need to cancel the SMF mode Gaussian contribution by modifying
the SLM holograms. We suggest that it should be possible to correct for this issue by using a
Gaussian to top-hat beam converter at the entrance to the SMF.
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