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Abstract
The objective in this paper is to investigate the use of a non-parametric model

approach to model the relationship between oceanic carbon dioxide (pCO2) and a

range of biogeochemical in situ variables in the Southern Ocean, which influence its

in situ variability. The need for this stems from the need to obtain reliable estimates

of carbon dioxide concentrations in the Southern Ocean which plays an important

role in the global carbon flux cycle. The main challenge involved in this objective

is the spatial sparseness and seasonal bias of the in situ data. Moreover, studies

have also reported that the relationship between pCO2 and its drivers is complex.
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As such, in this paper, we use the nonparametric kernel regression approach since

it is able to accurately represent the complex relationships between the response

and predictor variables using the in situ data obtained from the SANAE49 return

leg journey between Antarctic to Cape Town. To the best of our knowledge, this is

the first time this data set has been subjected to such analysis. The model variants

were developed on a training data subset, and the ‘goodness’ of the models were

assessed on an “unseen” testing subset. Results indicate that the nonparametric

approach consistently captures the relationship more accurately in terms of MSE,

RMSE and MAE, than a standard parametric approach (multiple linear regression).

These results provide a platform for using the developed nonparametric regression

model based on in situ measurements to predict pCO2 for a larger spatial region

in the Southern Ocean based on satellite biogeochemical measurements of predictor

variables, given that satellite measurements do not measure pCO2.

Keywords: Southern Ocean; Carbon Flux; Nonparametric Regression; SANAE;

Carbon Dioxide; Prediction

1 Introduction

Motivated by the need to quantify the changing role of the Southern Ocean in terms

the global carbon budget, in this study we use a nonparametric kernel regression

approach to model the relationship between Southern Ocean in situ partial pressure

of carbon dioxide (pCO2) using other in situ drivers such as sea surface tempera-

ture, mixed layer depth, salinity, chlorophyll concentration and altimetry. Variants

of the model are compared. Given that ocean pCO2 cannot be measured by satel-

lites sensors, this investigation is a step towards developing a model that captures

the in situ relationship between pCO2 and its drivers, as a first step in predicting

pCO2 based on satellite-derived observations of the same proxy variables for a larger

region in the Southern Ocean. CO2 gas in the atmosphere is considered to be one

of the leading causes of global warming as due to the increasing emissions of an-

thropogenic CO2 and associated trapping of outgoing long-wave radiation produced

by the Earth’s surface (Sarmiento & Gruber 2002). However, the build-up of CO2
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in the atmosphere, is less than half the rate at which CO2 is being produced by

humans ( 8.5Gt C y−1) (Le Quéré et al. 2007). The main reason for this are the

oceanic and terrestrial sinks of CO2, which presently take up about 50% of CO2

emissions approximately equally: ocean: 25% (2.2Gt C y−1); terrestrial (2Gt C

y−1) (Sarmiento & Gruber 2002).

The Southern Ocean is both a major sink of anthropogenic CO2 ( 1Gt C y−1

or half the ocean sink) as well as a major influence in the much larger, but until

now, balanced exchange of natural CO2 between the ocean and the atmosphere ().

Modeling data has suggested that the magnitude of this CO2 sink may be changing

as a result of a number of factors, which include increased upwelling of Circumpolar

Deep Water, increased acidification (Revelle Factor) and reduced primary produc-

tivity (Takahashi et al., 2012). Being able to quantify the annual change in this

flux is a potentially critical contribution to the attribution of long term trends in

atmospheric CO2. The scientific challenge of the global ocean CO2 community is

to reduce the uncertainty of observations based annual mean CO2 flux from the

present 40% to close to 10% which is required to resolve interannual changes in

the magnitude of that sink (Monteiro et al., 2010). The relatively sparse density

of observations in the Southern Ocean as well as their strong seasonal bias towards

summer season means that the Southern Ocean is a major contributor to the uncer-

tainty in global mean annual ocean CO2 fluxes (Lenton et al., 2012). Presently, the

only way to address this is through the use of empirical models capable of linking

remote sensing proxy variables to pCO2 (). Recent global efforts in this area have

focused on MLRs and SOMs approaches which have had some success in the data

rich North Atlantic Ocean (). This study investigates a non-parametric approach

to developing a low uncertainty relationship between pCO2 and its main physical

and biogeochemical proxy variables that can also be derived from remote sensing

observations.

