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Modal spectrum in spontaneous parametric down-conversion with noncollinear phase matching
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We investigate the effect of the down-conversion angle between the signal and idler beams in spontaneous
parametric down-conversion on the bandwidth of the modal spectrum (Schmidt number) of the down-converted
quantum state. For this purpose, we consider both the full Schmidt number and the azimuthal Schmidt number in
the Laguerre-Gaussian basis. For the full Schmidt number, we show that the approximation of the phase-matching
function with a Gaussian function gives results that disagree significantly from those obtained with the more
physical sinc-type phase-matching function. We found a drastic increase in both the Schmidt number and the
azimuthal Schmidt number for small down-conversion angles, in agreement with recent experimental results.
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I. INTRODUCTION

Entanglement of photonic states is one of the central
concepts in quantum information and quantum optics. A
proper understanding and use of entanglement can lead to
significant technological advances in communication, com-
puting, and cryptography [1]. Pairs of entangled photons
are readily produced through spontaneous parametric down-
conversion (SPDC) [2–4]. Down-converted photons can be
entangled in a wide variety of forms, including polarization,
temporal frequencies [5,6], energy-time variables [7,8], and
orbital angular momentum (OAM) [9–11]. These forms of
entangled photons have been used to test the violation of Bell’s
inequality [12], to demonstrate quantum teleportation [13,14],
and to realize quantum communication [15].

The degree of entanglement of a quantum state can be
quantified by the Schmidt number [16,17]. A large Schmidt
number indicates a large degree of entanglement in the
biphoton state, thus allowing more quantum information to be
encoded. When restricted to the OAM degrees of freedom in
a Laguerre-Gaussian (LG) basis (by fixing the radial degrees
of freedom), the equivalent quantity is called the azimuthal
Schmidt number. One can use the azimuthal Schmidt number
to quantify the width of the OAM spectrum, the spiral
bandwidth [17–21].

By manipulating the experimental parameters of the SPDC
setup, one can increase the spiral bandwidth. However, this
is usually done while maintaining collinear phase matching,
i.e., with collinear signal and idler beams [20–23]. Recently,
Romero et al. [24] considered the effect of a small down-
conversion angle and found a drastic increase in the spiral
bandwidth. Apart from an insightful qualitative explanation
involving the étendue [24], the reason for this drastic increase
is not well understood.

In this paper, we provide a theoretical analysis of the effect
of a noncollinear down-conversion angle on the full Schmidt
number and the azimuthal Schmidt number. The full Schmidt
number for noncollinear down-conversion can be calculated
analytically by approximating the phase-matching function by
a Gaussian function, as was done previously [17]. However,
comparing this result to a result that employs the more physical
sinc-type phase-matching function, one finds that there is
a significant difference. The Gaussian approximation only
gives a small change in the Schmidt number for small down-

conversion angles, whereas the case with the sinc function
produces a drastic increase in the Schmidt number.

Next, we investigate the effect of the down-conversion angle
on the azimuthal Schmidt number in the LG basis. For this
purpose we use generating functions for the LG modes and are
therefore able to obtain analytical results, provided that we as-
sume that the nonlinear crystal length is much shorter than the
Rayleigh range of the pump beam. From these expressions we
are able to show that the azimuthal Schmidt number increases
drastically for small down-conversion angles, consistent with
the drastic increase seen in the full Schmidt number.

II. THEORETICAL BACKGROUND

The probability amplitude for a pump photon to be
converted into a pair of down-converted photons through the
SPDC process, with degenerate type I phase matching, can be
expressed as

M = �0

∫
M∗

s (qs)M
∗
i (qi)Mp(qp)

× δ(�q)S(�kz)
d2qs

(2π )2

d2qi

(2π )2

d2qp

(2π )2
, (1)

where �0 is the overall conversion efficiency and q and kz

are, respectively, the transverse and longitudinal components
of the wave vector k. The angular spectra of the beam profiles
are given by Ms(q), Mi(q), and Mp(q) for the signal, idler,
and pump beams, respectively. The phase-matching function
S(�kz) is given by [25]

S(�kz) = sinc

(
�kzL

2

)
, (2)

where L is the thickness of the nonlinear crystal in the
longitudinal direction and

�kz = npkp,z − nsks,z − niki,z, (3)

with nx being the refraction index, as applicable for the
different beams. The argument of the Dirac delta function
δ(�q) is

�q = npqp − nsqs − niqi. (4)

For type I phase matching, we have ns = ni = no, where no is
the ordinary refractive index.
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FIG. 1. Vector diagram showing condition for perfect phase
matching.

