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Abstract - Technology Intelligence (TI) involves the prosedf capturing technology related data, converting
this data into information by determining relatibnannections and refining information to produceWwledge
that can guide strategic decision makers. Techydlugjcators are those sources of technology reldsga that
allow for the direct characterisation and evaluatid technologies over their whole life cycle. Fatworiented
Technology Analysis (FTA), which is a forward-looki approach in scrutinizing the information thas heen
distilled from a set of technology indicators, qawtentially provide decision makers with useful Airology
Forecasting (TF) knowledge. The paper postulates Tk can be viewed as an instance of Data Fusiéi), (
which is a formal framework that defines tool, adlwas the application of these tools, for the igatfon of data
originating from different sources. Within the fiebbf DF relational connections define context. @anht
sensitive DF techniques refine the generated krdyelebased on the characteristics of exogenous >tonte
related variables. Structural Equation Modellingek®, which is a statistical technique capable ddlesting
complex hierarchical dependencies between lateshibheerved problem and context variables, has seewn

to be effective in implementing context sensitive. In the paper a generic framework is introdua@dSEM
based DF of technology indicators in order to poedliF output metrics. The paper also provides ¢isearch
methodology that will be used in a future studgwaluate the validity of the generic framework toe case of
National Research and Education Networks (NRENS).

Keywords - Technology Intelligence, Technology Indicators, Aiealogy Forecasting, Data Fusion, Structural
Equation Modelling

I. Introduction and Resear ch Method

Technological advancement continues at an astogrrdie, surprisingly following exponential growttodels
such as Moore’s [1], Nielsen’s Law [2] and Metcalfeaw [3]. Driven not only by the invention, invation
and diffusion of new technologies, but also by theve to the inclusive mindsets of globalisation apen
innovation [4], this has created highly competitglebal markets for technology based products andices
[5]. Hence, the survival, growth and profitabilio§ firms that play in these markets depend highlytioeir
ability to monitor current, as well as predict ftedutechnological changes in order to create a satid
sustainable technological base that can withstandadapt to rapidly changing market requirements [5
Moreover, firms need to effectively and efficienthanage technological changes both internally aefeally
if they are to create sustainable competitive athges in rapidly high-tech markets [6]. Technoldgglligence
(T1), which is a core process within the disciplofetechnology management, involves the processpfturing
technology related data, converting this data iimformation by determining relational connectiomsl aefining
information to produce knowledge that can guidatetic decision makers during strategic plannin§/[6
Technology indicators, such as technology mataritgt degree of innovation, are those measureabteesoof
technology related data that allow for the dirdwracterisation and evaluation of technologies tiveir whole
life cycle [7]. Scrutinizing the information thatab been distilled from a set of technology indicaton a
forward-looking approach, commonly referred to atufFe-oriented Technology Analysis (FTA), can ptdly
provide decision makers with Technology Forecasfirfe) knowledge, amongst others [8].

Buchroithner [9] and Wald [10] define Data Fusi®@Fj, which was developed in the military domain foe
generation of quality tactical knowledge througle tmulti-layered processing of sensor data [11];.asa
formal framework in which are expressed means apt$ tfor the alliance of data originating from difént
sources. It aims at obtaining information of greapeality; the exact definition of ‘greater qualityill depend
upon the application.” Within the discipline of Dégntext can be viewed as synonymous with a stmatihich
in turn is defined as a set of relational connedif.e. an instantiated relation) [12]. Context ba used in each
level of the DF process in order to refine datgratient and association, as well as during situatiate
estimation [12]. Recently, context sensitive DFhteques have been explored which effectively refine
generated knowledge at each level of processingdbas the characteristics of exogenous contextetla
variables [12].



