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Abstract: We present a new all-digital technique to extract the wavefront
of a structured light beam. Our method employs non-homogeneous polar-
ization optics together with dynamic, digital holograms written to a spatial
light modulator to measure the phase relationship between orthogonal po-
larization states in real-time, thereby accessing the wavefront information.
Importantly, we show how this can be applied to measuring the wavefront
of propagating light fields, over extended distances, without any moving
components. We illustrate the versatility of the tool by measuring propagat-
ing optical vortices, Bessel, Airy and speckle fields. The comparison of the
extracted and programmed wavefronts yields excellent agreement.
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modal decomposition,” Opt. Express 20, 19714–19725 (2012).
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33. C. Schulze, D. Flamm, M. Duparré, and A. Forbes, “Beam-quality measurements using a spatial light modulator,”

Opt. Lett., 37(22), 4687–4689 (2012).
34. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal

SLMs using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
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1. Introduction

Optical aberrations are inevitable in nearly all optical systems, leading to the quest for efficient
and precise measurement techniques of the phase or wavefront of an optical field. Accurate
wavefront estimation is significant in areas such as ophthalmology [1, 2], microscopy [3–5],
free-space communication [6] and astronomy [7]. Laser material processing also relies heavily
on wavefront contol as unwanted aberrations can hinder beam quality necessary for cutting
and drilling [8]. Some conventional and state-of-the-art methods to extract the wavefront of an
optical field exist, ranging from ray tracing [9], pyramid sensors [10], interferometers [11–14],
the Shack-Hartmann sensor [15], to the use of correlation filters [16] via modal decomposition
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[17]. However, these techniques are often over-complicated and some of them are unable to
detect phase singularities due to an absence of light at the singularity.

To extract the individual phase singularities present in a sample beam, Stokes polarime-
try [18, 19] can be performed once the linearly polarized (y−axis) sample beam is interfered
with a x−polarized reference beam [20]. This approach, to exploit the amplitude and phase
relationship between orthogonal states of polarization, has been implemented on scalar fields
to resolve the topology of neutral pairs of closely positioned phase singularities in speckle
fields [21]. Apart from implementing Stokes polarimetry to investigate phase singularities, it
can be used to study polarization singularities in coherent beams [22,23] and stochastic electro-
magnetic beams [24,25] as well as partially coherent radially polarized beams [26] by using the
spectral Stokes parameters [27]. Although these techniques can reconstruct closely spaced sin-
gularities, they require the manual adjustment of various optical components for the extraction
of the Stokes parameters. Moreover, these techniques are designed to measure the wavefront
at a fixed plane. Consequently, no study to date has measured wavefronts of propagating fields
over extended distances in real-time.

In this work we control the dynamic and geometric phase of light to construct an adjustment-
free scheme for the real-time measurement of propagating wavefronts. We devise a novel ap-
proach that employs non-homogeneous polarization optics together with digital holograms en-
coded on a spatial light modulator (SLM). Since these holograms are dynamic, we can demon-
strate for the first time Stokes polarimetry in real-time on propagating beams. We illustrate the
robustness of our technique by measuring the wavefront of a variety of static and propagating
structured light beams [28,29] such as vortex, Bessel, Airy and speckle fields. We demonstrate
that we can reconstruct wavefronts with very high fidelity and resolution which allows us to ob-
serve the movement of optical vortices during propagation. Our approach is likely to be useful
for the characterization of structured and vector light fields.

2. Theory and concept

While the theory behind Stokes polarimetry is well known, we briefly outline it here for the ben-
efit of the reader. Concurrently, we will illustrate how novel additions to the standard Stokes
measurements, namely (1) the inclusion of non-homogeneous polarization optics in the form
of a polarization grating (PG) [30, 31] and (2) encoding the SLM to mimic homogeneous po-
larization optics (such as a quarter-waveplate), can transform this manual-based procedure to
an all-digital one. A further departure point is that the SLM can also be used to propagate the
field under study, so that the wavefront measurements can be done over extended propagation
distances without any moving parts.

