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 19 

Abstract 20 

     Prediction skills of summer precipitations over southern Africa (16˚-33˚E, 22˚-35˚S) in 21 

the SINTEX-F coupled model are assessed for the period of 1982-2008. Using three different 22 

observation datasets, deterministic forecasts are evaluated by anomaly correlation coefficients, 23 

whereas scores of relative operating characteristic and relative operating level are used to 24 

evaluate probabilistic forecasts. It is shown that these scores for forecasts of 25 

December-February precipitation initialized on October 1st are significant at 95% confidence 26 

level. On a local scale, the prediction skills in the northwestern and central parts of southern 27 

Africa are higher than those in northeastern South Africa. El Niño/Southern Oscillation 28 

(ENSO) provides the major source of predictability, but the relationship with ENSO is 29 

over-confident in the model. Also, the Benguela Niño, the basin mode in the tropical Indian 30 

Ocean, the subtropical dipole modes in the South Atlantic and the southern Indian Oceans and 31 

ENSO Modoki may provide additional sources of predictability. When prediction skills are 32 

evaluated for the whole wet season from October to the following April, it is found that 33 

precipitation anomalies in December-February are most predictable. The present study 34 

presents promising results for seasonal prediction of precipitation anomalies in the 35 

extratropics, where seasonal forecast are considered a difficult task. 36 

 37 

  38 
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 39 

1. Introduction 40 

     Precipitation over most of southern Africa shows a distinct seasonality with a wet 41 

season in austral summer and a dry season in austral winter. It undergoes significant 42 

interannual variations with El Niño/Southern Oscillation (ENSO) playing a key role (Dyer 43 

1979; Lindesay 1988; Reason et al. 2000; Reason and Rouault 2002; Rouault and Richard 44 

2005). In La Niña years, cloud bands related to the South Indian Convergence Zone tend to be 45 

preferentially located over southern Africa, resulting in higher precipitation. On the other 46 

hand, the cloud bands tend to move northeastward to Madagascar in El Niño years, leading to 47 

dry conditions in southern Africa (e.g., Cook 2000; Hart et al. 2010, 2012). However, the 48 

ENSO influences are neither simple nor exclusive. For example, the 1997/1998 El Niño, the 49 

strongest event on record, was not accompanied by the driest summer in subtropical southern 50 

Africa (Lyon and Mason 2007). Also, their link undergoes large decadal variations (Richard 51 

et al. 2000), and can be modified by local systems such as Angola low (Reason and 52 

Jagadheesha 2005; Lyon and Mason 2007). 53 

     Besides ENSO, large-scale atmospheric circulation anomalies associated with the 54 

subtropical dipole modes in the South Atlantic and the southern Indian Ocean (e.g., Venegas 55 

et al. 1997; Behera and Yamagata 2001) may modulate precipitation through their impacts on 56 

moisture transport (Behera and Yamagata 2001; Reason 2001, 2002; Vigaud et al. 2009). 57 

Also, recent studies showed that the subtropical dipole modes are closely related to the 58 

synoptic rain-bearing systems passing through southern Africa such as the tropical temperate 59 

troughs (Harrison 1984; Todd and Washington 1999; Fauchereau et al. 2009; Pohl et al. 2009; 60 



 4 

Ratna et al. 2012; Vigaud et al. 2012). Furthermore, tropical cyclones (Reason and Keibel 61 

2004), Angola low (Lyon and Mason 2007), Benguela upwelling system (Walker 1990) and 62 

Agulhas Current (Mason 1995; Tyson and Preston-Whyte 2004) exert influences on the 63 

southern African summer precipitation. Complex interactions among them make the seasonal 64 

prediction a difficult task. 65 

     Agriculture in southern Africa is predominantly rain-fed and thus highly vulnerable to 66 

rainfall variations, but measures to mitigate impacts of the interannual variations are still far 67 

below satisfaction (Conway 2009). To increase resilience of local communities and 68 

households, it is crucial to understand causes of rainfall variations, to make an accurate 69 

prediction, and to implement an early warning system and countermeasures. For this reason, 70 

the South African modeling community has developed operational seasonal forecasting 71 

systems (e.g., Barnston et al. 1996; Mason et al 1996; Landman and Mason 1999; Landman et 72 

al. 2001). The earlier systems relied on statistical methods and often adopted sea surface 73 

temperature (SST) in the adjacent subtropical oceans and/or the remote tropical eastern 74 

Pacific as predictors. More recently, they were replaced by two- and one-tiered dynamical 75 

forecast systems, but raw model outputs, such as geopotential height at 850 hPa, are often 76 

statistically downscaled to achieve better prediction skills of the southern African summer 77 

precipitation (e.g., Landman and Goddard 2002; Landman et al. 2012; Landman and Beraki 78 

2012). This is because general circulation models tend to simulate large-scale circulation 79 

anomalies more accurately than precipitation anomalies (Landman and Goddard 2002). One 80 

of the reasons is that typical resolution of general circulation models (100-200 km) is too 81 

coarse to adequately resolve complex topography that is important to the local precipitation. 82 
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For this reason, some recent studies have developed dynamical downscaling systems for 83 

southern Africa using high-resolution regional models (Ratnam et al. 2011; Boulard et al. 84 

2012; Crétat et al. 2012), but these models require good side boundary conditions provided by 85 

a global model. 86 

     In this regard, CGCMs have made big progresses in seasonal forecasts not only for the 87 

tropical climate variations (e.g., Luo et al. 2007; Jin et al. 2008; Barnston et al. 2012), but also 88 

for extratropical climate variations. Yuan et al. (2013) showed for the first time that the SST 89 

anomalies even in the subtropical oceans are predictable at around one season lead when they 90 

assessed predictability of the subtropical dipole modes. This presents a great potential for the 91 

CGCMs to predict the seasonal climate variations in the mid-latitudes, and encourages further 92 

development of CGCMs for mid-latitudes applications. 93 

     In this study, using the same CGCM as in Yuan et al. (2013), seasonal forecasts of the 94 

summer precipitation in southern Africa (16˚-33˚E and 22˚-35˚S, shown by the white box in 95 