In the degenerate case, we have |ks| = |ki| = ωp/2c, where
ωp is the angular frequency of the pump. Hence, due to the
conservation of energy, |kp| = |ks| + |ki| = ωp/c. From Fig. 1
we see that for perfect phase matching

np = no cos(φ), (5)

where φ is the down-conversion angle, i.e., the angle between
the propagation vector of the pump beam and that of either the
signal or idler beams. If φ �= 0, Eq. (3) can be written as

�kz = no[cos(φ)kzp − kzs − kzi], (6)

and δ(�q) then implies that one can substitute

qp = qs + qi

cos(φ)
. (7)

In the paraxial limit, it can be shown that (see the Appendix)

�kz = no

[
λp|qi − qs|2
4π cos(φ)

− π sin2(φ)

λp cos(φ)

]
. (8)

To simplify notation we will use normalized (dimension-
less) spatial frequencies

q = 2πa
wp

, (9)

where wp is the radius of the pump beam.
Being a Gaussian beam, the pump beam’s angular spectrum

is expressed as

Mp = exp

[−π2|as + ai|2
cos2(φ)

]
, (10)

and the phase-matching function is given by

S(�kz) = sinc

[
π2β|as − ai|2

2 cos(φ)
− χ

2

]
, (11)

where

χ = πnoL sin2(φ)

λp cos(φ)
(12)

and

β = noLλp

πw2
p

= noL

zR

, (13)

with zR being the Rayleigh range.

Writing Eq. (1) in terms of the normalized frequencies and
evaluating the a2

p integral, we obtain

M = �̃0

∫
M̃∗

s (as)M̃
∗
i (ai) exp

[−π2|as + ai|2
cos2(φ)

]

× sinc

[
π2β|as − ai|2

2 cos(φ)
− χ

2

]
d2asd

2ai, (14)

where �̃0 = �0w
6
p

and M̃s,i(as,i) = Ms,i(2πas,i/wp).

III. FULL SCHMIDT NUMBER

Here we will compute the Schmidt number for the down-
converted state |�〉 after SPDC. This state is given by the
product of the pump beam and the phase-matching function,
as given in Eqs. (10) and (11). Hence,

�(as,ai) = 〈as,ai|�〉 = NS(�kz)Mp(as,ai), (15)

where N is a normalization constant that ensures∫
|�(as,ai)|2 d2asd

2ai = 1. (16)

The Schmidt decomposition of a bipartite pure state is given
by

|�〉 =
∑

n

cn |�n〉A |�n〉B , (17)

where cn denotes the Schmidt coefficients and |�n〉A and
|�n〉B are the Schmidt bases in the respective subsystems.
The normalization of the pure state requires that

∑
n c2

n = 1.
The (full) Schmidt number of this state is given by

K = 1∑
c4
n

= 1

tr
{
ρ2

A

} , (18)

where ρA is the reduced density matrix of the state.

A. Gaussian approximation

First, we use the approach of Law and Eberly [17] to
estimate the Schmidt number. In this approach the phase-
matching function is approximated by a Gaussian function.
Hence, the down-converted state is given by1

�g(as,ai) =Ng exp

[−π2|as + ai|2
cos2(φ)

]
exp

[
−π2β|as − ai|2

2 cos(φ)

]
.