First, consider the incoherent superposition between two optical fields of orthogonal polar-
ization states, e.g. horizontal and vertical, representing a vector field

Ũ(r,φ) = Ũ↔(r,φ)+ Ũ�(r,φ), (1)

where:

Ũ↔(r,φ) = |U↔(r,φ)|exp(iδ↔(r,φ))x̂ and Ũ�(r,φ) = |U�(r,φ)|exp(iδ�(r,φ))ŷ (2)

are the horizontally and vertically polarized components, respectively. x̂ (ŷ) are unit vec-
tors parallel (perpendicular) to the propagation axis. |U↔(r,φ)| and |U�(r,φ)| are ampli-
tudes, and δ↔(r,φ) and δ�(r,φ) are phases of the horizontal and vertical components, respec-
tively. Let’s define the phase difference between the horizontal and vertical components as
δ (r,φ) = δ↔(r,φ)−δ�(r,φ). The vector light field (of Eq. (1)) has a spatially inhomogeneous
state of polarization given by the equation:

Ũ(r,φ) = |U↔(r,φ)|x̂+ |U�(r,φ)|ŷexp(iδ (r,φ)), (3)

#211246 - $15.00 USD Received 1 May 2014; revised 23 May 2014; accepted 23 May 2014; published 30 May 2014
(C) 2014 OSA 2 June 2014 | Vol. 22,  No. 11 | DOI:10.1364/OE.22.014031 | OPTICS EXPRESS  14033



illustrating that the state of polarization is different at every spatial point (r,φ). In general, the
state of polarization at a spatial point (r,φ) can be described by a polarization ellipse, where
the angle of orientation of the polarization ellipse is given by δ (r,φ).

We can assign one of the polarization states (vertical) to represent the field of interest, i.e. the
field whose wavefront, δ (r,φ), we wish to reconstruct, while the other orthogonal polarization
state (horizontal) can represent a reference field with a known (or flat) wavefront, for example:

U↔(r,φ) = exp
(−r2/ω0

)
and U�(r,φ) = exp

(−r2/ω0
)

exp(iδ (r,φ)) . (4)

Here each component consists of a common Gaussian field, while the vertical component has an
additional phase term [exp(iδ (r,φ))]. Most liquid crystal on silicon (LCOS) SLMs only diffract
the vertical component of an incident field into the off-axis, diffraction orders which possess
the encoded phase profile. The horizontal component remains impervious to the encoded phase
profile in the on-axis, undiffracted order. This can be referred to as “diffraction-inefficiency”.
We exploit the diffraction-inefficiency to experimentally realise the fields such as those in Eq.
(4). A linearly polarized Gaussian beam illuminating the liquid crystal display (LCD) of a SLM
encoded with the phase profile, exp(iδ (r,φ)), will modify the phase of only the vertical com-
ponent by δ (r,φ), while the horizontal component remains unchanged as depicted in Eq. (4).
Consequently, the incoherent mixture of the two components after the SLM can be described
in general by Eq. (1) where the weightings of the two modes can be controlled by adjusting the
orientation of the polarization state of the field illuminating the LCD via the use of a polarizer.

The extraction of the phase difference between the horizontal and vertical components
(δ (r,φ)) can be achieved via Stokes polarimetry which necessitates four separate intensity pro-
file measurements [32]:

S0(r,φ) = |U↔(r,φ)|2 + |U�(r,φ)|2 = I0◦ + I90◦

S1(r,φ) = |U↔(r,φ)|2 −|U�(r,φ)|2 = I0◦ − I90◦

S2(r,φ) = 2|U↔(r,φ)||U�(r,φ)|cos(δ (r,φ)) = I45◦ − I135◦

S3(r,φ) = 2|U↔(r,φ)||U�(r,φ)|sin(δ (r,φ)) = IR − IL

(5)

The Stokes parameters are directly related to the polarization ellipse; in terms of the Stokes
parameters, the angle of orientation and the ellipticity of the polarization ellipse at every spatial
point (r,φ) are given, respectively, by the equations [32]:

α(r,φ) = arctan

(
S2(r,φ)
S1(r,φ)

)
and δ (r,φ) =

1
2

arctan

(
S3(r,φ)
S2(r,φ)

)
. (6)

The salient feature of Eq. (6) is that the phase difference δ (r,φ) between the horizontal and ver-
tical components of a vector light field at a point (r,φ) is completely described by the ellipticity
of the corresponding polarization ellipse at that point. In turn, the ellipticity of the polarization
ellipse is completely described by the Stokes parameters S3(r,φ) and S2(r,φ) which are easily
measured via intensity measurements. Therefore, the phase difference δ (r,φ) between the hori-
zontal and vertical components is easily measured by measuring the Stokes parameters S3(r,φ)
and S2(r,φ). A similar measurement has been done in [21] by implementing an interferometer.
The two intensity profiles, I45◦ and I135◦ , pertaining to S2 can be measured behind a polarizer
at angular orientations of 45◦ and 135◦ [as depicted in Fig. 1(a)] and those pertaining to S3

(IR and IL) by introducing a preceding quarter-waveplate [as depicted in Fig. 1(b)]. Thus four
measurements are required, and to date have been performed manually on static fields.