Fig. 1a) are evaluated for the period of 1982-2008. A special emphasis is placed on 96 

precipitation anomalies in December-February (DJF), corresponding to the peak of the wet 97 

season in southern Africa. The model forecasts of the precipitation in DJF are verified against 98 

observations without any post-processing, and thus successful forecasts may be related to 99 

realistic reproductions of large-scale circulation anomalies responsible for observed 100 

precipitation anomalies. Therefore, by comparing the predicted and observed SST and 101 

large-scale circulation anomalies, possible sources of predictability may be investigated as 102 

well.  103 

     This paper is organized as follows. A brief description of the CGCM, retrospective 104 
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forecast experiments, and verification data and methods is given in the next section. In 105 

Section 3, the prediction skills for the precipitation anomalies in DJF when the model is 106 

initialized on October 1st are assessed. Possible sources of predictability are discussed in 107 

Section 4. Section 5 examines how prediction skills vary during the wet season. The final 108 

section is reserved for conclusions.  109 

 110 

2. Model, retrospective forecasts, and verification data and methods 111 

2.1. Model and retrospective forecasts 112 

     The Scale Interaction Experiment-Frontier Research Center for Global Change CGCM 113 

(SINTEX-F, see Luo et al. 2003 and 2005a for details) is used in this study. The oceanic 114 

component is the reference version 8.2 of Océan Parallélisé (Madec et al. 1998). It has 31 115 

vertical levels and horizontal resolution of 2˚ with increased meridional resolution of 0.5˚ near 116 

the equator. The atmospheric component is the latest version of ECHAM4 (Roeckner et al. 117 

1996) with 19 vertical levels and a horizontal resolution of T106. The coupled model has been 118 

used to successfully simulate and predict the tropical climate modes such as ENSO and the 119 

Indian Ocean Dipole and their teleconnections to the mid-high latitudes (e.g., Yamagata et al. 120 

2004; Tozuka et al. 2005; Luo et al. 2005b, 2007, 2008). It has higher skills in simulating the 121 

Indian Ocean subtropical dipole mode than the Coupled Model Inter-comparison Project 122 

phase-3 (CMIP3) coupled models (Kataoka et al. 2012), and can skillfully predict the Indian 123 

Ocean and South Atlantic subtropical dipole modes with about one season lead (Yuan et al. 124 

2013). In this study, a series of nine-member ensemble forecasts is conducted by the coupled 125 

model. The forecasts are initialized on the first day of each month from February 1982 to 126 
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December 2008 and integrated for 12 months. The nine ensemble members differ in initial 127 

conditions and/or coupling physics. Readers are referred to Luo et al. (2007) and Yuan et al. 128 

(2013) for more details.  129 

  130 

2.2. Verification data and methods 131 

     The precipitation forecasts are verified against three different observations: Global 132 

Precipitation Climatology Project monthly precipitation (GPCP; 2.5˚x2.5˚; Adler et al. 2003), 133 

Global Precipitation Climatology Centre monthly precipitation (GPCC; 2.5˚x2.5˚; land only; 134 

Schneider et al. 2013) and Africa Rainfall Climatology version 2 daily precipitation estimates 135 

(ARC2; 0.1˚x0.1˚; Love et al. 2004). Although there are some missing data, an average of 136 

available dates in a month/season is used to calculate the monthly/seasonal mean of ARC2. 137 

The predicted SSTs and atmospheric fields are verified against the monthly Optimum 138 

Interpolation SST (OISST; 1˚x1˚; Reynolds et al. 2002) and three different reanalysis datasets, 139 

respectively. The latter includes the National Centers for Environmental Prediction/National 140 

Center for Atmospheric Research reanalysis 1 (NCEP/NCAR; 2.5˚x2.5˚; Kalnay et al. 1996), 141 

the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim; 142 

1.5˚x1.5˚; Dee et al. 2011) and the NCEP climate forecast system reanalysis (CFSR; 143 

2.5˚x2.5˚; Saha et al. 2010). We note that the data above have various horizontal resolutions 144 

and are interpolated to the model girds when needed. 145 

     Figure 1 shows the climatology of precipitation and moisture fluxes at 850 hPa in DJF. 146 

All three precipitation datasets show east-west gradient with the maximum in eastern South 147 

Africa separated from the inter-tropical convergence zone to the north. However, the 148 
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maximum precipitation is slightly larger in the GPCP than in the GPCC and ARC2 (Figs. 149 

1a-c). The moisture fluxes to the southern African subcontinent are mainly from the Indian 150 

Ocean, and they are slightly stronger in the ERA-Interim than in the NCEP/NCAR and CFSR. 151 

Nevertheless, there are no significant differences in the three observed precipitation and 152 

reanalysis data. The model successfully simulates the observed precipitation pattern (Fig. 1d), 153 

but the simulated amount is about twice as large as the observed, because the simulated 154 

moisture fluxes to the subcontinent in the lower troposphere are much stronger and extend 155 

farther to the west compared to the reanalysis data. Similar wet biases have been reported in 156 

many general circulation and regional models (e.g., Joubert 1997; Ratnam et al. 2011; Crétat 157 

et al. 2012). To exclude the model biases in the climatology, predicted anomalies are verified 158 

against the observations after removing the monthly climatology in each dataset (Kirtman et 159 

al. 1997). 160 

     The southern African precipitation index in this study is defined as precipitation 161 

anomalies averaged over the southern African region of interest (16˚-33˚E, 22˚-35˚S; see the 162 

white box in Fig. 1a). Deterministic forecasts are evaluated by anomaly correlation coefficient 163 

(ACC; Pearson’s correlation coefficient) between the ensemble-mean forecasts and 164 

observations. Its statistical significance is tested by the one-tailed t-test since the predicted 165 

and observed precipitation anomalies are supposed to correlate positively. Probabilistic 166 

forecasts for the above- and below-normal precipitation are evaluated by scores of the relative 167 

operating characteristic (ROC) and relative operating level (ROL) (Mason and Graham 1999). 168 

The threshold value for above (below)-normal tercile is the lowest (highest) value in the 169 

highest (lowest) 33% of the historical records. The ROC and ROL scores are equivalent to the 170 
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areas beneath the ROC and ROL curves. The ROC curve reflects the ratios between the hit 171 

rate and the false-alarm rate when the forecast probability to issue an above/below-normal 172 

precipitation year is decreased gradually. Here, the hit (false-alarm) rate is the proportion of 173 

years in the above/below-normal tercile (other terciles) that are correctly (incorrectly) 174 

predicted as the above/below-normal precipitation year. The ROL curve reflects the ratios 175 

between the correct-alarm ratio and the miss ratio when the number of years in the 176 

above/below-normal tercile is increased gradually, and the forecast for above/below-normal 177 

precipitation are issued when at least 33% of the ensemble members are in 178 

above/below-normal tercile. Here, the correct-alarm (miss) ratio is defined as the probability 179 

that an above/below-normal year will occur when it is forecasted (not forecasted). If the ROC 180 

and ROL scores are better than 0.5, the forecast system is regarded to have skills in 181 

discriminating the above/below-normal precipitation, and the higher the scores, the better the 182 

skills are. The statistical significance of the scores is tested by the Mann-Whitney U-test 183 