(19)

Using the normalization condition in Eq. (16), we calculate
the normalization constant to be

|Ng|2 = 8π2β

cos3(φ)
. (20)

The reduced density matrix ρA in Eq. (18) can be computed
by

ρA(as,a′
s) =

∫
�g(as,ai)�

∗
g (a′

s,ai) d2ai. (21)

1We neglect the second term in the argument of Eq. (11) because,
being independent of the spatial frequencies, it is removed through
normalization.
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FIG. 2. (Color online) Plot of the Schmidt number K as a
function of X on a logarithmic scale for various down-conversion
angles, using a Gaussian approximation for the phase-matching
function.

The trace of the square of the reduced density matrix is given
by

tr
{
ρ2

A

} =
∫

ρA(as,a′
s)ρA(a′

s,as) d2as d2a′
s. (22)

After evaluation of these integrals, we obtain

K = 1

4

(
1

X
√

cos(φ)
+ X

√
cos(φ)

)2

, (23)

where X = √
β/2. Hence, K depends only on β and the down-

conversion angle φ. For φ = 0, the expression becomes equal
to the one in [17].

In Fig. 2 we plot K as a function of X on a log-log plot
for various down-conversion angles, as expressed in Eq. (23).
Since cos(φ) acts as a scale factor for X in Eq. (23), a change
in the angle φ produces a horizontal shift of the curve on the
logarithmic axis. As a result, K only increases for X < 1. Since
most experimental setups are such that X � 1, one would, in
general, observe an increase in K . However, we see in Fig. 2
that the change in K is negligible for small φ; for instance,
even when φ = π/8, the change is still barely noticeable.

From the above discussion we conclude that the calculation
of the Schmidt number using the Gaussian approximation
does not explain the drastic increase in the spiral bandwidth
that was observed in [24]. For this reason we now turn our
attention to the calculation of the Schmidt number using the
sinc-type phase-matching function, i.e., without the Gaussian
approximation.

B. Sinc-type phase-matching function

Using the sinc-type phase-matching function, we obtain the
following expression for the down-converted state:

�s(as,ai) =Ns exp

[−π2|as + ai|2
cos2(φ)

]

× sinc

[
π2β|as − ai|2

2 cos(φ)
− χ

2

]
. (24)

The normalization constant Ns, computed with the aid of
Eq. (16), is given by

|Ns|2 = 8π2βχ

cos3(φ)[−2 − πχ + 2Si(χ )χ + 2 cos(χ )]
, (25)

where Si(·) is the sine integral function and χ is given in
Eq. (12). In the limit where φ → 0, we have |Ns|2 → 8π2β.

To simplify the integrations, we rewrite the sinc function as

sinc(x) = 1

2

∫ 1

−1
exp(−ixt) dt. (26)

Using Eqs. (26), (21), and (22), we obtain

tr
{
ρ2

A

} = 2βχ2 cos(φ)

[2Si(χ )χ − πχ + 2 cos(χ ) − 2]2

×
∫∫∫∫ 1

−1
T dt1 dt2 dt3 dt4, (27)

where

T = exp

[
− iχ

2
(t1 − t2 + t3 − t4)

]

× {iβ2 cos2(φ)[(t1 + t3)t2t4 − (t2 + t4)t1t3]

+ 2β cos(φ)[(t1 + t3)(t2 + t4) − 2(t1t3 + t2t4)]

− i4(t1 − t2 + t3 − t4)}−1. (28)

Unfortunately, the integrals over the auxiliary variables t1, t2,
t3, and t4 in Eq. (27) are not tractable. Nevertheless, one can
obtain an analytical solution if one exploits a condition that
is applicable in typical experimental setups, namely, L � zR .
This condition, which we call the thin-crystal limit, implies that
β � 1. Therefore, one can expand the expressions in Eq. (28)
to leading order in β.2 After evaluating the integrals, the result
is

tr{ρ2
A} = −8β cos(φ)

3[2Si(χ )χ − πχ + 2 cos(χ ) − 2]2χ

× {χ3[2Si(χ ) − 4Si(2χ ) + π ]

+ 2[1 − cos(χ ) + χ sin(χ )]2

− 2[1 − cos(χ )][sin(χ ) − χ cos(χ )]χ}. (29)

Although we made the expansion in β, Eq. (29) is only
valid for φ � 0.01 rad. The reason is that λp is, in general,
small (∼1 μm); as a result χ can be quite large when φ is not
small.