Regression analysis constitutes a family of sia#ikttechniques geared at modelling and analyshmy t
relationship between dependent and independenablesi from empirical data [13]. Moreover, regressio
analysis attempts to explain the variations in patalent variables as functions (commonly referred t
regression functions) of variations in dependeriatdes [13]. With this knowledge it is then possilio
perform prediction and forecasting of the valuest thependent variable will assume for specific petelent
variable values [13]. Classic regression technigesash as multiple regression, discriminant ang)ykigistic
regression and analysis of variance) can be dedsis first generation techniques, since theseniques
explicitly assume independence between multipledédpent variables [13]. This, unfortunately, linthig ability
of such technigues to comprehensively model complxrelationships, such as the interplay betwmenor
more output variables in a TF model. More spedificalassic first generation regression technigaes not
able to model the potential mediating or moderaséffgct that output variables could have on ondtearoTo
overcome this limitation, Jéreskog [14] proposeglac@nce based Structural Equation Modelling (SEd)a
second generation technique, which allows for tineulaneous modelling of relationships among mistip
dependent and independent constructs. A furthesramt limitation of first generation regressionhigiques is
their explicit assumption that all dependent andependent variables are directly observable [13lis T
assumption implies that all variables’ values candirectly obtained from real-world sampling expeits
[13]. As such, any variables that cannot be diyemliserved need to be considered unobservable aredth be
excluded from first generation regression model3].[However, such unobservable variables, commonly
referred to as latent constructs, are supporte®&BW. Steinberg postulated that SEM is ideally slite
implement context sensitive DF [12][15]. Not onlges SEM support the complex structural models ursed
situation state estimation (as is required in TiEplso allows for non-linear and non-Gaussian dectand
cyclical dependencies amongst model variablescdrabe either latent or directly observable [12].

According to Sohn and Moon [16] most TF technigua®ly take into account the structural relatiopshi
amongst technology indicators and TF output met8&M, however, provides an advantage over theseet

TF techniques by allowing for the modelling of cdep hierarchical relationships between technology
indicators and TF outputs metrics. Sohn and Modj flave shown that SEM, which can be viewed as a
generalization of factor and path analysis methedsh as Bayesian Networks [12], can successfully
implementing TF of the Technology Commercializat®access Index (TCSI) TF output metric. This paper
builds on the work of Steinberg [12][15], as wedl®ohn and Moon [16], by postulating a generic é&awrk for

the SEM based DF of technology indicators in otdgsroduce TF output metrics.

The paper is structured as follows: Firstly, corsition is given to the basics of SEM and how SEM be
used to perform context sensitive DF. This is fekd by an overview of technology indicators anedaisting
output metrics, as well as their use in the gerfesimework for SEM based DF for TF that is proposethe
paper. Next, the generic framework contributedHsy paper is described. Lastly the paper preseatsetearch
methodology that will be used in the future evahratof the framework for TF for National Researaida
Education Networks (NRENS). This includes a dismussn the approach that will be used to test ity
and reliability of the generic framework. Note thhe research method at this stage is literatusedand
exploratory in nature using inductive reasoningesrghappropriate.

I1. SEM for Context Sensitive DF

Within SEM theory distinction is made between exages and endogenous latent constructs, with theeior
being variables that are not explained by the iratemterrelationships embodied by the model aratetfore

always act as independent variables [13]. Duest@énerality, SEM terminology does not refer toresgion

analysis’ dependent and independent variablestatuér only to exogenous constructs, which aregaddent
variables that are not functions of any relatiopshi the model, as well as endogenous construdtshware

either dependent or independent variables thaegpiained by the relationships with other dependerd/or

independent variables present in the model.

With reference to the indicators measured as psaxigepresent latent constructs, such latent martstcan be
further classified as follows [13]: A latent constt with reflective indicators is one in which afleasured
indicator proxies, also commonly referred to addi; are expected to have high correlations toldkent

construct, as well as other potential reflectivdicators, Therefore it will have the ability to repent the
variance in the unobserved variable sufficientlycbntrast, latent constructs with formative intlica are those
that are represented by a weighted combinatiomditators that are not highly correlated to eittiner latent
construct itself, or the other formative indicatorsluded in the weighted combination. The formaiivdicators



of a latent construct can therefore be seen assepting different dimensions of this construcg. Ai shows a
generic SEM path diagram, depicting all possiblefigarrations of exogenous and endogenous constrilnes
path coefficients of interconnections between thoesestructs, reflective and formative indicatosyeell as the
loadings of these indicators on constructs [17].
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Figure 1: Generic SEM Path Diagram [17]
With reference to Fig. 1, the following popular syshconventions apply in SEM [17]:

e &= Then™ exogenous construct.

«  m=Then" endogenous construct.