(Manson and Graham 2002). We note that all ROC and ROL scores shown in this study are 184 

cross-validated by a leave-one-out manner, such that the threshold is computed using all years 185 

except for the year being considered. 186 

     Since the ROC and ROL scores cannot reflect the reliability of the forecast probabilities, 187 

the reliability diagram is also provided (Wilks 1995). In the reliability diagram, the forecast 188 

probabilities are plotted against frequency by which the forecasts are verified (i.e. the 189 

observed relative frequency). Ideally, the reliability curve is along the 45˚ diagonal line, 190 

which signifies the identical forecast probability and observed relative frequency. If the curve 191 

lies above (below) the 45˚ diagonal line, the forecast system is under (over)-confident. 192 
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Besides being reliable, the forecast probabilities are desired to span away from the 193 

climatological probability, which is 33% in this study. The reason is that even without model 194 

predictions, the probability for the precipitations in each year to fall in the 195 

above/below-normal tercile is 33%.  196 

 197 

3. Prediction skills for the DJF southern African precipitations 198 

3.1. Deterministic forecasts 199 

     Figure 2 shows the time series of the southern African precipitation indices in DJF 200 

obtained from the model forecasts initialized on October 1st and the GPCP. Since the index 201 

based on GPCC (ARC2) is similar to that based on the GPCP with correlation coefficients of 202 

0.99 (0.84), it is not shown in Fig. 2. The ensemble-mean forecasts have high correlations 203 

with the observation; when verified against the GPCP, GPCC and ARC2, the ACCs are 0.68, 204 

0.66 and 0.61, respectively. These are significant at 99.95% confidence level by the one-tailed 205 

t-test and higher than 0.6, the threshold value of high prediction skills for seasonal 206 

precipitation (Marengo et al. 2005). We note that the observed precipitation index falls within 207 

the model’s interquartile range in only seven out of 27 years, because the standard deviation 208 

of precipitation anomalies in each ensemble member is only two-third of the observation. 209 

Also, the large ensemble spread is due to one or two outliers. 210 

     The Spearman’s (Kendall’s tau rank) correlation coefficients are 0.71, 0.70 and 0.63 211 

(0.55, 0.52 and 0.45), when the 27-year deterministic forecasts shown in Fig. 2 are verified 212 

against the GPCP, GPCC, and ARC2, respectively. All of these correlation coefficients are 213 

significant at 99.95% confidence level, and higher than those obtained in past studies. For 214 
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instance, using prediction results of three CGCMs from the Development of a European 215 

Multimodel Ensemble System for Seasonal-to-Interannual Prediction Project (DEMETER) 216 

initialized on November 1st, Landman and Beraki (2012) obtained statistically downscaled 217 

forecasts for DJF southern African precipitations averaged south of 10˚S. When their 218 

deterministic forecasts were verified against the University of East Anglia Climatic Research 219 

Unit (CRU; Mitchell and Jones 2005) monthly precipitation data for the 21-year test period 220 

from 1980/1981 to 2001/2002, the Spearman’s rank correlation coefficient was slightly less 221 

than 0.5, significant at 95% confidence level. Also, for the 14-year test period from 222 

1995/1996 to 2008/2009, the Kendall’s tau rank correlation coefficient between the predicted 223 

rainfall in DJF obtained from statistical downscaling of a coupled model 224 

(ECHAM4.5-MOM3-DC2; DeWitt 2005) prediction initialized at the end of October and the 225 

rainfall data from the South African Weather Service (Van Rooy 1972) was 0.45, significant 226 

at 95% confidence level (Landman et al. 2012). Although there exist some differences in 227 

precipitation data used to evaluate the model, data period, area used to calculate average 228 

precipitation, and lead-time of seasonal forecasts, the high correlation coefficients obtained in 229 

this study suggest that the SINTEX-F has high skills in predicting the southern African 230 

summer precipitation. 231 

    Figure 3 shows the ACCs of predicted precipitation anomalies with the three different 232 

observations at each model grid in the southern African region of interest. Although the ACCs 233 

are somewhat higher with GPCP, their spatial distributions are quite similar; the ACCs 234 

significant at 95% confidence level are mostly confined to the northwestern and central part 235 

of southern Africa, while very low ACCs are found in northeastern South Africa. This is 236 
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contrasted to many other models showing the highest prediction skills in northeastern South 237 

Africa (e.g., Landman et al. 2012). Hence, a multi-model ensemble forecast system for the 238 

southern African summer precipitation may benefit from inclusion of the SINTEX-F, as it 239 

provides distinct and independent prediction skills (Hagedorn et al. 2005).  240 

 241 

3.2. Probabilistic forecasts 242 

     The leave-one-out cross-validated ROC scores for the above (below)-normal DJF 243 

southern African precipitation indices in DJF are 0.76, 0.76 and 0.80 (0.79, 0.82 and 0.78), 244 

respectively, when the probabilistic forecasts are verified against the GPCP, GPCC and ARC2 245 

(Fig. 4a). The corresponding ROL scores are 0.84, 0.84 and 0.80 (0.85, 0.85 and 0.80), 246 

respectively (Fig. 4b). These scores are statistically significant at 95% confidence level by the 247 

Mann-Whitney U-test. When the ROC and ROL scores are calculated at each model grid, the 248 

scores are higher than 0.5 in most summer rainfall regions of southern Africa except for 249 

northeastern South Africa (Figs. 5 and 6). Moreover, areas with the ROC and ROL scores 250 

above 0.7 are mostly confined to the northwestern and central parts of southern Africa. This is 251 

in accordance with the areas of the highest ACCs (Fig. 3), suggesting the consistency among 252 

the different verification methods. 253 

     Figure 7 shows the reliability curves and frequency histograms of the forecast 254 

probabilities for the above- and below-normal precipitation. The regression lines weighted by 255 

the frequency of forecast probabilities for the reliability curves are also superimposed. We 256 

note that the 27-year probabilistic forecasts for precipitation anomalies at each of 221 model 257 

grids in the southern African region of interest are included for the reliability examination, 258 
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and the sample size is thus increased to 5967. It is shown that the reliability curves for both 259 

the above- and below-normal precipitation are below (above) the diagonal line at the high 260 