In Fig. 3, we compare the curve for Eq. (29) to a numerical
estimate of K as a function of φ. For the numerical estimate
of K we performed a Monte Carlo integration of Eq. (27).
The experimental parameters for these curves are L = 5 mm,
wp = 1 mm, λp = 0.355 μm and no = 1.7, which gives β ≈
1 × 10−3. One can see that K increases rapidly up to an angle
of approximately φ = 0.01 rad, where it reaches a value of
about double the value at φ = 0. Up to this point the theoretical
curve and the numerical results are in good agreement. Beyond
this point these curves start to diverge. Note that the point

2This implies that we set β = 0 in T .
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FIG. 3. (Color online) The Schmidt number as a function of the
down-conversion angle. The solid line is the theoretical curve in
the small-crystal limit [Eq. (29)]. The data points give the general
solution obtained numerically with the aid of Monte Carlo integration
of Eq. (27). The error bars represent the standard deviation.

where φ = 0.01 rad is where χ ≈ π , which may explain the
qualitative change in the curve in Fig. 3 at this point.

Comparing the angular dependence of K with and without
the Gaussian approximation, shown in Figs. 2 and 3, respec-
tively, we notice a significant difference. For the Gaussian
approximation, when using Eq. (23) with the above parame-
ters, we obtain K = 521 and K is essentially constant in the
angular region plotted in Fig. 3; however, the increase in K

when considering it without the Gaussian approximation is
much more drastic. As a result, we conclude that the Gaussian
approximation of the phase-matching function does not give
reliable results under noncollinear phase-matching conditions.

IV. AZIMUTHAL SCHMIDT NUMBER

The increase in the (full) Schmidt number for small
down-conversion angles indicates what happens to the modal
content of the full down-converted quantum state. The question
remains, what happens to the modal spectrum that is measured?
Such a measurement depends on the measurement setup. In
the case where one is interested in the OAM spectrum, the
radial dependence of the modes is fixed in some way by the
experimental setup. The azimuthal Schmidt number depends
on the shape of the radial dependence of the OAM modes, as
determined by the experiment setup. Often the OAM modes
are specified as helical phase functions on the spatial light
modulators that are used to modulate the signal and idler
beams. In such a case the radial mode profiles of all modes,
regardless of OAM, are close to a Gaussian function. Such
modes can be referred to as helical Gaussian modes. However,
low-pass spatial filtering imposed by the limiting aperture in
the optical system can convert the helical Gaussian modes into
modes that more closely resemble Laguerre-Gaussian modes
with a zero radial index p = 0.

To allow for this variability, we start by calculating the
OAM spectrum in the Laguerre-Gaussian basis for arbitrary
azimuthal and radial indices. This is done by leaving the
p dependence implicit in terms of generating parameters.
Eventually, we set the radial index to zero p = 0 for both

beams when we calculate the azimuthal Schmidt number for
quantitative comparison.

The azimuthal Schmidt number is given by

κ = 1∑
� P 2

�

, (30)

where � is the azimuthal index, which is proportional to the
OAM of the modes, and P�(∝|M|2) represents the probability
to observe a particular pair of OAM modes with a fixed radial
dependence.

For the calculation of the OAM spectrum with Eq. (1), we
will use a generating function for the angular spectra of LG
modes to represent the signal and idler beams. This generating
function is given by [26]

G = 1

1 + η
exp

[
i(qx ± iqy)wμ

2(1 + η)
−

(
q2

x + q2
y

)
w2(1 − η)

4(1 + η)

]
,

(31)

where w is the radius of the beam waists and the sign in the
exponent is given by the sign of �. The angular spectra of the
signal and idler beam profiles for particular LG modes are
obtained by

M�,p
s,i (q) = NLG

1

p!

[
∂p
η ∂ |�|

μ G
]
η,μ=0, (32)

where μ and η are generating parameters for the azimuthal
and radial indices, respectively, and

NLG =
[

2π2|�|p!