« X = Thei"™ measurement indicator for tn& exogenous latent construgt

* 0, = The measurement error term associated Mitfhis term comprises of a random error part, dk we
as a systematic error part resulting from variaattabutable to the measurement method itself, as
opposed to the construct being measured.

e Y= Thej™ measurement indicator for thé' endogenous latent constrigt

* g = The measurement error term associated Witlalso consisting of random and systematic error
parts.

* Jw = The loading of a directional relation betweee i exogenous latent construgt and itsi®"
reflective indicatoiX;.

* Ap = The loading of a directional relation betweer " endogenous latent construgt and itsj™
reflective indicatory;.

« y.=The path coefficient of a directional relaticetwieen then" endogenous latent constrygtand the
n™ exogenous latent construt

« s = Thepath coefficient of a directional relation from ttfeto thep™ endogenous latent construais,
andsp.

e (= Tpherth disturbance term (or error term) in teendogenous construgt (not depicted in Fig. 1 due
to space constraints). Hence, this term modeldabiethat the endogenous latent constructs are not
perfectly explained by the independent variables.

* ma = The loading of a directional relation betweee i exogenous latent construgt and itsi®"
formative indicatorX;.

* 7y = The loading of a directional relation betweer " endogenous latent construgt and itsj"
formative indicatory;.



Using these symbol conventions it is now possibleciteate five sets of structural equations whiclty fu
represent the interrelationships embodied by a S&ddel. Using matrix notation, the first set of eijprs
relates exogenous latent constructs to their indlisaand associated measurement errors [17]:

X=AE+d, 1)

where the elements of matricés A,, & andd areX;, A, & andd;, respectively, for all applicable valuesipa
and n [13].The second set of equations express endogelaent constructs as functions of their refleztiv
indicators and associated measurement errors [17]:

Y=An+e, 2)

where the elements of matricés A, n ande areY], A, #m andg;, respectively, for all applicable valuesjob
andm. The third set of equations considers the relaligps between exogenous latent constructs and fieama
indicators, as well as measurement errors [17]:

E=TI,X+3, (3)

where the elements of matricgdl,, X andd are&,, mx, X andd;, respectively, for all applicable valuesmfa
andi. The fourth set of equations considers the relatigps between endogenous latent constructs améfive
indicators, as well as measurement errors [17]:

n=I1Y +¢, (4)

where the elements of matriagslly,, Y ande arenm, ., Y; andg;, respectively, for all applicable valuesmfb
andj. The last set of equations deals with the relatigrs between endogenous latent constructs aneesog
latent constructs, as well as the associated measumt errors [17]:

n=Bn+TE+L, )

where the elements of matricggn is present on both sides of the equation sincegertbus constructs can be
dependent on one anotheB),T’, & and{ arenm, B, ye & @and{; respectively, for all applicable valuesrofd, c,
n andr [17].

Although Joéreskog in 1973 [14] originally propostbét the parameters of a SEM model be estimatetyusi
covariance based techniques, of which the LISREig@m that was developed by Jéreskog in 1975 isadty

the most popular, variance based techniques, alsmnonly referred to as component based techniduaas

also gained popularity [13]. Partial Least SquéRisS), which was first introduced by Wold [18] asrNlinear
Iterative Partial Least Squares (NIPALS), is onehsuariance based technique [13]. While covaridrased
techniques attempt to minimise the difference betwthe sample covariance values and those predigtéue
regression model, which is equivalent to estimatimgmodel parameters such that the covariancexuditthe
observed measurements is reproduced, PLS regresdi@mh is also sometimes referred to Projectianisatent
Structures, focuses on maximising the variancehef dependent variables explained by the independent
variables [13].

Recall that DF is essentially a framework for theltirayered refinement of estimates of problemiafles
from multiple measurements, either directly or indfly observable [12]. By noting that SEM is cdpadf the
simultaneous modelling of relationships among mlétidependent and independent constructs, Steijb2fg
postulated that SEM is one potential statistical that lends itself naturally to implement DF. Mover, based
on the following argumentation Steinberg [12] shdwleat SEM allows for the inclusion of context Stvisy
during the solving of DF inferencing problems: BirsSteinberg [12] defined a situation, or a caht@s a set
of relationships, where a relationship can be vibag a specific instantiated relation. In geneoatext is used
in DF inferencing problems in order to refine amiuigs estimates, explain available data and constrai
processing during data acquisition, cueing or fu$i®?]. Next, Steinberg harmonized DF and SEM taoitugy
by noting that DF problem variables are in fact SeiMiogenous constructs, context variables candveed as
SEM exogenous constructs and classic DF sensorunegasnts are the reflective and formative indicator
present in SEM.



