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Abstract— The method of lines is a simple and reliable method of 

numerical analysis of parabolic and hyperbolic problems of 

mathematical physics. By means of this method mixed initial-

boundary problems described by partial differential equations 

are transformed into systems of ordinary differential equations 

with initial conditions. This reduction is obtained by means of 

application of particular finite difference schemes to the spatial 

derivatives. Many of the wave propagation problems describing 

by the hyperbolic equations could be formulated in terms of the 

variational principles. In the present paper we demonstrate how 
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to derive the systems of ordinary differential equations of the 

method of lines directly from the Lagrangians of the 

corresponding variational formulations of the wave propagation 

problems. The discussed method has several obvious advantages 

in comparison with the traditional methods of deriving of the 

initial problems of systems for ordinary differential equations 

from the initial-boundary problems for partial differential 

equations. First, in Lagrangians we need to use a finite difference 

representation of the spatial derivatives of lower order than in 

equations. For example, in the wave equations describing 

longitudinal vibration of bars, torsional vibration of rods, etc., we 

need to represent the second partial derivative of displacements 

by its finite difference but in the corresponding Lagrangian we 

need to use the finite difference representation of the first partial 

derivative of displacements. In the equations of longitudinal 

vibration of the Rayleigh-Bishop bar as well as in the equations 

of lateral vibration of the Euler-Bernoulli beam we need to use a 

finite difference representation of the fourth order partial 

derivatives of displacements, but in the corresponding 

Lagrangians we need a finite difference representation of the 

second order partial derivatives of displacements. The second 

advantage of the variational approach to the method of lines is 

connected with number of terms in equations and the 

corresponding Lagrangians. As a rule, number of terms in 

Lagrangians is substantially less than in the corresponding 

equations. For example, in the equation of vibration of the 

Rayleigh-Bishop bar with variable parameters there are eight 

terms including spatial partial derivatives of displacement of the 

first, second, third and fourth order and first and second partial 

derivatives of combinations of geometrical and physical 

parameters. In the corresponding Lagrangian there are four 

terms including first and second spatial partial derivatives of 

displacement and derivatives of combinations of geometrical and 

physical parameters are absent. Despite the obvious advantages 

of the variational formulation of the method of lines there are 

some limitations of its practical application which are also 

discussed in the paper. 

Keywords—Method of lines, variational formulation, wave 

propagation in rods. 

INTRODUCTION 

 The method of lines is a simple and reliable method of 
numerical analysis of parabolic and hyperbolic problems of 
mathematical physics. By means of this method mixed initial-
boundary problems described by partial differential equations 
are transformed into systems of ordinary differential equations 
with initial conditions. This reduction is obtained by means of 
application of particular finite difference schemes to the spatial 
derivatives. Many of the wave propagation problems 
describing by the hyperbolic equations could be formulated in 
terms of the variational principles. In the present paper we 
demonstrate how to derive the systems of ordinary differential 
equations of the method of lines directly from the Lagrangians 

of the corresponding variational formulations of the wave 
propagation problems. The discussed method has several 
obvious advantages in comparison with the traditional methods 
of deriving of the initial problems of systems for ordinary 
differential equations from the initial-boundary problems for 
partial differential equations. First, in Lagrangians we need to 
use a finite difference representation of the spatial derivatives 
of lower order than in equations. For example, in the wave 
equations describing longitudinal vibration of bars, torsional 
vibration of rods, etc., we need to represent the second partial 
derivative of displacements by its finite difference but in the 
corresponding Lagrangian we need to use the finite difference 
representation of the first partial derivative of displacements. In 
the equations of longitudinal vibration of the Rayleigh-Bishop 
bar as well as in the equations of lateral vibration of the Euler-
Bernoulli beam we need to use a finite difference 
representation of the fourth order partial derivatives of 
displacements, but in the corresponding Lagrangians we need a 
finite difference representation of the second order partial 
derivatives of displacements. The second advantage of the 
variational approach to the method of lines is connected with 
number of terms in equations and the corresponding 
Lagrangians. As a rule, number of terms in Lagrangians is 
substantially less than in the corresponding equations. For 
example, in the equation of vibration of the Rayleigh-Bishop 
bar with variable parameters there are eight terms including 
spatial partial derivatives of displacement of the first, second, 
third and fourth order and first and second partial derivatives of 
combinations of geometrical and physical parameters. In the 
corresponding Lagrangian there are four terms including first 
and second spatial partial derivatives of displacement and 
derivatives of combinations of geometrical and physical 
parameters are absent. Despite the obvious advantages of the 
variational formulation of the method of lines there are some 
limitations of its practical application which are also discussed 
in the paper. 

STANDARD FORMULATION BY THE METHOD OF LINES 

We have the following finite difference representations of 

first order derivative: 

 (1) 

and  

  (2) 
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where , . 

Representation (2) is more accurate in comparison with (1) 

because its accuracy is  (for (1) the error has 

order ). 

For the second order derivative: 

    (3) 

Estimation of error of this finite difference representation has 

order ). 

Let us consider the wave equation and show how to realize 

the method of lines. The wave equation describing 

longitudinal vibrations  of a bar of constant cross-

section is as follows: 

  (4) 

where  is mass density and  is modulus of elasticity of 

the bar,  is the exciting force.  