(p + |�|)!
]1/2

. (33)

It is assumed that the radii of the beam waists of the signal and
idler beams are equal, ws = wi = w.

We evaluate the overlap integral equation (14), with the
signal and idler modes given by Eq. (31). The integral is zero,
unless the azimuthal indices of the signal and idler beams
have opposite signs and equal magnitudes. Hence, we evaluate
the expression for explicit azimuthal indices given by �s =
−�i = �. The radial indices of the signal and idler beams are
left implicit in terms of the generating parameters ηs and ηi,
respectively. Using Eq. (26) to rewrite the sinc function and
integrating over qs and qi, we obtain

G� = α cos3(φ)
∫ 1

−1
exp

(−iχt

2

)

×
{
α cos(φ)

[
1 + i

2β cos(φ)t
]}|�|

[α cos(φ)A − iβBt]1+|�| dt, (34)

which is a generating function for M, where β and χ are given
in Eqs. (13) and (12), respectively, and

α = w2

w2
p

, (35)

A = α cos2(φ)(1 − ηs)(1 − ηi) + 2(1 − ηsηi), (36)

B = α cos2(φ)(1 − ηsηi) + 2(1 + ηs)(1 + ηi). (37)

To obtain the probability amplitude for particular radial
indices p and q of the signal and idler beams, respectively,
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FIG. 4. (Color online) The azimuthal Schmidt number κ as a
function of φ for the case p = q = 0 and α = 0.1. The solid black
curve is the theoretically determined result in the small-β limit using
Eq. (40). The red points are the numerical results from Eq. (14)
determined using the Monte Carlo integration method, with error
bars indicating the standard deviation.

one evaluates the following operation:

M = �0

wp
Npq

[
∂p
ηs
∂q
ηi
G�

]
ηs,ηi=0

, (38)

where

Npq = 2(|�|+1/2)|�|!
[π (p + |�|)!(q + |�|)!p!q!]1/2 . (39)

We apply the thin-crystal approximation and expand the
integrand in Eq. (34) to next-to-leading order in β. The result
can then be integrated to give

G� = 4 cos2(φ)

χA1+|�| sin
(χ

2

)

− 2β cos(φ)[α cos2(φ)|�|A + 2(1 + |�|)B]

αχ2A2+|�|

×
[

cos

(
χ

2

)
χ − 2 sin

(
χ

2

)]
. (40)

Figure 4 shows the theoretical and numerical curve of
the azimuthal Schmidt number κ with p = q = 0 and α =
0.1 as a function of φ. The theoretical curve is given by
Eq. (40), and the numerical curve is obtained from a numerical
evaluation of Eq. (14), using Monte Carlo integration. The
experimental parameters for the curve are L = 5 mm, wp = 1
mm, λp = 0.355 μm, and no = 1.7. One can see in Fig. 4 that
κ increases rapidly as it approaches the point where φ ≈ 0.009
rad, reaching a maximum of approximately 3 times the value
at φ = 0 before suddenly decreasing to a minimum of around
half the value at φ = 0. We find that κ oscillates between
maxima and minima that slowly increase with φ. However,
the gradual change in the maxima and minima in κ is only
noticeable when φ > 0.2 rad. The oscillating frequency also
increases with φ.

We see the same oscillatory behavior in Fig. 5, where
we plotted κ as a function of φ for the case p = 3, q = 1
with α = 0.1 using the same experimental parameters. It is

0 0.005 0.01 0.015
50

100

150

200

φ (rad)

κ

FIG. 5. The azimuthal Schmidt number κ as a function of φ for
the case p = 3, q = 1, and α = 0.1.

as expected that a larger κ is obtained at φ = 0; however,
the maximum reached is now only about 1.5 times the value
at φ = 0, and the first maximum is shifted to a larger value
of φ (φ ≈ 0.0098 rad). We found that when larger values of
p and q are used and also when |p − q| increases, the ratio
between the first maximum of κ and that at φ = 0 decreases,
and the maximum shifts to increasingly larger values of φ. If
one is to compute the full Schmidt number as a function of φ,
we expect that these oscillations will be smeared out by the
shifted maxima and minima of larger radial modes, eventually
reproducing the curve seen in Fig. 3.