These four manual measurements can be reduced to two digital measurements, by replacing
the quarter-waveplate and polarizer in Fig. 1(b) with a PG which acts as a beam-splitter for
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right- and left-circular polarization, hence extracting IR and IL in a single measurement as shown
in Fig. 1(d). Furthermore to measure the remaining two intensity profiles, I45◦ and I135◦ , a
quarter-waveplate with its fast-axis set at 45◦ needs to be introduced before the PG to project
I45◦ and I135◦ into the two detectable ports: IR and IL, respectively. Since a quarter-wave plate
induces a quarter-wavelength phase shift on an incident beam thus converting linearly polarized
light to circular and visa versa, this can be achieved by encoding the SLM with an additional
π/2 phase term, as illustrated in Fig. 1(c). Previously, adjustments of the polarizer and quarter-
waveplate would need to be made while acquiring measurements [Figs 1(a) and 1(b)]. However
in our approach the necessary optics (PG and SLM) remain static and only a phase change is
programmed on the SLM to mimic the required effect of a quarter-waveplate [Figs 1(c) and
1(d)].

Fig. 1. A comparison between (a) and (b) the standard, manual Stokes polarimetry and (c)
and (d) our corresponding digital method for extracting S2 and S3, respectively. The ex-
ample illustrated here is an incoherent superposition of two Gaussian fields of orthogonal
polarization where the vertical component has an additional azimuthal phase of exp(i3φ).
P: polarizer; λ/4: quater-waveplate; LCD: liquid crystal display of the SLM; and PG: po-
larization grating. Accompanying polarizer, quater-waveplate and LCD settings are given.

Apart from implementing this technique to extract the wavefront of unknown optical fields
at a single plane, its use can be extended to investigate the field’s wavefront at multiple planes
along the beam’s propagation. Traditionally this would be achieved by moving the wavefront
sensing device transversely along the beam’s propagation axis [illustrated in Fig. 2(a)]. Not
only does the alignment become problematic (e.g., in the case of monitoring the trajectories
of phase singularities), but it is also a time consuming procedure if many propagation steps
are required. In a more advantageous approach we digitally simulate free-space propagation on
the SLM [Fig. 2(b)]. This digital propagation technique [33] manipulates the spatial frequency
spectrum of a beam of interest by first Fourier transforming the beam at the plane of the LCD
with a lens and second by simultaneously displaying the phase term exp(ikzz) on the SLM while
implementing the inverse Fourier transform with a lens to the plane of the detector,

F−1(F [U(r)]exp(ikzz)). (7)

Merging these two digital methods (wavefront-sensing and propagation) together provides a
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tool that does not require any information of the optical field under investigation as well as no
moving optical components.

Fig. 2. A comparison between (a) the standard, manual movement of a detector along a
beam’s propagation and (b) the digital propagation method. The example illustrated here
is a Gaussian beam. WS: wavefront-sensing technique consisting of a LCD and PG; D:
detector; and L: lens. Accompanying intensity profiles and phase patterns encoded on the
LCD for particular propagation distances (z) are given as inserts.

3. Experimental Methodology

To measure the wavefront of structured light beams we used an experimental setup as outlined
in Fig. 3(a). A helium-neon laser (power ∼ 10 mW, λ ∼ 633 nm) was expanded and collimated
[ f (L1) = 20 mm and f (L2) = 100 mm] to illuminate the LCD of a reflective SLM (Pluto Holo-
eye, 1920×1080 pixels, 8 μm pixel pitch, calibrated for λ ∼ 633 nm) preceeded by a polarizer
(P) to set the amplitudes of the two orthogonal states depicted in Eq. (1). The LCD was en-
coded with phase-only azimuthal [Fig. 3(b)], conical, cubic or random gray-level holograms to
generate various structured light fields e.g. vortex, Airy, Bessel or speckle fields, respectively.
The fields generated at the plane of the LCD were either Fourier-transformed (lens L3) or relay-
imaged (lenses L4 and L5) onto a CCD detector (PointGrey fire-wire CCD, 1600×1200 pixels),
preceded by a PG, where the Stokes measurements, S2 and S3, were recorded. The PG which
was placed ∼ 5 mm before the CCD detector, was manufactured by implementing a polarization
holography setup where the sample was exposed with the interference of two plane waves each
of opposite circular polarization. Since most phase-only holograms produce their correspond-
ing fields in only the near-field (NF) or only the far-field (FF) and not both simultaneously,
the two imaging systems (Fourier and relay) allowed the user to easily switch between the two
and measure the wavefront of a variety of structured light beams. The Fourier-transforming
imaging system also allowed the user to digitally simulate free-space propagation on the LCD
(as defined in Eq. (7)), providing a means to extract the wavefront at multiple planes along the
beam’s propagation in real-time.

