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Abstract:  A transducer array comprising four transducers was developed and used to perform pulse – echo 

measurements on a heavy duty welded rail track.  A signal processing algorithm, which uses properties of 

the propagating modes computed using semi-analytical finite element modelling, was developed.  The 

algorithm was used to process the measurement results and a particular mode of propagation proved to be 

effective.  Defects could be detected at long range in relatively new rail while detecting defects in old rail 

with frequent welded repairs is very difficult.   It is expected that transverse cracks in the rail head will be 

detectable at a range of 500m prior to complete breakage in relatively good condition rail.   
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INTRODUCTION 

Guided wave ultrasound has the potential to inspect large portions of a structure from a single transducer 

location.  Pipeline inspection is an example of a successful application of this technology to a one-

dimensional waveguide.  Welded rail track is a second example of an effectively one-dimensional elastic 

waveguide that could exploit the long range ability of guided waves.   

Inspection of rail track was performed in the UK by Wilcox et al. [1] using an array of transducers wrapped 

around the track.  The system used numerous transducers and could selectively transmit and receive a 

number of different modes of propagation.  Their intention was to inspect rail track under level crossings 

and a range of only 50m was required.  Relatively small defects could be detected and a method of 

classifying the type of defect was investigated.  A completely different approach was followed to develop a 

guided wave ultrasound based monitoring system in South Africa [2].  This monitoring system was designed 

to be permanently installed to allow inspection of the entire line every few minutes.  This system uses 

permanently installed piezoelectric ultrasonic transducers spaced approximately 1 km apart in pitch – catch 

mode.  The primary aim was to detect complete breaks in the welded rail track without producing false 

alarms.  The system does sometimes detect a crack prior to complete breakage but in its current form 

increasing the sensitivity to cracks also increases the likelihood of false alarms.  The possibility of combining 

the two approaches was considered in [3] and a number of questions were raised.  Of primary importance 

was whether cracks could be detected and located at distances compatible with the monitoring system with 

only an acceptable increase in system complexity and cost per kilometre.        

Detecting, locating and possibly monitoring the growth of cracks requires a pulse – echo mode of operation 

to be added to the system, which in turn requires that a transducer array be used rather than a single 

transducer at each station.  The pitch – catch mode of operation would be retained as it provides the best 

way to avoid false alarms.  The possibility of detecting cracks at a distance of 500 m from a transducer array 



comprising only a small number of transducers is investigated experimentally.  In this paper the design of a 

phased array to control the mode and direction of transmission and reception is described followed by 

experimental field measurements.  The signal processing performed on these measurements is discussed 

before results are presented.  

 

PHASED ARRAY DESIGN 

The purpose of using a phased array of transducers, instead of a single transducer, is to allow some control 

over which modes are excited and sensed and also to transmit or receive preferentially in one direction 

along the rail.  The design of the array requires knowledge of the modes that are to be used in the 

application.  This knowledge is obtained through a combination of numerical modelling and measurement.  

Analytical models are available for simple waveguides but for the rail we apply the semi-analytical finite 

element (SAFE) method [4].  The data obtained from this numerical model forms an important input to 

designing our experimental setup and processing the measured signals. 

Previous field measurements were performed using an ultrasonic transducer to excite the rail and a laser 

vibrometer to measure the response [5][6].  The vertical displacement responses at hundreds of points on 

the rail were measured and the amplitudes of the propagating modes (calculated by SAFE analysis) were 

estimated.  Measurements were performed at different distances up to 400m from the transducer.  These 

measurements indicated that there are two modes of propagation that travel with relatively low 

attenuation.  These modes are therefore candidates for long range inspection.  Figure 1 shows the mode 

shapes of these two modes computed using SAFE modelling. 

 

Figure 1 Mode shapes of modes that propagate with relatively low attenuation. 

The modes to be used have the feature that the one is symmetric while the other is anti-symmetric with 

respect to the vertical plane along the rail axis.  This means that by positioning two transducers, one on 

either side of the rail, it will be possible to excite the symmetric mode by driving the two transducers in 

phase or to excite the anti-symmetric mode by driving them with opposite phase.  The same applies for 

received signals to distinguish between these two modes. 

It is possible to excite a mode of propagation in only one direction along the rail.  If two transducers are 

placed at the same position around the circumference but at one quarter wavelength spacing along the rail 

and the transducers are driven with a 90° phase shift the two excitations cancel in one direction but are 

added in the other.  As the two modes of interest have similar wavenumber (and therefore similar 

wavelength) we can use two transducers along the rail to control the direction of propagation along the rail.  