The widths of the peaks in κ as a function of φ are
determined by the value of α. To demonstrate this we show
in Fig. 6 the azimuthal Schmidt number as a function of φ

for α = 0.5. The azimuthal Schmidt number shows the same
oscillatory behavior as for α = 0.1, but the peaks are much
narrower. Note that in Fig. 6(a), the value of κ seems to diverge
at φ ≈ 0.009 rad, but that is not the case. An expanded view
of the region near φ = 0.009 rad is shown in Fig. 6(b). One
can see that κ merely changes very rapidly.

V. CONCLUSION

The effect of the down-conversion angle between the
signal and idler beams on the modal spectrum of the
down-converted state is studied. The Schmidt number, which
quantifies the effective number of entangled modes in the
down-converted state, is shown to increase drastically for
small down-conversion angles, as was observed in a recent
experiment [24]. Due to this increase, the Schmidt number
can be as large as double the nominal value at collinear
down-conversion. To show this increase analytically, one
needs to consider the physical sinc-function phase-matching
condition since the Gaussian approximation does not provide
accurate results for nonzero down-conversion angles. We made
the assumption that the length of the nonlinear crystal is much
shorter than the Rayleigh range of the pump beam, i.e., the
thin-crystal approximation, which is true in most practical
down-conversion experiments.

The modal spectrum that is measured in a physical
experiment depends on the modal basis in terms of which the
measurements are made. Often an OAM basis is used, such
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FIG. 6. (a) The azimuthal Schmidt number κ determined theoret-
ically as a function of φ for the case p = q = 0 and α = 0.5. (b) An
expanded view of (a) near φ = 0.009 rad, showing that there are no
singularities.

as the LG basis, but with a fixed radial dependence, leaving
only the azimuthal index as the degree of freedom. In such a
case, the number of observed entangled modes is less than in
the full down-converted state. The azimuthal Schmidt number
quantifies this restricted number of observed modes.

We computed general expressions for the spectrum of OAM
modes for the down-converted state in the LG basis, using the
thin-crystal approximation to obtain analytic results. These
expressions are applicable for arbitrary radial and azimuthal
indices. Using these results, we computed the azimuthal
Schmidt number for various radial index combinations and
found that the azimuthal Schmidt number increases drastically
at particularly small values of the down-conversion angle.

In the case where the radial indices are zero the azimuthal
Schmidt number can increase by as much as 3 times the
nominal value at collinear down-conversion. Depending on
the experimental parameters (the ratio of the down-converted
beam radii to the pump beam radius), the maximum in the
azimuthal Schmidt number appears as a narrow sharp peak. In
such cases an extremely accurate angular adjustment would
be required to locate the peak in an experimental setup.
While the experimental setup in [24] allowed accurate angular
adjustment [27], the spiral bandwidth was measured at only a
single angle, and the exact angle of operation is not known.
Hence, while we are able to explain the drastic increase in the
azimuthal Schmidt number that was observed in [24], we are
unable to verify the specific details.
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APPENDIX

In the case of degenerate type I phase matching we have
|kp| = 2|ks,i| = ωp/c. From this we can write for the signal
and idler beams

ks,iz =
√

k2
p

4
− |qs,i|2

=
√

k2
p

4
− k2

p sin2 φ

4
−

(
|qs,i|2 − k2

p sin2 φ

4

)
. (A1)

The term

|qs,i|2 − k2
p sin2 α

4
(A2)

is small in the paraxial limit, so Eq. (A1) can be approximated
as

ks,iz ≈ kp cos φ

2
− |qs,i|2 − 1

4k2
p sin2 φ

kp cos φ
. (A3)

In the paraxial limit kpz can be written as

kpz =
√

k2
p − |qp|2 ≈ kp − |qp|2

2kp

. (A4)

Finally, by using Eqs. (6) and (7) we obtain

�kz = no

[
λp|qi − qs|2
4π cos(φ)

− π sin2(φ)

λp cos(φ)

]
. (A5)
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