Since the LCD can be dynamically addressed, we first displayed the hologram required to
create our field of interest [e.g. Fig. 3(b)] followed by the same hologram encoded with an
additional π/2 phase term [e.g. Fig. 3(c)]. For each of the two holograms, the corresponding
intensity profiles (I45◦ , I135◦ and IR, IL) were recorded to determine the two Stokes parameters,
S2 and S3, respectively necessary for reconstructing the wavefront as defined in Eq. (6) and
visualized theoretically in Fig. 3(d) and experimentally in Fig. 4. Similarly, this measurement
was computed multiple times to extract the wavefront as the field was propagated by sequen-
tially encoding the the phase term, exp(ikzz), for various values of z while the necessary Stokes
measurements were recorded.

The intensity profile of the field under investigation (i.e. the beam whose wavefront was
being extracted) was viewed by encoding a blazed grating over the hologram [e.g. Fig. 3(e)]
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with the PG removed from the setup. The desired, first diffraction order (with the reference,
zero diffraction order removed) was then viewed on the CCD detector [e.g. Fig. 3(f)]. The
propagation of the intensity profile was also monitored by sequentially encoding the phase
term, exp(ikzz), for various values of z together with the blazed grating.

Fig. 3. (a) Schematic of the experimental wavefront sensing setup. HeNe: helium-neon
laser; P: polarizer; L1→5: lenses; M: mirror; LCD: liquid crystal display of the SLM; A:
aperture; PG: polarization grating; CCD: CCD detector. Example holograms for the az-
imuthal phase profile: (b) exp(i3φ) and (c) exp(i3φ +π/2) for the Stokes measurements,
S3 and S2, respectively for extracting (d) the wavefront. (e) Example hologram (with a
blazed grating) for extracting (f) the intensity profile.

Fig. 4. Experimentally measured intensity profiles (a) I45◦ , I135◦ and (b) IR, IL (for a vortex
beam of � = +1) used to calculate the Stokes parameters (c) S2 and (d) S3, respectively
needed for the extraction of the (e) [(f)] measured (theoretical) wavefront.

4. Results and Discussion

The wavefronts of near-field, higher-order optical vortices [Fig. 5(a)] and Bessel beams [Fig.
5(d)] were measured via the digital Stokes polarimetry and are depicted in Fig. 5. It is evi-
dent that there is extremely good agreement between the experimentally extracted wavefronts,
Fig. 5(b) [(e)], and the theoretically programmed phase profiles, Fig. 5(c) [(f)], for the vortex
(Bessel) beams of azimuthal indices � = −3 to +3. Apart from identifying unit and higher-
order phase singularities, this technique can also distinguish the handedness of the azimuthal
phase profile [illustrated by the white arrows in Fig. 5(b)]. Closer inspection of the measured,
higher-order (|�| > 1) phase singularities reveals a separation into unit-charged singularities,
denoted by the inserts in Figs 5(b) and 5(e). Even though the wavefront of the zero-order vortex

#211246 - $15.00 USD Received 1 May 2014; revised 23 May 2014; accepted 23 May 2014; published 30 May 2014
(C) 2014 OSA 2 June 2014 | Vol. 22,  No. 11 | DOI:10.1364/OE.22.014031 | OPTICS EXPRESS  14037



displays no curvature [less than a 1% variation and evident from the uniform, red wavefront in
Fig. 5(b)], the splitting of the higher-order vortices is attributed to their fundamental instability.

Fig. 5. Experimentally measured intensity profiles of (a) vortex beams and (d) Bessel
beams. Some of the gray-level holograms used are given as inserts. Corresponding (b) [(e)]
experimentally measured and (c) [(f)] theoretically calculated wavefronts for near-field vor-
tex (Bessel) beams. The correlation between the measured and theoretical wavefronts varies
from a minimum of 0.914 to a maximum of 0.988. Corresponding azimuthal indices are
given in the top right corner. The white arrows highlight the handedness of the azimuthal
phase. Inserts depict a magnified view of the singularities.