(low) end of the forecast probabilities, indicating that the above- and below-normal 261 

precipitation occur less (more) frequently than predicted. Moreover, the forecast probabilities 262 

do not span much away from 33%, the climatological probability. These are common 263 

problems suffered by many CGCMs in predicting the southern African summer precipitation 264 

and need to be addressed in the future (e.g., Landman and Beraki 2012; Landman et al. 2012).  265 

 266 

4. Large-scale circulation anomalies related to the above/below-normal 267 

precipitations and possible sources of predictability 268 

     In light of the good skill in predicting the southern African precipitation anomalies in 269 

DJF, we use the present model to investigate the relevant large-scale circulation anomalies 270 

and possible sources of predictability. As indicated in Fig. 2, the model successfully predicts 271 

five (six) of the total nine years in the above (below)-normal precipitation tercile. Those five 272 

(six) years are 1988/1989, 1995/1996, 1999/2000, 2005/2006 and 2007/2008 (1982/1983, 273 

1986/1987, 1991/1992, 1994/1995, 2000/2001 and 2006/2007). We have constructed DJF 274 

composites for the successfully predicted years, and discuss possible reasons why the 275 

prediction fails in the remaining years. Since qualitatively the same results are obtained even 276 

if we use the GPCC and ARC2, we only present results from the GPCP in this section. 277 

     Positive (negative) precipitation anomalies are observed in vast areas of southern Africa 278 

south (north) of 15˚S in the successfully predicted above-normal precipitation years (Fig. 8a). 279 

This indicates a southward shift of the inter-tropical convergence zone and it may be 280 
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associated with weakening and a southward shift of the South Atlantic and Indian Ocean 281 

subtropical highs (Figs. 9a, c, e; Cook et al. 2004; Vigaud et al. 2009). Negative geopotential 282 

height anomalies in the lower troposphere cover almost the whole southern African 283 

subcontinent. The anomalous center in the southeastern Atlantic Ocean off the coast of 284 

Namibia is related to anomalous moist westerlies and northwesterlies from the South Atlantic 285 

Ocean to the subcontinent. In addition, the anomalous southeast-northwest pressure gradient 286 

over southern Africa is conducive to anomalous moist northeasterlies and easterlies from the 287 

western Indian Ocean to the subcontinent. As a result, the humidity in the lower troposphere 288 

is increased significantly (Figs. 10a-c) and convections are enhanced (Figs. 11a-c), resulting 289 

in more precipitation over southern Africa (Fig. 8a). Anomalies in the successfully predicted 290 

below-normal years are close to a mirror image of the above (Figs. 8c, 9b, d, f, 10e-g, 11e-g). 291 

Note that the anomalous patterns of atmospheric fields derived from the three reanalysis data 292 

are qualitatively consistent, but show some differences on a local scale, especially in the 293 

specific humidity and outgoing longwave radiation anomalies (Figs. 10-11). However, these 294 

differences do not influence our conclusions. 295 

     The model predicts to some extent the weakening and southward shift of the South 296 

Atlantic and Indian Ocean subtropical highs (Fig. 9g), the negative geopotential height 297 

anomalies in the lower troposphere over southern Africa, and the anomalous center in the 298 

southeastern Atlantic Ocean off Namibia. As a result, the anomalous northwesterlies and 299 

westerlies from the South Atlantic Ocean to southern Africa, the increased specific humidity 300 

in the lower troposphere (Fig. 10d), the enhanced convection (Fig. 11d), and positive 301 

precipitation anomalies are also predicted reasonably well in the above-normal years (Fig. 8b). 302 
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However, the predicted cyclonic circulation anomalies in the southeastern Atlantic Ocean are 303 

much weaker than the observed, and thus less moisture is fed from the South Atlantic to the 304 

subcontinent. Also, the strong cyclonic circulation anomalies centered at around 35˚E and 305 

20˚S (Fig. 9g) are prohibiting the anomalous moist westerlies and northwesterlies from the 306 

Atlantic Ocean to extend eastward to the eastern part of southern Africa. This may lead to less 307 

feeding of moisture to northeastern South Africa (Fig. 10d), less active convection (Fig. 11d) 308 

and precipitation biases there (Figs. 8a-b). The forecasted precipitation and atmospheric 309 

circulation anomalies in the successfully predicted below-normal years are almost a mirror 310 

image of those in the successfully predicted above-normal years (Figs. 8d, 9h, 10h, 11h).  311 

     The circulation anomalies in the lower troposphere over southern Africa seen in the 312 

successfully predicted above/below-normal precipitation years (Fig. 9) remind us of the 313 

ENSO influence (e.g., Tyson and Preston-Whyte 2004). In fact, among the five successfully 314 

predicted above-normal years, all have a distinct La Niña signal in the tropical Pacific, and 315 

among six successfully predicted below-normal years, all but the 2000/2001 austral summer 316 

have a distinct El Niño signal. As a result, composites of SST anomalies in these successfully 317 

predicted years exhibit significant ENSO signals (Figs. 12a, c), and those of atmospheric 318 

circulation anomalies (Fig. 9) are dominated by the ENSO-related teleconnections (Fig. 13). It 319 

is not surprising that ENSO provides the dominant source of predictability. Landman and 320 

Beraki (2012) also showed that their multi-model ensemble forecast system has better 321 

prediction skills of southern African summer precipitation in the ENSO years than neutral 322 

years. This is not only because of the close relation between ENSO and the southern African 323 

summer precipitation, but also because ENSO itself is a highly predictable climate mode 324 
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providing dominant sources of predictability for the global climate variations. Hence, the high 325 

prediction skills of the southern African summer precipitation in the SINTEX-F may be due 326 

to its high skills predicting ENSO (Jin et al. 2008) and the associated large-scale 327 

teleconnections in the Southern Hemisphere (Figs. 9g-h, 13g-h; Yuan et al. 2013). A separate 328 

100-year control experiment confirms the robustness of the above relationship in the 329 