[11. Technology Indicators and Forecasting Output Metrics

According to Porter and Cunningham [19] technolaggicators employ empirical information to estimate
technology characteristics that affect technoldghctvance and successful commercialization. WattsRorter
[20] state that technology indicators are empiritedasures stemming from general models of techivalbg
innovation and progression, such as the S-curvdaeidyand Plamgren [4] expands on these definitlpns
describing technological indicators as those irglmestatistical data that allow for the directretwgerisation of
characteristics of technology throughout their lifecles in order to allow decision makers to takatsgic
actions. Such indicators can in general be dividénl three major categories based on their interidedtion:
input indicators, byput indicators and output irdors [4][21]. Grupp [21] states that input indmat are
variables related to drivers of technological pesg; byput indicators are variables that are mklatesub-
phenomena of the technological progress and ouimlitators are variables related to the qualitative
quantitative or valueated progress in process or product developménf[dide variety of sources exist that
can be used to harvest technology indicators, nanffiom patent databases and scientific publicatid®],
through to the rumour mill and financial marketigators [4]. In monitoring and mining these potahsources
of technical indicators, Bibliometrics have emergsdne of the most popular set of quantitativertepies [4].
Bibliometrics uses counts of citations, publicatian patents to produce indicators of technologicagiress in a
specific domain [4].

Various frameworks have been proposed for the isyie categorisation of technology indicators. # [
Nyberg and Palmgren presents a succinct summahedfameworks proposed by Watts and Porter [20)p®
[21] and Chang [22], which is repeated here: Thegt8Vand Porter [20] framework consists of theofelhg
three categories:

» Technology Life Cycle Satus Indicators: Based primarily on the S-curve, these metricerdeine the
level of progress of a technological developmennglits life cycle, as well as the growth rate hof t
technology [4].

» Innovation Context Receptivity Indicators. These indicators gauge the sufficiency of suppgrt
technology, as well as the development of standandsregulations surrounding the technology under
investigation [4].

* Market Prospect Indicators: The potential commercial payoffs of the technglage considered by this
type of indicator. Of specific importance with teedndicators are factors such as technology
application areas, intellectual property and mackehpetitiveness [4].

Although Grupp was the instigator of the generaicfion based classification of technology indicatorto
input, byput and output indicators [21], he oridinaeferred to these three types of indicatorsebasn the stage
in the technology’s life cycle at which the measueat was performed:

* Resource Indicators: This input indicator type measures the varioussfisde expenditures on research,
development and innovation [4].

»  Research and Development (R&D) Results Indicators: This is the output indicator type which measures
qualitative, quantitative or value rated advanogsroduction processes or products [4].

» Progress Indicators: Indicators of this type, for example the technbioéandicator [21] that measures
the number of features or product specifications bgput metrics that measures sub-phenomena of the
technological progress [4].

The Technology Indicator Ontology (TIO) proposed ®hang [22] divides technology indicators into the
following two broad groupings, each with a numbiesub-groups:

e Technology Development Indicators: This broad grouping includes measures that tralck
development, change, progress and trend of a teghnfsom a technological perspective [4].

» Market Development Indicators: This broad grouping includes all indicators rethto the market
development and potential application areas of téehnology, including sales, investment and
industrial applications [4].

The proposed generic framework for SEM based DH fgras detailed in Section 1V, allows for the o$any
of the above stated types of technology indica@msslatent or formative indicators for endogenoud an
exogenous constructs in the model. More specificaibut technology indicators will be used withogenous
constructs. Conversely, bypass and output indisatell be used for endogenous constructs. The Tipudu



metrics, which will eventually be used by decisioakers to drive strategic action, will consist gpass and
output metrics related to endogenous constructhéenSEM model. External environment related indicat
contributing to exogenous constructs that realigetext sensitivity in the DF process, could alsolude
technology indicators. For example, Sohn and Mab®| used the Technology Commercialization Success
Index (TCSI) metric, which is an example of a manspect indicator in the framework proposed bgttd/
and Porter [20], as the primary TF output metrictfeeir SEM model.