Similarly, the wavefront was extracted for an Airy beam [Fig. 6(a)] and a random speckle
field [Fig. 6(b)] depicted in Figs 6(c) and 6(d), respectively with a high degree of fidelity with
the theoretically encoded phase profile. Since the phase values of 0 (blue) and 2π (red) are
indistinguishable, the line dislocation in the theoretical Airy wavefront can be neglected as
seen in the measured wavefront [Fig. 6(c)].

The evolution of the wavefront for a Gaussian and vortex beam (� = +2) as they propagate
was investigated and selected frames are shown in Figs 7(a) and 7(b), respectively. Unlike the
previous results, these measurements were made in the far-field of the LCD plane [as illustrated
in Fig. 3(a)] for the execution of the virtual propagation described in Eq. (7). One draw-back to
performing Stokes polarimetry on the far-field mode is that the mode size is drastically smaller
[by a factor of f (L3)] than that in the near-field, decreasing the resolution of the measured
wavefronts. As the field propagates its wavefront becomes curved [evident in the frames of Fig.
7(a)] in agreement with the encoded phase profile [exp(ikzz)] which causes the two singularities
in the vortex beam to move further away from one another, consequently appearing as if they
are spirally around the beam axis [Fig. 7(b)].
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Fig. 6. Experimentally measured intensity profiles of an (a) Airy beam and (b) speckle
field. The gray-level holograms used are given as inserts. Corresponding experimentally
measured (Exp.) and theoretically calculated (Th.) wavefronts for a near-field (c) Airy beam
and (d) speckle field.

Fig. 7. Experimentally measured wavefronts for a (a) Gaussian and (b) vortex beam (� =
+2) at different propagation planes. Corresponding propagation distances are given in the
bottom right corner. The full data (video) can be viewed in (a) (Media 1) and (b) (Media
2).

5. Current Capabilities and Future Improvements

Although our wavefront sensor implements custom optics such as the PG, it offers many advan-
tages. Firstly, our approach can be used to measure the wavefront of propagating light fields,
over extended distances, with a single static device [evident in the video clips: (Media 1) and
(Media 2)]. Since the necessary holograms can be addressed to the SLM at very high refresh
rates [34], we are capable of extracting real-time measurements within a time-frame of a few
milliseconds. To further increase this time frame, multiple holograms could be addressed via
multiplexing [35] to allow the extraction of multiple measurement parameters in a single acqui-
sition. We also propose that our approach could be combined with a current wavefront extrac-
tion technique (also based on SLM technology) known as modal decomposition [16, 17, 36].
This will allow one to decompose arbitary laser modes to yield an all-digital wavefront extrac-
tion technique for unknown beams.

Another appeal of our wavefront sensing technique is that the CCD detector defines the res-
olution of the reconstructed wavefront. Even though the PG (positioned before the CCD) splits
the beam, projecting each diffraction order to a detector area of half the original spatial resolu-
tion, our approach offers a spatial resolution of 106 sample points as opposed to devices based
on lenslet arrays which currently only offer a resolution of 104 sample points. Furthermore, this
technique does not necessitate that we restrict ourselves to a single detector thus offering an ad-
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ditional improvement in spatial resolution. With this high spatial resolution we can identify the
position and topology of closely spaced phase singularities in random speckle fields [evident in
Fig. 6(d)]. This approach will allow one to experimentally verify current numerical studies of
phase singularities propagating through atmospheric turbulence [37].

6. Conclusion

In conclusion, we have presented a new approach to conventional Stokes polarimetry that re-
sults in an all-digital, adjustment-free measurement of the wavefront of propagating structured
light beams. As the digital holograms are dynamical addressed, the technique can be executed
at refresh rates of 250 Hz to yield real-time wavefront measurements at various planes along
the beam’s propagation. We have successfully demonstrated this tool on beams that are usually
difficult to analyse with traditional wavefront sensing techniques, namely, Airy, Bessel, vortex
and speckle fields, while observing dynamic changes in their wavefronts during propagation.
Since we are able to reconstruct wavefronts with high spatial resolution and fidelity, we suggest
our diagnostic could be a versatile tool in numerous areas such as studies into the creation and
annihilation of phase singularities, microscopy and free space communication.
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