SINTEX-F; the above (below)-normal precipitation in southern Africa is associated with La 330 

Niña (El Niño) (figure not shown). 331 

     However, the model is over-confident in simulating the link between ENSO and 332 

southern African summer precipitation. The correlation coefficient between the predicted 333 

Niño-3 and southern African precipitation indices in DJF is -0.77, which is higher than -0.57 334 

in the observation. This may explain why 1997/1998 is predicted as the driest summer in 335 

association with the strongest 1997/1998 El Niño event even though it was not accompanied 336 

by the driest summer in subtropical southern Africa (Lyon and Mason 2007). 337 

     Also, the model shows some biases in simulating the relationship on a local scale. As 338 

shown in Figs. 14a and d, the observed precipitation anomalies over northeastern South Africa 339 

in DJF are negatively correlated with ENSO, but they are positively correlated in the model. 340 

This is probably because of model biases in circulation anomalies in the lower troposphere 341 

associated with La Niña (El Niño); cyclonic (anticyclonic) circulation anomalies in the 342 

southeastern Atlantic Ocean are too weak and cyclonic (anticyclonic) circulation anomalies 343 

over southern Africa centered at around 35˚E and 20˚S are too strong in the model (Fig. 13). 344 

We have discussed above that this may cause the precipitation biases in northeastern South 345 

Africa and result in the lower prediction skills there (Figs. 3, 5-6). 346 
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     There may be other sources of predictability beside ENSO, because significant SST 347 

anomalies are found outside of the tropical eastern Pacific (Fig. 12). The SST anomalies along 348 

the coast of Angola and Namibia are associated with Benguela Niño, which is closely related 349 

to precipitation anomalies in the western part of southern Africa (Rouault et al. 2003; 350 

Florenchie et al. 2003). Since it is predicted relatively well in the 1990s, it may partly explain 351 

the better prediction skills in this decade when the correlation between ENSO and the 352 

southern African summer precipitation is relatively weak (Fig. 15). 353 

     Also, the basin-wide cooling (warming) in the tropical Indian Ocean in the above 354 

(below)-normal precipitation years (Fig. 12) may modulate the moisture fluxes from the 355 

Indian Ocean to southern Africa and contribute to positive (negative) precipitation anomalies 356 

(Goddard and Graham 1999). Although these SST anomalies are induced by ENSO through 357 

an atmospheric bridge (e.g., Klein et al. 1999; Xie et al. 2009), they are essential to simulate 358 

the correct precipitation response to ENSO in southern Africa (Goddard and Graham 1999). 359 

     In addition, Fig. 12 shows SST anomalies in the South Atlantic and the southern Indian 360 

Ocean associated with the subtropical dipole modes. It is not clear to which extent the 361 

subtropical dipole modes can provide an additional independent source of predictability for 362 

the summer precipitation, since the subtropical dipole modes are related to ENSO (e.g., 363 

Hermes and Reason 2005; Yuan et al. 2013; Morioka et al. 2013). The correlation coefficient 364 

between the Niño-3 and South Atlantic (Indian Ocean) subtropical dipole indices in DJF is 365 

-0.59 (-0.35) for the observation and -0.55 (-0.36) for the model. These correlations are 366 

significant at 95% confidence level. Here, the subtropical dipole mode indices are defined as 367 

the difference in SST anomalies between the southwestern and northeastern poles as in Yuan 368 
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et al. (2013). Therefore, the correlation coefficients between the subtropical dipole modes and 369 

precipitation anomalies are similar to those between the ENSO and precipitation anomalies 370 

with opposite signs in both the observation (Figs. 14a-c) and the model (Figs. 14d-f). 371 

Nevertheless, successful predictions of the subtropical dipole modes are important, because 372 

some impacts of ENSO on the southern African summer precipitation may be through the 373 

subtropical dipole modes via changing intensity and frequency of the synoptic rain-bearing 374 

systems (Pohl et al. 2009; Vigaud et al. 2012). 375 

     The coupled model successfully predicts the La Niña Modoki in the tropical Pacific and 376 

the below-normal precipitations in southern Africa in the austral summer of 2000/2001. 377 

According to Ratnam et al. (2013a), La Niña Modoki is associated with the negative, though 378 

not statistically significant, precipitation anomalies in South Africa. Hence, if the ENSO 379 

Modoki is successfully predicted, it may provide an additional source of predictability for the 380 

southern African summer precipitation.  381 

     There are three below-normal precipitation years that the model fails to predict 382 

(1983/1984, 1989/1990 and 2002/2003). Although these years are not dry enough to become 383 

the nine driest years (Fig. 2), they are predicted as the 12th, 13th and 11th driest years, 384 

respectively. Among the four above-normal precipitation years that the model fails to predict 385 

(1987/1988, 1990/1991, 1993/1994 and 2008/2009), 1993/1994 and 2008/2009 are predicted 386 

as the 10th and 12th wettest years. In the austral summer of 1987/1988, the observed El Niño 387 

decayed quickly in the tropical Pacific, but the predicted El Niño lasts much longer, resulting 388 

in the dominant El Niño-related circulation anomalies over southern Africa and the 10th driest 389 

summer in the model. Although 1990/1991 was an El Niño Modoki year, the model predicts 390 
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for a canonical El Niño year and thus negative precipitation anomalies over southern Africa. 391 

 392 

5. Discussions 393 

     To check whether prediction skills vary during the wet season of southern Africa 394 

generally spanning from October to the following April, we have calculated ACCs of 395 

three-month precipitation anomalies at various lead times (Fig. 16). By no surprise, 396 

precipitation anomalies in DJF are most predictable (Figs. 16i-l). This is expected because the 397 

atmospheric circulation over southern Africa is predominantly influenced by the tropics in 398 

DJF, and thus the potential predictability of precipitation is highest (e.g., Landman and Mason 399 

1999; Landman et al. 2009). The figure also suggests that predictions initialized on October 400 

1st have much better skills than those initialized on September 1st (Figs. 10k-l). Besides the 401 

shorter lead-time, the initial information at the beginning of October may be important for a 402 

coupled model to predict the onset of the wet season; it usually starts in October, but it is 403 

difficult to simulate by general circulation models (Tozuka et al. 2013). On the other hand, the 404 

prediction skills are not much different with initialization dates of October, November and 405 