IV. Generic Framework for SEM Based DF for TF

Sohn and Moon showed [16] that SEM can be usechaffective regression technique to evaluate aimult
layered hierarchal model through progressive agdiauys and refinements of input technology indicaata in
order to produce a reliable statistical estimat¢hef TCSI TF output metric. Similarly, the Jointr&itors of
Laboratories' Data Fusion Group (JDL/DFG) recogmizkat, in a military environment, DF entails the
progressive aggregation and refinement of sensta idaorder to produce quality tactical knowledge.an
attempt to standardise the structure of the majieted DF process across all possible militaryiegidns and
implementations, the JDL/DFG defined the followsig levels of processing [12]:

. Level 0: Signal/Feature/Subject Assessment
. Level 1: Object Assessment

. Level 2: Situation Assessment

. Level 3: Impact Assessment

. Level 4: Process Refinement

. Level 5: User Refinement

While these JDL/DFG DF level definitions might g appropriate for the use of DF in TF, the conadpt
multi-layered progressive aggregation and refingnoérmeasurement indicator data is core to the qsep
generic framework, which is shown in Fig. 2. Instieneric framework reference is made to generit. ®/€ls

0 throughN, whereN is user selected. Note also that the use of ketional interconnections between
indicators and constructs, as well as between pheltonstructs, is based on SEM path diagram cdioren
[17] and illustrates that the relations represemgthese interconnections can be either reflediviormative,
as described in Section II.
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In this framework input technology indicators [4l]2and context related indicators [12] are usedhpsts to
technology and context related exogenous constmgspectively. To gain an understanding of thetinlayered
nature of this generic framework, consider the eggtion and refinement that occurs in progressiag fDF
Level O to DF Level 1: Regression analysis outgetserated for the technology related exogenoudrtmts at
DF Level 0 contribute formatively of reflectivelp technology related endogenous constructs at MellLEe
Regression analysis outputs for the context relateyenous constructs of DF Level 0 contribute dotext
related and technology related endogenous consteidDF Level 1. Note that the regression anahessilts
produced for DF Level 1 context related endogenomrsstructs can also contribute to technology rdlate
endogenous constructs at this same level. Techyafaticators for the technology related construat<DF
Level 1 could potentially be selected as the Thuouinetrics, or could simply be byput technolog}{44]
indicators if additional DF levels are required forther aggregation and refinement.

The aggregation and refinement achieved by moviogp DF Levelx to DF Levelx+1, forx = 1, 2, 3,...N-1,
follows a similar interconnection structure as finegression from DF Level O to DF Level 1, with #reeption
that it is now endogenous constructs at DF Lgthht contribute to endogenous constructs at Delbevl, not
exogenous constructs. While classic DF based onJiiéDFG model spans six levels of aggregation and
refinement [12], the generic framework presentect ladlows forN+1 DF levels, wher@&l would typically be
user selected based on time and cost constragwgelhas potential diminishing returns resulting &dditional
levels of aggregation and refinement.

V. Future Evaluation of the Proposed Generic Framewor k

In order to evaluate the proposed generic framewofiture study will be conducted to create anduata a
SEM model instantiation for the case of the NREBhimlogy domain. An NREN is defined as a specidlise
network service provider that exclusively suppoatscountry’s research and education communities. [23]
Selection of this technology domain for the futwtedy is motivated not only by the ease of access t
information regarding relevant technology indicatand trends, but also by the fact that the dorisdtf is
currently experiencing some rapid technology drigkanges, resulting in evolving business modeimuative
service offerings and increased international boltation [23]. The future study will be conducted tivo
distinct phases: Phase 1 will be an exploratorghys{@4] and will attempt to construct a potenti&Ns model
instantiation of the generic framework that carubed for TF in the NREN technology domain. Phaséllzbe
confirmatory in nature [24] as it will attempt tetérmine the indicator loadings, path coefficientdidity and
reliability of the SEM model determined during Phds

Phase 1 will be performed qualitatively [24] and| &ttempt to identify applicable endogenous andgexious
model constructs, technology indicators and intevas between the various indicators and constrincthe
SEM model being constructed. The unit of analy2# ffor this phase will be an NREN, while the paidn
will be all NRENSs in existence worldwide at the érof the study. Data collection will be accomplisttierough
online surveys with open-ended questions as ddliection instrument [24]. Respondents will be seddcfrom
the global community of NREN specialists througlsreowball sampling approach [24]. Sufficiency of the
sample size will be determined through the prirecifl data saturation [17]. Analysis of the collectpialitative
data will firstly entail narrative inquiry by meaw$ a process of theme extraction [17]. Theredftequency
analysis will be performed on the extracted thenmesrder to produce a final set of importance rahke
indicators, constructs and interconnections fronictwiihe SEM model will be constructed [17]. Testitg
reliability and validity of the collected qualited data will be accomplished by means of theogngulation
[17], as well as data triangulation [17] using asdline published technology indicators from seaondata
sources, such as TERENA’'s NREN Compendium [23].