This area accounts for ±10% of the entire global ocean, while contributes more

than 20% of the annual uptake of CO2. In addition, the estimated air-sea flux of

CO2 obtained indicated a large CO2 sink occurring in the Southern Ocean between

the latitudes 40oS and 60oS and is considered of high importance due to its ability

to regulate a large portion of the flux of CO2, and hence is considered a major car-
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bon sink. However, relative to the northern hemisphere, empirical understanding in

the Southern Ocean is new, as in situ measurements have been limited, depicted in

Figure 1, and also fairly recent. Another problem is the seasonal bias of the mea-

surements obtained in the Southern Ocean since in situ measurements are generally

restricted in this region to summer months (Schlitzer 2002).

Figure 1: Location of LDEO V2009 master database of sea surface pCO2 observa-
tions
(Takahashi et al. 2009)

The rest of the paper is organized as follows: In Section 2, we discuss in detail

the in situ data used in this investigation; in Section 3 we present the nonparametric

kernel regression approach and compare it with the parametric approach; in Section

4 we present the results and discuss the findings; while Section 5 concludes the

paper.

2 Data

The data used in this analysis was taken from the 2009-2010 journey of the South

African National Antarctic Expedition (SANAE)49 ship traveling on its return leg

from Antarctica to Cape Town. The data collected over this stretch has, to the
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best of our knowledge, never been subjected to statistical techniques and modelling

as is done in this paper. The novelty of this paper also lies in the application of

an understandable nonparametric method applied to this data, moving away from

the black box self organising maps (SOMs) of Telszewski et al. (2009) (Telszewski

et al. 2009). In situ measurements of the properties of the SO, including pCO2,
1

sea surface temperature (SST), mixed layer depth (MLD), salinity, chlorophyll-a

concentration and latitude were collected. The data used in this investigation will

be referred to henceforth as SANAE49-L6. Inconsistencies in some of variables of

interest existed due to possible faulty measurements around the 60oS, 50oS and

40oS latitude lines, which were removed. Further, observations north of 37oS and

south of 70oS were disregarded to eliminate terrestrial effects and to match the

available range of MLD respectively. The final part of the SANAE49-L6 data set

used consisted of 6103 observations in 6 variables, that spanned 13 February 2010 to

21 February 2010, and were within the GPS co-ordinates of (69.5998oS, 5,9036oW)

and (37.0004oS, 12.918oE).

Table 1: Descriptive Statistics for the final SANAE49-L6 data set

Variable Means Standard Deviation Coefficient of Variation

pCO2 360.19 37.72 0.105
Salinity 34.16 0.55 0.016
Chlorophyll Conc. 1.16 1.23 1.066
Intake Temp. 6.29 5.68 0.903
MLD 61.58 24.92 0.405

Figure 2 graphically displays the observed pCO2 plotted against latitude (neg-

ative latitude values indicate degrees of latitude below the equator). This indicates

the large spatial variability of pCO2 between Cape Town and Antarctica. The mod-

els developed in this study attempt to accurately capture this variability by using

other variable measured in situ on the SANAE49 ship.

1All pCO2 values referred to are the partial pressure of CO2 measured in the ocean surface. All
models are fit with the pCO2 values as response. This is done since the atmospheric pCO2 is known
to remain relatively constant over seasons and geographical space when compared to the variability
of surface water (sea water) pCO2 and the flux of pCO2 in the ocean can therefore be identified
as being driven by the sea water pCO2 (Sarmiento & Gruber 2002, Takahashi et al. 2002, Jamet
et al. 2007, Telszewski et al. 2009).
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Table 2: Five Number summary for SANAE49-L6 data set

Variable Minimum Q1 Median Q3 Maximum

pCO2 251.19 351.20 368.62 380.18 435.98
Salinity 33.36 33.82 33.98 34.18 35.69
Chlorophyll Conc. 0.12 0.46 0.62 1.44 5.14
Intake Temp. -0.28 2.65 3.61 8.37 21.30
MLD 13.15 42.08 55.85 82.45 127.93

Figure 2: Line plot of pCO2 versus latitude
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3 Methodology

The relationship between the response variable in this study, namely pCO2, and

the predictor variables is known to be complex. Not only do changes in the fluxes

of pCO2 occur over time with regards to seasonality, but changes can be observed

to occur spatially as well (Sarmiento & Gruber 2002, Tréguer & Jacques 1992).