December 1st (Figs. 10i-k). This may be because ENSO, which provides the major source of 406 

predictability, is consistently well predicted. The ACCs of Niño-3 index in DJF are almost the 407 

same with 0.95 (±0.02) for predictions initialized on October, November and December 1st. 408 

     On regional scale, the highest ACCs are confined to the western and central parts of 409 

southern Africa, while low ACCs are found in northeastern South Africa. The low prediction 410 

skills in the latter may be partly due to the model biases in the ENSO-related teleconnections. 411 

In addition, they may be partly attributable to the coarse model resolution. The precipitation 412 
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in northeastern South Africa is strongly influenced by the escarpment (Garstang et al. 1987), 413 

but the SINTEX-F is too coarse to realistically represent this complex topography. For this 414 

reason, Ratnam et al. (2013b) recently used a regional model with horizontal resolution of 30 415 

km to dynamically downscale prediction results from the SINTEX-F, and achieved better 416 

prediction skills in northeastern South Africa. 417 

 418 

6. Conclusions  419 

     We have assessed skills of the SINTEX-F coupled model in predicting the summer 420 

precipitation in southern Africa (16˚-33˚E and 22˚S-35˚S) for the period of 1982-2008, and 421 

discussed possible sources of predictability. The ACCs of southern African precipitation 422 

indices in DJF are 0.68, 0.67 and 0.61, respectively, when the deterministic forecasts 423 

initialized on October 1st are verified against GPCP, GPCC and ARC2. These are significant 424 

at 99.95% confidence level by the one-tailed t-test, and higher than the 0.6 threshold value of 425 

high prediction skills for seasonal precipitation (Marengo et al. 2005). The leave-one-out 426 

cross-validated ROC scores for the probabilistic forecasts of the above (below)-normal 427 

precipitation are 0.76, 0.76 and 0.80 (0.79, 0.82 and 0.78), respectively, when verified against 428 

GPCP, GPCC and ARC2. The corresponding ROL scores are 0.84, 0.84 and 0.80 (0.85, 0.85 429 

and 0.80), respectively. These scores are significant at 95% confidence level by the 430 

Mann-Whitney U-test.  431 

     On a local scale, the model has the highest prediction skills in the western and central 432 

parts of southern Africa, while skills are lower in northeastern South Africa. The lower 433 

prediction skills in the latter region may be related to the model biases in the ENSO-related 434 
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teleconnections in the southern African region. Also, the coarse model resolution may 435 

contribute to the lower skills, because the model cannot resolve the complex topography in 436 

northeastern South Africa that is crucial for the deep convection in austral summer (Garstang 437 

et al. 1987). 438 

     When prediction skills are evaluated for the whole wet season of southern Africa from 439 

October to the following April, we have found that precipitation anomalies in DJF are most 440 

predictable. This is consistent with the prevalent view that the atmospheric circulation over 441 

southern Africa in DJF is predominantly influenced by the tropics, and thus the potential 442 

predictability is highest. 443 

     It is shown that ENSO provides the dominant source of predictability. Among the five 444 

above-normal precipitation years that are successfully predicted by the model initialized on 445 

October 1st, all have distinct La Niña signals in the tropical Pacific, and among the six 446 

successfully predicted below-normal years, five have distinct El Niño signals. Hence, the high 447 

skills of the SINTEX-F model in predicting the southern African summer precipitation may 448 

be due to the high predictability of ENSO (Luo et al. 2008; Jin et al. 2008) and the robust 449 

ENSO-southern African summer precipitation relationship. However, the model is 450 

over-confident in simulating the relationship. 451 

     Besides ENSO, the Benguela Niño may contribute to better prediction sills, especially 452 

in the 1990s. The basin-wide SST anomalies in the tropical Indian Ocean and the subtropical 453 

dipole modes in the South Atlantic and the southern Indian Ocean may provide additional 454 

sources of predictability, although they are not totally independent of ENSO (Fig. 14; Hermes 455 

and Reason 2005; Yuan et al. 2013; Morioka et al. 2013). Also, we cannot exclude other 456 
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sources of predictability such as the ENSO Modoki in the tropical Pacific; the model 457 

successfully predicts the below-normal precipitation in southern Africa in the austral summer 458 

of 2000/2001 probably due to a successful prediction of La Niña Modoki and its 459 

teleconnection (Ratnam et al. 2013a).  460 

     The present study has provided promising results for seasonal prediction of 461 

precipitation anomalies in the extratropics, where seasonal forecasts are considered difficult. 462 

This encourages us to further downscale the model outputs by using a regional model 463 

(Ratnam et al. 2013b) so that seasonal forecast information may be more readily used. A 464 

real-time dynamical downscaling seasonal forecast for the southern African precipitation is 465 

carried out in our group for the societal applications. 466 
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Figure Captions 660 

Figure 1: Mean precipitation (shading, in mm day-1) and moisture flux at 850 hPa (vector, in 661 

kg m-1 s-1) over southern Africa during DJF in (a) GPCP and NCEP/NCAR reanalysis 1, 662 

(b) GPCC and ERA-Interim, (c) ARC2 and CFSR, and (d) ensemble-mean forecasts 663 

initialized on October 1st for the period of 1982-2008. The white box in (a) denotes the 664 

area used to define the southern African precipitation index in this study. 665 

Figure 2: Time series of the southern African precipitation indices in DJF. Years in the x-axis 666 

represent the three-month-mean period from December of that year till the following 667 

February. Black (blue) solid line represents the index derived from GPCP 668 

(ensemble-mean forecasts initialized on October 1st). Also shown are the 669 

box-and-whisker plots for the nine ensemble members at each year; the red boxes 670 

represent the interquartile ranges of the middle 56% ensemble members (five out of 671 

nine members). Green horizontal bars within the red boxes indicate precipitation 672 

anomalies of the median member, and red cross symbols show the maximum and 673 

minimum precipitation anomalies from the nine members. 674 

Figure 3: Anomaly correlation coefficients (ACCs) of the deterministic forecasts initialized 675 

on October 1st for precipitation anomalies in DJF when verified against (a) GPCP, (b) 676 

GPCC and (c) ARC2 for the period of 1982 to 2008. White dashed contours denote 677 

ACCs of 0.32, significant at 95% confidence level by the one-tailed t-test. 678 

Figure 4: Leave-one-out cross-validated (a) ROC and (b) ROL scores for the probabilistic 679 

forecasts of (blue) above- and (red) below-normal southern African precipitation in 680 