It therefore should be possible to control these two modes and the direction with an array of only four 

transducers.   

If only four transducers are used it is expected that it will not be possible to prevent the excitation and 

sensing of other propagating modes.  If we consider the situation at 30 kHz we have 19 propagating modes 
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in each direction (forward and backward propagating modes).  We can compute what would be sensed by 

the four transducer array for each of these modes.  The signals received by the four element array would be 

processed into four channels.  These sensed modes 1 – 4 correspond to mode 4 forward, mode 7 forward, 

mode 4 backward and mode 7 backward.  The relationship between the four sensed modes and the modes 

propagating in the rail is illustrated in figure 2.  It is seen that the array senses mode 4 forward when this 

mode is propagating as required.  It also senses some of the higher number forward propagating modes 

(mode 12 and higher), which are also symmetric modes.  The second sensing channel, which should sense 

mode 7 forward does so but also senses other anti-symmetric modes such as modes 6, 8 and 9, which will 

have similar wavenumbers.  It is thought that the rail will filter out the other propagating modes with 

distance so this should not be a serious problem.  An array with a greater number of transducers would be 

more selective but as we plan to permanently install these arrays we want to keep the number of 

transducers and therefore cost of the array as low as possible.  

 

Figure 2 Modes sensed by four element array. 

 

FIELD MEASUREMENTS 

Field measurements were performed on an operational heavy duty coal line.  Four ultrasonic transducers 

developed at the CSIR were glued to the UIC60 profile rail as shown in figure 3.    

 

Figure 3 Four transducer array (two transducers hidden on opposite side of rail head) 

Diode circuits were used to allow pulse-echo operation.  A data acquisition card in a PC was used to 

generate the excitation signals and to capture the responses.  The received signals were sampled at 250 kHz 

and 2
17

 samples were captured.  The average of 20 captured signals was recorded.  The transducers were 

excited with a 17.5 cycle tone burst with 35 kHz centre frequency.  Full matrix capture was used as this 

5

10

15

20

25

30

35

1234

0

0.5

1

Propagating Mode

Sensed Mode



requires only one amplifier.  The excitation was applied to one transducer at a time while the response of 

all four transducers was recorded.  This resulted in sixteen captured time signals.  Typical time signals are 

shown in figure 4. 

 

Figure 4 Typical measured signals. 

 

SIGNAL PROCESSING 

The captured signals were processed using an algorithm illustrated in figure 5.  The algorithm includes 

functions of removing frequency content (and therefore noise) outside the frequency range of the 

excitation signal, transducer calibration to take into account the different effectiveness of each transducer, 

phased array post-processing to combine the signals to effectively excite and sense the targeted modes of 

propagation.  This is performed using knowledge of the modes obtained from the SAFE model.  Dispersion 

compensation is performed using the algorithm introduced by Wilcox [7].  Again, knowledge of the 

dispersion of the mode computed by the SAFE method is required in this algorithm.  Finally deconvolution 

with the excitation signal is performed, a Hilbert transform is used to obtain the wave packet envelope and 

the distance traces are scaled to account for attenuation with distance.  Particular aspects of the algorithm 

are described in more detail below.  

 

Phased Array Processing 

We assume that the system is linear and we can superimpose signals.  Therefore, although the signals were 

captured by exciting one transducer at a time we can compute the response that would be received (at 

each transducer) if the transducers had been excited simultaneously with phase differences to excite the 

two modes of interest in either direction.  In addition, we can combine the received signals with phase 

differences to extract the two modes and directions.  This operation is performed in the frequency domain 

and is represented by equation 1.  
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Figure 5 Signal Processing Algorithm. 

 

The first term in equation 1 contains the received modes for the different excited modes and is expanded in 

equation 2 at a particular frequency.  Here the column superscripts indicate the mode that is targeted for 

transmission while the row corresponds to the mode targeted for receiving.  For example, the term in the 

third row and first column would correspond to mode 4 being transmitted in the forward direction (4f) and 

mode 4 in the backward direction being received (4b).  
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The linear superposition of the signals with phase shifts is performed by pre multiplication by the inverse of 

a matrix (receive processing) and post multiplication by a matrix (transmit processing).  These matrices are 

the mode shape matrix and are the same matrix for transmitting and receiving [8].  The mode shape matrix 

is assembled from the modes shapes and wavenumbers computed at each frequency from the semi-

analytical finite element model of the rail as shown in equation 3.    
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The 16 measured time signals are transformed to the frequency domain and at each frequency the matrix is 

assembled as shown in equation 4, where the columns correspond to the transducer that was used for 

excitation and the rows indicate the transducer used to receive the signal. 
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The matrices SR and ST, in equation 1, are diagonal matrices containing receive and transmit calibration 

factors of the transducers.   