Parametric models have been proposed, mainly in the north Atlantic region, that

include the spatial position of the measurements and SST in order to define a model

for estimating pCO2 values for a given set of input variables (Rangama 2005). Other

models attempted to include other predictor variables such as MLD in order to

account for vertical mixing in the ocean (Lüger et al. 2004). The issue with each

of these approaches, however, is the fact that they are confined to small regions of

oceanic activity, defined usually, by bio-geochemical provinces.

In this paper, we attempt to move away from parametric modeling to the non-

parametric modeling framework to predict pCO2 in terms of predictor variables in

the SO. Nonparametric modeling allows for flexibility specifically with respect to

accommodating nonlinear relationships that are considered to be complex in na-

ture. An advantage of nonparametric regression over parametric regression is that

no prior form of the regression equation needs to be specified. The data rather de-

termines the relationships in the model. This unspecified regression function allows

the nonparametric estimation methods to identify certain structures in the data

which would not otherwise be identified by traditional parametric methods due to

its strict assumptions (Racine & Li 2004). This makes nonparametric regression

methods well suited to estimate nonlinear functions which may not follow a known

parametric distribution (Fox 2005). A second benefit of the use of nonparametric

estimation methods for the modeling is the range of options available such as local

polynomial regression, regression splines and nearest neighbourhood methods. In

this paper we focus on the kernel regression approach, however, other approaches

such as local polynomial models and splines could also be applied in order to obtain

a nonparametric model for the data (Racine & Li 2004, Li & Racine 2004).

The primary disadvantage of nonparametric models is its curse of dimensional-

ity constraint since local methods, such as kernel regression, require large data sets
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in order to obtain consistently accurate estimates. This is especially true in multi-

variate analyses, where the size of the data required in order to obtain the estimates

of the same accuracy increases exponentially as the number of predictor variables in

the model increases (Fox 2005), and can be attributed to the decreasing number of

observations falling within a fixed local region around each possible input vector. In

our analysis, however, the size of SANAE49-L6 is well suited for the nonparametric

regression application.

3.1 Nonparametric Kernel Regression

In this section we present the details of nonparametric kernel regression modelling.

In general, a regression function describes the average value (or conditional average)

of a real valued response variable y, as a function of one or more predictor variables

x1, x2, ..., xp. This implies that the focus is to determine a function g(x1, x2, ..., xp)

which estimates the conditional mean of the response y, i.e. µy|x1, x2, ..., xp as given

below:

µy|x1, x2, ..., xp = g(x1, x2, ..., xp). (1)

In simple linear regression g(.) is a linear function of the input variables of the form:

ĝ(x1, x2, ..., xp) = α + β1x1 + β2x2 + ...+ βpxp. (2)

In this case, it is usually assumed that the conditional distribution of y given the

input variables is a Gaussian distribution with expectation α+β1x1+β2x2+...+βpxp

and constant variance σ2. These assumptions are restrictive and may be inaccurate

in certain real world application (Fox 2005).

In the nonparametric regression approach, the only assumption made is that

the function describing the relationship between the conditional mean response and

the input variables is a smooth function and that it exists. However, as mentioned

earlier, relaxing the stringent assumption of linearity comes at a price, in the form

longer computational time as well as a loss in the simplicity of results. The advan-

tages, however, are potentially more accurate models for estimating the response.

Critics of the method point to the lack of a pre-defined regression function as a
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disadvantage, which in the light of adequate data allows the data to define its own

model, which summarises the information in the data effectively (Fox 2005).

An intuitive description of nonparametric kernel regression is that it defines a

function g(x1, x2, ..., xp) as an empirically weighted average of responses correspond-

ing to observed sets of predictor variables within a close neighborhood of a target

input vector. This neighborhood is defined by the window widths, also known as

the bandwidths, h = (h1, h2, ..., hp). These bandwidths can also be considered to be

smoothing parameters since larger values of individual result in a smoother function

g(x1, x2, ..., xp), which can increase the bias resulting in an underfit model with a

high test error rate. Similarly smaller values of the bandwidth values of hi can result

in a more variable function which may have a smaller bias resulting in an overfit

model that may not be able to generalise well to unseen data sets.