DJF. The probabilistic forecasts are initialized on October 1st and verified against 681 
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GPCP, GPCC and ARC2. The threshold value for above (below)-normal tercile is the 682 

lowest (highest) value in the highest (lowest) 33% of the historical records. The score 683 

of 0.7 is significant at 95% confidence level by the Mann-Whitney U-test. 684 

Figure 5: Spatial distribution of the leave-one-out cross-validated ROC scores for the 685 

probabilistic forecasts of (a-c) above- and (d-f) below-normal precipitation. The 686 

forecasts are initialized on October 1st and verified against (a, d) GPCP, (b, e) GPCC 687 

and (c, f) ARC2. The threshold value for above (below)-normal tercile is the lowest 688 

(highest) value in the highest (lowest) 33% of the historical records. White dashed 689 

contours denote the score of 0.7, which is significant at 95% confidence level by the 690 

Mann-Whitney U-test. 691 

Figure 6: As in Fig. 5, but for the leave-one-out cross-validated ROL scores. 692 

Figure 7: Reliability diagrams and frequency histograms of the probabilistic forecasts 693 

initialized on October 1st for (blue) above- and (red) below-normal precipitation over 694 

southern Africa in DJF when verified against (a) GPCP, (b) GPCC and (c) ARC2. The 695 

solid lines denote the reliability curves, the filled vertical bars the frequencies of 696 

forecast probabilities, and the dotted lines the linear regression of the reliability curves 697 

weighted by the frequencies of forecast probabilities. The threshold value for above 698 

(below)-normal tercile is the lowest (highest) value in the highest (lowest) 33% of the 699 

historical records. 700 

Figure 8: Composites of precipitation anomalies (mm day-1) in DJF for (a-b) above- and (c-d) 701 

below-normal precipitation years that are successfully predicted by the model 702 
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initialized on October 1st. Here, (a, c) GPCP and (b, d) ensemble-mean forecasts are 703 

used. The stippling denotes anomalies significant at 90% confidence level. 704 

Figure 9: Composites of geopotential height (shading, in m) and wind (vector, in m s-1) 705 

anomalies at 850 hPa in DJF for (a, c, e, g) above- and (b, d, f, h) below-normal 706 

precipitation years that are successfully predicted by the model initialized on October 707 

1st. Geopotential height anomalies significant at 90% confidence level are stippled and 708 

only wind anomalies significant at 90% confidence level are shown. Here, (a, b) 709 

NCEP/NCAR, (c, d) ERA-Interim, (e, f) CFSR and (g, h) ensemble-mean forecasts are 710 

used. 711 

Figure 10: Composites of the specific humidity anomalies (kg kg-1) in (a-d) above- and (e-h) 712 

below-normal precipitation years that are successfully predicted by the model 713 

initialized on October 1st. Here, (a, e) NCEP/NCAR, (b, f) ERA-Interim, (c, g) CFSR 714 

and (d, h) ensemble-mean forecasts are used. The stippling denotes anomalies 715 

significant at 90% confidence level. 716 

Figure 11: As in Fig. 10, but for outgoing longwave radiation anomalies (W m-2). 717 

Figure 12: As in Fig. 8, but for SST anomalies (˚C) in (a, c) OISST and (b, d) ensemble-mean 718 

forecasts initialized on October 1st. 719 

Figure 13: As in Fig. 9, but for the composites of (a, c, e, g) four La Niña and (b, d, f, h) four 720 

El Niño during the period of 1982-2008. Here, 1984/1985, 1988/1989, 1999/2000, and 721 

2009/2010 (1982/1983, 1986/1987, 1991/1992 and 1997/1998) are defined as La Niña 722 

(El Niño) years following Ratnam et al. (2013a). 723 

Figure 14: Observed and model correlation coefficients between precipitation anomalies and 724 
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(a, d) Niño-3, (b, e) South Atlantic subtropical dipole and (c, f) Indian Ocean 725 

subtropical dipole indices in DJF for the period of 1982-2008. The precipitation and 726 

SST data used are (a-c) OISST and GPCP and (d-f) ensemble-mean forecasts 727 

initialized on October 1st. 728 

Figure 15: Eleven-year sliding correlation coefficients between (black line) the observed and 729 

predicted southern African summer precipitation indices in DJF, (blue line) the 730 

observed and predicted Benguela Niño indices in DJF, and (red line) the observed 731 

southern African precipitation and Niño-3 indices (multiplied by -1) in DJF. The year 732 

in the x-axis represents the central year of the eleven-year sliding window. The 733 

observed data used are GPCP and OISST and the forecasts are initialized on October 734 

1st. The Benguela Niño index is defined as SST anomalies averaged from 10˚ to 20˚S 735 

and 8˚E to the coast following Florenchie et al. (2003). 736 

Figure 16: ACCs of 3-month-mean precipitation anomalies in southern Africa for (a-d) 737 

October-December, (e-h) November-January, (i-l) December-February, (m-p) 738 

January-March and (q-t) February-April. The forecasts are at (a, e, i, m, q) 1-3, (b, f, j, 739 

n, r) 2-4, (c, g, k, o, s) 3-5 and (d, h, l, p, t) 4-6 months lead and the initialization dates 740 

are shown on the top of each panel. The GPCP is used for verification. White dashed 741 

contours denote ACCs of 0.32, significant at 95% confidence level by the one-tailed 742 

t-test. 743 

  744 
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 745 

 746 

Figure 1: Mean precipitation (shading, in mm day-1) and moisture flux at 850 hPa (vector, in 747 

kg m-1 s-1) over southern Africa during DJF in (a) GPCP and NCEP/NCAR reanalysis 1, (b) 748 

GPCC and ERA-Interim, (c) ARC2 and CFSR, and (d) ensemble-mean forecasts initialized 749 

on October 1st for the period of 1982-2008. The white box in (a) denotes the area used to 750 

define the southern African precipitation index in this study.  751 

  752 
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 753 

Figure 2: Time series of the southern African precipitation indices in DJF. Years in the x-axis 754 

represent the three-month-mean period from December of that year till the following February. 755 

Black (blue) solid line represents the index derived from GPCP (ensemble-mean forecasts 756 

initialized on October 1st). Also shown are the box-and-whisker plots for the nine ensemble 757 

members at each year; the red boxes represent the interquartile ranges of the middle 56% 758 

ensemble members (five out of nine members). Green horizontal bars within the red boxes 759 

indicate precipitation anomalies of the median member, and red cross symbols show the 760 

maximum and minimum precipitation anomalies from the nine members. 761 

762 
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 763 

Figure 3: Anomaly correlation coefficients (ACCs) of the deterministic forecasts 764 

initialized on October 1st for precipitation anomalies in DJF when verified against (a) 765 