Phase 2 will be performed quantitatively [24] antl, whrough PLS regression analysis, attempt tedrine the
applicable indicator loadings and path coefficiefoisthe SEM model constructed during Phase 1. KAk w
Phase 1 the population will be all NRENs in exisgeit that point in time, with the unit of analybising a
single NREN [24]. Quantitative online surveys, donsted using close-ended questions with Likertirsgawill
be used as data collection instrument [24]. Semianagers at all of the NRENSs in the population \wél
selected through a process of convenience samfflifigas respondents for these surveys. In evalgadtie
reliability and validity of the regression analysesults produced by the SEM model, a popular agbraevill be
followed the measurement portion of the model (a¢derred to as the outer model) is considered fioHowed
by the structural portion of the model (also refdrto as the inner model) [25]. The logic behind #pproach is
that a lack in confidence in the accuracy and ssmtvity of the measurement indicators in a SEMdeho



negates the need to continue testing the religlalitd validity of the structural portion [25]. Teauate the
reliability and validity of the measurement porti@uter model) of the SEM model the following vk tested:

Indicator Reliability: For a reflective indicator (denoted ¥sandY; for the indicators of exogenous and
endogenous latent constructs, respectively) tHishibty measure gives an indication of the lewdl
variance in the measurement indicator that carxplaieed by its associated latent construct [25].
Construct Reliability: The Indicator Reliability metric described abosedesigned to point to a given
reflective indicator’s inadequate measurementlatent construct [25]. However, it is importantigo
consider whether the set of reflective indicatassoaiated with a latent construct jointly meastre i
adequately [25]. To that end, Construct Reliahililso sometimes referred to as internal consigtenc
needs to be determined for each latent constriecSEM model [25].

Convergent Validity: The measurement of Convergent Validity considées torrelation between
responses obtained by maximally different methddseasuring the same construct [25].

Discriminant Validity: Discriminant Validity for the measurement portiaonsiders the level of
dissimilarity in the measurements obtained by tleasarement tool for different constructs [25].

To evaluate the reliability and validity of thesttural portion (outer model) of the SEM model fokowing
will be tested:

Coefficients of Determination (R?) for Endogenous Variables: This metric reflects the share of an
endogenous construct’s variance explained by rtleidlogenous or exogenous constructs [25].

Path Coefficient Significance: Similar to covariance based multiple regressichreues, the quality of
the structural portion of a SEM model can be ingased by means of a bootstrapping procedure [25]
in order to determine the significance levels & gath coefficients. andpy, for all applicable indexes

¢ andd.

Predictive Validity: In order to determine the Predictive Validity oBtBEM model the Stone-Geisser
non-parametric test will be performed [24]. Basedaoblindfolding procedure [25], this test requires
two data sets: One set for SEM and the other feeroening the SEM model’s Predictive Validity.
This test will be the most important assessmeth@SEM model’s TF capability.

V1. Conclusions

Applying inductive reasoning to the work of Sohndadoon [16], as well as Steinberg [12][15], the @ap
derived a generic framework for SEM based DF for. Unlike most TF approaches [16] the proposed
framework not only caters for complex and hierarahstructural relationships between technologycaitrs
and TF output metrics, but also allows for nondin@nd non-Gaussian factors and cyclical depenéenci
amongst model variables (which can be either latentlirectly observable). The paper also presetited
research methodology that will be used in a fusitely (in the context of the NREN technology dorain
order to construct and evaluate a SEM model (whithbe an instantiation of the generic framewofdr) the

TF of NREN related output technology indicatorsodt this study be successful in proving the vigbif the
proposed generic framework as an effective toollfer additional studies could for example expldre optimal
selection of SEM model instantiations for a giveahnology context [26].
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