We consider the nonparametric model for the univariate response variable Y

and the p-dimensional input vector X = (X1, X2, ..., Xp) as follows:

Yi = g(Xi) + εi, i = 1, 2, ..., n (3)

where the error term εi is assumed to have a Gaussian distribution with mean 0

and constant variance σ2 as is the case in regular linear regression. No explicit form

of g(.) is defined. We require estimates of the joint density function f(x) of the

input variables as well as the joint density function of the response y and the input

vectors, i.e. m(y,x). These we obtain using product kernel estimates of the density

functions (Racine & Li 2004). The estimated joint density of the input variables is

given by the average of the n kernel functions for each of the observed X vectors as

follows:

f̂(x) =
1

n

n∑
i=1

Kh,i(x), (4)

where the function Kh,i is the product of p univariate kernel functions given by:

Kh,i(x) =
1

h1h2...hp

p∏
j=1

k

(
Xij − xj

hj

)
, (5)

where the function k(.) is a univariate, symmetric kernel which is a decreasing
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function of the distance from the target input value.

The estimated joint density function of y and the input variables is similar to

this and is given by:

m̂(y,x) =
1

n

n∑
i=1

1

hy
k

(
Yi − y
hy

)
Kh,i(x). (6)

The estimate of the function g(x) = E[Yi|Xi = x] is then:

ĝ(x) =

∫
y m̂(y,x)dx

f̂(x)
. (7)

By estimating the above integral using observed information and calculating the

empirical average of the Yi multiplied by the estimated density m̂(y,x) and noting

that
∫
k(v)dv = 1 and

∫
vk(v)dv = 0 the estimated function ĝ(x) can be written as:

ĝ(x) =

∑n
i=1 YiKh,i(x)∑n
i=1Kh,i(x)

. (8)

Equation 8 is a weighted average of the responses corresponding to the input vectors

surrounding the target input vector x. The weights are defined by the product kernel

Kh,i(x) and are therefore symmetric and decreasing with respect to the distance

between the target input vector and the observed Xi (Racine & Li 2004).

To define the choice of kernel function and the bandwidths for the respective

variables, it must be noted that as long as the kernel function attributes higher

weights to those observations closer to the target vector x, and that the weights

decrease symmetrically as the distance between the target and the weighted value

increases, the specific choice of kernel function in the model is not critical. The choice

of optimal bandwidths, however, is important. This is done using the R package np,

and in particular the function npregbw which uses leave-one-out cross-validation to

determine the optimal bandwidths. The function npreg is used to obtain the fitted

regression function (Racine & Li 2004, R Development Core Team 2011). We first

define the leave-one-out kernel estimator of the joint density function of the input
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vectors as:

f̂−i(Xi) =
1

n

∑
j 6=i

Kh,j(Xi). (9)

f̂−i defines the estimated joint density function of the input variables for the training

data set omitting observation i. This is done for each of i = 1, 2, ..., n where n is

the number of observations in the training data set. Using this, we can obtain an

estimate of the response for the ith input vector using the nonparametric kernel

regression estimate based on the data set which omits the ith observation. This

estimate is denoted ĝ−i(Xi) and given by the formula:

ĝ−i(Xi) =
1
n

∑
j 6=i YjKh,j(Xi)

f̂−i(Xi)
. (10)

The leave-one-out cross-validation technique for choosing the optimal values of the

bandwidths is chosen to solve the following minimization problem with regards to

the mean square error:

min
h1,h2,...,hp

(
1

n

n∑
i=1

(Yi − ĝ−i(Xi))
2

)
. (11)

The npregbw function performs an iterative procedure of minimizing this function of

the bandwidth values in order to determine the combination of values which provide

us with the minimum cross-validation mean square error. This is a computation-

ally intensive process, especially with large data sets since the model has to be fit

and assessed for each observation in the data set that is being omitted. This, as

mentioned before, is the cost of the nonparametric modelling, which however will

be shown to be outweighed by the improvement in the model’s predictive ability.

(Racine & Li 2004, Li & Racine 2004, R Development Core Team 2011).

3.2 Details of the nonparametric models compared

This section provides some insight into the models used in this analysis, as well as

variations in each of the models, in order to determine the best set of input variables

to describe the response of interest. In order to test the generalising ability of the
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developed model, the SANAE49-L6 data set is divided randomly into 2 subsets.

The first subset is used as a training data set to estimate the regression function (in

nonparametric kernel regression framework) or to estimate the regression parameters

(in the MLR framework). The second subset is used to assess the ability of the

models to predict the responses in this “unseen” part of the data.