Dispersion Compensation 

The group velocity of guided waves is generally frequency dependent.  This causes a wave packet to 

become distorted with distance as different frequency components travel at different speeds.  Wilcox [7] 

developed a technique for removing the effect of dispersion from guided wave signals.  The received signal 

is propagated backwards to time equals zero, which gives the dispersion compensated signal at the 

transducer as a function of distance to the reflector.  For mode α this requires the following integral 

evaluation at different distances. 
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An algorithm was presented by Wilcox for quickly evaluating this integral using a fast Fourier transform.  

This algorithm, which requires the group velocity to be known at each frequency, was implemented and 

used.  The group velocity of the propagating modes is computed from the semi-analytical finite element 

model and is shown for mode 4 in figure 6.  The algorithm also converts the frequency domain signals to 

distance signals.  For example, a portion of the signal obtained when transmitting mode 4 forward and 

receiving mode 4 backward is shown in figure 6.  The signal that would have been obtained if the dispersion 

compensation had not been used is also shown to illustrate that the process removes some of the 

distortion of the wave packet.    



 

Figure 6 Dispersion compensation using computed group velocity. 

 

PROCESSED MEASUREMENT RESULTS AND DISCUSSION 

Results for the transmission and reception of mode 4 are included.  Mode 7 did not produce satisfactory 

results.  The final result of the measurement after application of the signal processing algorithm is shown in 

figure 6.  

 

Figure 7 Measured reflections of symmetric mode of propagation after processing. 

In figure 7 the array was located at 0m and reflections from either side are shown.  In the positive direction 

we see that there are similar reflections at distances of approximately 50m, 300m, 540m and 790m.  It was 

found that these distances coincided with the distances of thermite welds used to join the rail in the field 

during installation.  Figure 8 shows a photograph of the weld at 300m and a zoomed in view of the 

measured reflection.   
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Figure 8 Thermite weld and measured reflection at 300m. 

It is evident that the thermite welds are easily detected in new rail and that the range resolution is more 

than adequate for the purpose of locating defects.   

In the negative direction we see that there is a very large reflection at -190m followed by numerous smaller 

reflections.  On inspection it was found that the large reflection was due to a weld joining new rail to old rail 

as shown in figure 9.  The old rail then contained numerous welds sometimes with only 6m between welds.  

Inspection or monitoring of old rails would only be possible over short ranges.   

There appear to be reflections at -50m and -540m.  These are actually believed to be ghost reflections from 

the positive side.  These are believed to be due to differences in the performance of the transducers used in 

the array.  The calibration factors of the transducers are unknown and in this work they were assumed to 

be constant with frequency and the receive sensitivity of the transducer was assumed to be equal to the 

transmit sensitivity.  The sensitivity of the one transducer was set to unity and the remaining three factors 

were adjusted, by trial and error, until the ghost reflections were minimised.  Further work is required to 

understand this and to develop a technique for calibrating the transducers. 

 

Figure 9 New rail welded to old rail and frequency welds in old rail. 

Numerical modelling of the interaction of this guided wave mode with welds and transverse cracks in the 

rail head has been performed [9].  This modelling indicates that reflections from these cracks should be 

large relative to the weld reflections.  Therefore we expect to be able to detect these cracks prior to rail 

breakage.   

 

CONCLUSIONS 

SAFE model data was used to design a transducer array and a signal processing algorithm to process the 

measured signals.  The performance achieved by the signal processing algorithm provides confidence in the 

accuracy of the numerical model. 

Measurements were performed on a rail section that included both new rail and old rail in very poor 

condition.  The old rail had numerous thermite welds performed in the field and these would make crack 

detection very difficult and it is thought that the 500 m range would not be achievable.  The new rail 
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included thermite welds every 250 m and these were easily detected up to a distance of 790 m from the 

transducer array.  We expect transverse crack in the rail head to provide stronger reflections before 

breakage occurs and are therefore confident that these will be detectable at a range of 500 m in rail, which 

is in relatively good condition.  
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