GPCP, (b) GPCC and (c) ARC2 for the period of 1982 to 2008. White dashed contours 766 

denote ACCs of 0.32, significant at 95% confidence level by the one-tailed t-test. 767 

 768 

  769 
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      770 

 771 

Figure 4: Leave-one-out cross-validated (a) ROC and (b) ROL scores for the 772 

probabilistic forecasts of (blue) above- and (red) below-normal southern African 773 

precipitation in DJF. The probabilistic forecasts are initialized on October 1st and 774 

verified against GPCP, GPCC and ARC2. The threshold value for above 775 

(below)-normal tercile is the lowest (highest) value in the highest (lowest) 33% values 776 

of the historical records. The score of 0.7 is significant at 95% confidence level by the 777 

Mann-Whitney U-test. 778 
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 780 

 781 

Figure 5: Spatial distribution of the leave-one-out cross-validated ROC scores for the 782 

probabilistic forecasts of (a-c) above- and (d-f) below-normal precipitation. The 783 

forecasts are initialized on October 1st and verified against (a, d) GPCP, (b, e) GPCC 784 

and (c, f) ARC2. The threshold value for above (below)-normal tercile is the lowest 785 

(highest) value in the highest (lowest) 33% values of the historical records. White 786 

dashed contours denote the score of 0.7, which is significant at 95% confidence level by 787 

the Mann-Whitney U-test.  788 
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 790 

Figure 6: As in Fig. 5, but for the leave-one-out cross-validated ROL scores. 791 
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  793 

 794 

 795 

Figure 7: Reliability diagrams and frequency histograms of the probabilistic forecasts 796 

initialized on October 1st for (blue) above- and (red) below-normal precipitation over southern 797 

Africa in DJF when verified against (a) GPCP, (b) GPCC and (c) ARC2. The solid lines 798 

denote the reliability curves, the filled vertical bars the frequencies of forecast probabilities, 799 

and the dotted lines the linear regression of the reliability curves weighted by the frequencies 800 

of forecast probabilities. The threshold value for above (below)-normal tercile is the lowest 801 

(highest) value in the highest (lowest) 33% of the historical records. 802 

  803 
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 805 
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 806 

Figure 8: Composites of precipitation anomalies (mm day-1) in DJF for (a-b) above- and (c-d) 807 

below-normal precipitation years that are successfully predicted by the model initialized on 808 

October 1st. Here, (a, c) GPCP and (b, d) ensemble-mean forecasts are used. The stippling 809 

denotes anomalies significant at 90% confidence level. 810 
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 811 

Figure 9: Composites of geopotential height (shading, in m) and wind (vector, in m s-1) 812 

anomalies at 850 hPa in DJF for (a, c, e, g) above- and (b, d, f, h) below-normal precipitation 813 

years that are successfully predicted by the model initialized on October 1st. Geopotential 814 

height anomalies significant at 90% confidence level are stippled and only wind anomalies 815 

significant at 90% confidence level are shown. Here, (a, b) NCEP/NCAR, (c, d) ERA-Interim, 816 

(e, f) CFSR and (g, h) ensemble-mean forecasts are used. 817 
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 819 

 820 

 821 

Figure 10: Composites of the specific humidity anomalies (kg kg-1) in (a-d) above- and (e-h) 822 

below-normal precipitation years that are successfully predicted by the model initialized on 823 

October 1st. Here, (a, e) NCEP/NCAR, (b, f) ERA-Interim, (c, g) CFSR and (d, h) 824 

ensemble-mean forecasts are used. The stippling denotes anomalies significant at 90% 825 

confidence level. 826 
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 828 

 829 

Figure 11: As in Fig. 10, but for outgoing longwave radiation anomalies (W m-2).  830 
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 831 

 832 

Figure 12: As in Fig. 8, but for SST anomalies (˚C) in (a, c) OISST and (b, d) ensemble-mean 833 

forecasts initialized on October 1st. 834 

  835 
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 836 

Figure 13: As in Fig. 9, but for the composites of (a, c, e, g) four La Niña and (b, d, f, h) four 837 

El Niño during the period of 1982-2008. Here, 1984/1985, 1988/1989, 1999/2000, and 838 

2009/2010 (1982/1983, 1986/1987, 1991/1992 and 1997/1998) are defined as La Niña (El 839 

Niño) years following Ratnam et al. (2013a).  840 

 841 

 842 
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 843 

 844 

Figure 14: Observed and model correlation coefficients between precipitation anomalies and 845 

(a, d) Niño-3, (b, e) South Atlantic subtropical dipole and (c, f) Indian Ocean subtropical 846 

dipole indices in DJF for the period of 1982-2008. The precipitation and SST data used are 847 

(a-c) OISST and GPCP and (d-f) ensemble-mean forecasts initialized on October 1st.  848 
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 850 

Figure 15: Eleven-year sliding correlation coefficients between (black line) the observed and 851 

predicted southern African summer precipitation indices in DJF, (blue line) the observed and 852 

predicted Benguela Niño indices in DJF, and (red line) the observed southern African 853 

precipitation and Niño-3 indices (multiplied by -1) in DJF. The year in the x-axis represents 854 

the central year of the eleven-year sliding window. The observed data used are GPCP and 855 

OISST and the forecasts are initialized on October 1st. The Benguela Niño index is defined as 856 

SST anomalies averaged from 10˚ to 20˚S and 8˚E to the coast following Florenchie et al. 857 

(2003).  858 
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 862 

Figure 16: ACCs of 3-month-mean precipitation anomalies in southern Africa for (a-d) 863 

October-December, (e-h) November-January, (i-l) December-February, (m-p) January-March 864 

and (q-t) February-April. The forecasts are at (a, e, i, m, q) 1-3, (b, f, j, n, r) 2-4, (c, g, k, o, s) 865 

3-5 and (d, h, l, p, t) 4-6 months lead and the initialization dates are shown on the top of each 866 

panel. The GPCP is used for verification. White dashed contours denote ACCs of 0.32, 867 

significant at 95% confidence level by the one-tailed t-test. 868 
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