Recall that the nonparametric models apply a local constant regression fit with

fixed bandwidths which are estimated using leave-one-out cross-validation as dis-

cussed. The number of predictor variables used in the models vary and the reasons

for their respective uses are discussed later. The kernel function applied is the

Epanechnikov kernel which has the functional form:

k(u) =
3

4
(1− u2)I(|u| ≤ 1) ; I(|u| ≤ 1) =

1, if |u| ≤ 1

0, otherwise
(12)

A global multiple linear regression (MLR) model is also fit and assessed in order

to compare results with the nonparametric regression approach. This provides a

point of reference for the performance of the model in terms of predicting “unseen”

data. The MLR models consist of the same response and predictor variables as

the nonparametric models and include only the main effects of the variables as was

performed in papers by Lefévre et al. (2005) and Jamet et al. (2007).

In total 4 variations of nonparametric and MLR models are fit on the training

subset and are assessed on the test data. These models differ in the independent

variables used and the ration of the data splits, as described in Table 3.

Model M1 includes all the drivers in SANAE49-L6. The salinity of the ocean

was identified by domain specialists as not being (as of yet) globally and reliably

available via satellite, even though it has been identified as an important determinant

in sea water carbon levels (Goyet & Davis 1997, McNeil et al. 2007, Takahashi

et al. 1981). Model M1 is also applied with varying divisions of the training and test

subsets in order to determine the effect of the amount of data in the training subset

on the performance of the nonparametric model. These models are referred to as

model M1.1–M1.4 and represent percentage divisions of 70-30, 60-40, 50-50 and 40-

60 respectively where the first figure describes the percentage of the data allocated
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Table 3: Model description and division of data sets

Model Variables Training
Included Test Split

M1.1 Salinity, Ch.conc, Intake Temp, 70-30
MLD

M1.2 Salinity, Ch.conc, Intake Temp, 60-40
MLD

M1.3 Salinity, Ch.conc, Intake Temp, 50-50
MLD

M1.4 Salinity, Ch.conc, Intake Temp, 40-60
MLD

M2 Salinity, Ch.conc, Intake Temp, 70-30
MLD, Latitude

M3 Ch.conc, Intake Temp, MLD, 70-30
Latitude

M4 Ch.conc, Intake Temp, MLD 70-30

to the training subset and the latter, the percentage in the test subset. Model M2

includes the latitude co-ordinate of the measurements as a predictor variable in an

attempt to provide further information to the model of the positional correlation

of the measurements. Models M3 and M4 omit salinity from the models, since

models including salinity will not be useful when applied to satellite data as reliable

estimates of salinity are not yet globally available. Model M4 excludes latitude as

an independent variable in the model in order to avoid the curse of dimensionality

and since it may cause the model to act as an interpolation method on the ships

course rather than describing the true relationship between the pCO2 and other

independent variables.

4 Results

The in situ underway pCO2 observation data set used in this study shows a large

scale spatial variability between Cape Town and Antarctica that is typical of summer
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(Fig 2). Its main features are:

1. The relatively low pCO2 of the Sub-Antarctic Zone (40 - 45oS) sustained by

elevated primary productivity.

2. The strong outgassing of CO2 (pCO2 >385) between the Polar Front and the

southern Boundary of the Antarctic Circumpolar Current (50 - 58oS) sustained

by upwelling of upper Circumpolar Deep Water (uCDW).

3. The strong undersaturation (ingassing) in the eastern Weddell Gyre sustained

by summer primary productivity stimulated by stratification sustained by

melting of sea-ice.

4. Upwelling of lower Circumpolar Deep Water (lCDW) in the southern half of

the eastern Weddell Gyre.

Collectively these regimes define not just sharp transitions but also strong non-

linear characteristics of variability that pose rigorous tests for linear and non-linear

empirical models.

The nonparametric models were fit to a randomised training subset to obtain

the optimal bandwidths for the nonparametric models as defined in Table 3. Table

4 presents the results obtained from fitting the models and predicting the responses

in the test subset.

These optimal bandwidth values are determined using cross validation as de-

scribed earlier, and they allow the model to determine the “local neighbourhood”

for each input variable over which the weighted average of the responses is taken in

order to provide a predicted response. Larger bandwidth values imply a larger neigh-

bourhood necessary for that variable for the local averaging method to accurately

estimate the response.

Table 5 indicates the model results of the multiple linear regression (MLR)

model fit. The table provides the regression parameter estimates (least squares

estimates) with their respective p-values for the null hypothesis that the parameter

values is equal to 0 versus the alternative that it is significantly different from 0.
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Table 4: Cross-validated bandwidths for nonparametric kernel regression models

Model Bandwidths

Salinity Chlorophyll-a SST MLD Latitude

M1.1 0.0366 0.5559 0.6084 2.4668

M1.2 0.1175 0.0921 0.1882 7.7211

M1.3 0.1017 0.4293 0.1737 2.9488

M1.4 0.1017 0.4311 0.1682 2.9488

M2 0.0697 0.4293 0.1737 5.2792 0.3626

M3 0.9955 0.2501 3.3325 0.0329

M4 0.1368 0.2079 2.1233

The models in Table 5 are all fitted with an intercept term. Positive parameter

values indicate variables that have a positive (direct) relationship to the response

variable, while negative parameter values indicate an inverse relationship. A sig-

nificance level of 0.05 (5%) is used to determine whether variables are considered

significant or not.

The models in Table 5 were used to predict the responses for the input variables

in the “unseen” test data sub-sets. This gives an indication of how well the models

are able to predict new data. Figures 3 to 9 plot the observed response values (blue

dots) along with the predicted responses from the parametric (red) and nonpara-

metric models (purple), versus latitude, for each of the models in Table 3 on the

left-hand-side. On the right-hand-side, the deviations of the model predictions from

the observed values are plotted for the parametric (red) and nonparametric (purple)

models.
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Figure 3: Predicted responses and deviations from true response of the test data set
for parametric and nonparametric M1.1

Figure 4: Predicted responses and deviations from true response of the test data set
for parametric and nonparametric M1.2
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Figure 5: Predicted responses and deviations from true response of the test data set
for parametric and nonparametric M1.3

Figure 6: Predicted responses and deviations from true response of the test data set
for parametric and nonparametric M1.4
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Figure 7: Predicted responses and deviations from true response of the test data set
for parametric and nonparametric M2

Figure 8: Predicted responses and deviations from true response of the test data set
for parametric and nonparametric M3
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Figure 9: Predicted responses and deviations from true response of the test data set
for parametric and nonparametric M4.

While Figures 3 to 9 provide a graphical comparison of the prediction ability

of the respective models, the quantifiable comparison of the prediction ability of

the two models is provided in Table 6 which compare the maximum underestima-

tion, maximum overestimation, mean square error (MSE), root mean square error

(RMSE) and the mean absolute error (MAE) for each of the models described in

Table 3. 2

2In table 6, MLR refers to the Multiple Linear Regression models, while NP refers to the
Nonparametric Kernel Regression models.
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4.1 Discussion

We now discuss the implications of the results and compare the parametric and non-

parametric models. The optimised bandwidth values for the nonparametric kernel

regression models shown in Table 4 are not directly comparable with one another

since they are not independent of the units of measurement for the variables. What

can be said about these values, however, is that in order to obtain useable, opti-

mal bandwidths, it is necessary that the training data sets obtain sufficient data to

overcome the curse of dimensionality.

The parameter estimates in Table 5 for the multiple linear regression models

describe the proposed relationships between the independent variables and the re-

sponse. The negative parameter estimates for SST and Chlorophyll-a concentration

indicate a negative relationship between these predictor variables and the response

while the remaining variables, salinity, MLD and latitude, indicate a positive rela-

tionship with the response.

Figures 3 to 9 show an improved accuracy in the prediction of pCO2 in an “un-

seen” test data set by the nonparametric kernel regression model over the parametric

MLR model in all areas of the ocean in terms of latitude. The MLR predictions

deviate from the observed values of pCO2 in the latitude areas slightly north of 65oS,

between 60oS and 55oS and as well as slightly south of 40oS in each of the models.

These anomalies highlight the limitations of the MLR and are critical sources of

error because they exclude the main seasonal sources and sinks from this type of

empirical treatment. The nonparametric predictions, however, do not present this

deviation from the observed values, which indicates that these model are more likely

to generalise well. The deviation plots in these figures indicate that the deviations

in each of the MLR models M1.1 to M4 seem to be larger than the corresponding

nonparametric models confirming that the predicted values using the MLR models

tend to be further away from the observed values than the predictions from the

nonparametric models.

Moreover, from Figures 5 and 6 it can be seen that as the amount of data in the

training data set decreases, it creates a situation where there is less data which fall

into the neighbourhoods of the input variables in the test data set. The consequences
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of this are “bad” or unreliable estimates as can be seen near 55oS (figures 5 and 6),

51oS and 47oS (figure 6 only). These predictions indicate a deteriorating prediction

ability of the models as the size of the training data sets decrease allowing for larger

areas in input space where no training data points are observed.

Table 6 indicates a much smaller bandwidth for the difference between the

maximum under and over estimations for those nonparametric models which do not

produce unreliable estimates discussed above. Ignoring models M1.3 and M1.4, the

maximum range of errors for the nonparametric regression models was 92.190 micro-

atmospheres, while the maximum range of errors for the MLR models was 162.547

micro-atmospheres. This represents a decrease in the range of the errors of more than

40%. The MSE and RMSE values in Table 6 are all smaller for the nonparametric

models than for MLR models. The MSE and MAE values for the nonparametric

models indicate a decrease of between 50%–98% and 60%–87% respectively from

the MSE and MAE values for the MLR models. This further indicates that the

nonparametric models are able to generalise to “unseen” data more effectively than

the MLR models. The correlation coefficients (R2) of the nonparametric models

based on the training data set (not provided here) all were above 96% and were

observed to be higher than the R2 for the MLR models which were around 75%.

This further supports the better fit of the nonparametric models than the MLR

(parametric) models although the R2 values alone may indicate an overfit model

which would not generalise well to the “unseen” data.

The MLR approach taken can be compared to the application of MLR models

in the North Atlantic performed by Jamet et al. (2007). The models developed in

the North Atlantic were based on pCO2 observations from the northern summer over

the years 1994–1995. Three models were identified and used for predictions, the first

of which used only SST as an independent variable. The second model includes the

spatial co-ordinates of the measurements as independent variables while the final

model replaces the co-ordinates with chlorophyll-a concentration and MLD. The

respective mean square error rates for these models were 203.633µatm, 178.49µatm

and 130.874µatm respectively. The MSE’s obtained from the MLR models in the

SO are much larger, indicating that the MLR is not able to capture the variability

of the pCO2 in the SO to the same extent as in the North Atlantic.
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The NPKR approach in this paper can be compared to the SOM neural networks

used by Telszewski et al. (2009) to predict pCO2 along the lines of the volunteer

observing ship (VOS) lines as well as where there are gaps in the remote sensing

data. The SOM’s were developed using the same independent variables as models

M1.1–M1.4. The RMSE’s obtained for the years 2004, 2005 and 2006 were 8.1µatm,

12.6µatm and 12.5µatm respectively for the models predicting remotely sensed data

along the same lines as the VOS. The RMSE’s obtained from the NPKR approach

are very close to these values, however these errors are based on in situ test data. The

maximum RMSE obtained from the NPKR models is 12.89µatm. The advantage

of the NPKR models is the simplicity of its application. The SOM approach is a

black box method which is complex and difficult to explain in a simple manner. The

NPKR method, on the other hand, has a simple and logical methodology and can

therefore be understood by those wanting to implement it in any domain.

5 Conclusion

In this paper, the aim was to investigate the relationship between in situ pCO2 and

corresponding biogeochemical predictor variables such as sea surface temperature,

mixed layer depth, salinity, chlorophyll concentration and latitude from the South-

ern Ocean. Since such relationships have been reported to be complex, we used

the nonparametric kernel regression approach, and compared the results to a para-

metric approach. The goodness of the model variants was tested by dividing the

dataset randomly into a training subset and a testing subset, with the model being

developed on training subset, and tested on the remaining subset. Results indicate

that for the dataset used, the nonparametric kernel regression method for predicting

in situ pCO2 using in situ predictor variables provides consistently more accurate

results than the parametric multiple linear regression counterparts. These results

were expected due to initial exploratory data analysis which indicated that the dis-

tribution of pCO2 was typically non-Gaussian for the dataset used, and therefore

the assumptions of normality of errors would not hold.

Further research would involve taking the developed model to predict oceanic
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pCO2 for a larger spatial region in the Southern ocean based on satellite mea-

surements of biogeochemical predictor variables. Note, satellite measurements do

not measure pCO2, and hence, predicting pCO2 from satellite predictor variables

based on a model developed based on complete in situ data, will provide a mea-

sure of oceanic pCO2. The challenge however, is to measure the accuracy of such

predictions, one being to compare the model based predicted pCO2 using satellite

predictors for the same region and time as the available in situ measurements. The

major challenge in this approach is to resolve the scale issues, both temporal and

spatial, when comparing satellite based predictions and in situ based predictions for

pCO2.
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