Let us assume that the bar is fixed at both left and right 

ends . Its initial conditions are 

 and . Hence, it is 

necessary to define motion of the rod in points , 

, i.e. find . To do this we 

use the finite difference approximation of the second spatial 

derivatives (3): 

          (5) 

and obtain the following system of ordinary differential 

equations: 

 (6) 

where is the speed of propagation of elastic wave 

over the bar and . If we add initial 

conditions  and  to the system of 

ordinary differential equations (3.5) the initial problem will be  

formulated and could be solved by one of the available 

numerical methods (Runge-Kutta, Adams, etc.). 

Explicit form of the system (3.5) is as follows: 

, 

, 

 ,      (7) 

, 

. 

This system of equations with initial conditions: 

, ,  could be 

simply programmed and solved. 

VARIATIONAL FORMULATION OF THE METHOD OF LINES 

The described method represents the classical approach to 

the method of line. It is based on discretization of spatial 

derivatives of a partial differential equation and obtaining a 

system of ordinary differential equations. Let us describe an 

alternative method, the so-called method of lines based on the 

variational approach. We know that the corresponding 

Lagrangian of the abovementioned problem is: 
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 (8) 

Equation (4) is obtained from Lagrangian (8) by means of the 

following Euler-Lagrange equation: 

  (9) 

Let us first make finite difference discretization (3.1a) of 

the first partial derivative in the expression for the Lagrangian 

density: 

   (10) 

For the fixed ends boundary conditions ( ) 

we obtain the following explicit expressions for the partial 

Lagrangians: 

, 
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 , 

, 

  ,      (11) 
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, 

. 

Using a simplest quadrature formula, namely the rectangle 

rule, for numerical calculation of integral (8) we obtain 

approximately: 

   (12) 

Substituting (11) in (12) we obtain the following approximate 

Lagrangian: 

 (13) 

Hence, equations of this approximate model are given by the 

following Euler-Lagrange equations: 

   (14) 
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It is obvious that systems of equations (15) and (7) are 

identical. 

LUMPED MASS-SPRING REPRESENTATION 

System (15) give us an opportunity to show an equivalent 

lumped mass representation of problem (4). It is represented in 

Fig. 1. 

 

 

 

Figure 1. Equivalent lumped mass-spring representation  

of the distributed system 

 

In this figure we assume that  is mass of the 

lumped mass element,  is stiffness of the lumped 

spring element,  are the discrete analogs of 

the distributed exciting force and  are the displacements 

of the corresponding lumped masses. 

Let us proof that the lumped parameters mechanical 

system shown in Fig. 1 is described by system of equations 

(15). To do this we write the kinetic, potential energies, work 

of external forces and the Lagrangian of the lumped system 

(Fig. 1): 

Kinetic energy of the system is: 

 (16) 

Strain energy of the system is: 

  (17) 

Work of external forces is: 

 

(18) 

Lagrangian of the system is: 

 

(19) 

Keeping in mind that ,  and 

 we conclude that Lagrangians (19) and (13) 

are the same. Coincidence of the Lagrangians means that the 

equations of motion are the same. Hence, the variational 

approach helps to compose discrete analogs of the distributed 

systems. 

DISCUSSIONS AND CONCLUSIONS 

Let us consider advantages and possible limitations of the 

variational approach to the method of lines in comparison with 

the traditional one.  

It is a remarkable fact that composition of two approximate 

numerical methods in the variational approach, namely the 
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rectangle integration rule with accuracy  and 

first derivative calculation with accuracy  , 

gives us the same result as application of the finite difference 

scheme of accuracy  to calculation of the 

second derivative in the standard method of lines. It means 

that we can deal with the derivatives of lower order in the 

variational approach which is the first obvious advantage of 

the described method. 

In the example of application of the variational method we 

considered the simplest case of longitudinal vibrations of a bar 

with constant parameters considered in the frames of classical 

theory. Hence, numbers of terms in the Lagrangian density 

and in the equation were the same. If we assume now that 

geometrical (area of cross-section ) and physical 

parameters (mass density  and modulus of elasticity 

) are variable the equation of motion is as follows 

(compare with (4)): 

  (20) 

and hence, we have the four-terms equation. Moreover, we 

also need to calculate the derivative of product of the variable 

parameters. It can give additional numerical errors of 

calculation especially if these parameters are given by tables 

or drawings. Keep in mind that in this case the number of 

terms in the Lagrangian density is still equals to three and no 

differentiations of the geometrical and physical parameters are 

needed. This is a serious second advantage of the variational 

approach to the method of lines. 

Let us consider how the abovementioned first and second 

advantages are realized in the models which need calculation 

of derivatives of order higher than two. As examples we 

consider the Rayleigh-Love and Rayleigh-Bishop models of 

longitudinal vibration of bars with variable geometrical (area 

of cross-section , polar moment of inertia 

) and physical (mass density , modulus 

of elasticity , shear modulus  and 

Poisson’s ratio   parameters. For the sake of 

simplicity we consider the situation of free vibration of the 

bars. 

In the Rayleigh-Love model the Lagrangian is as follows: 

 

(21) 

Hence, there are three terms in the Lagrangian density and the 

variational approach to the method of lines needs a finite 

difference representation of the first partial derivative 

. 

The corresponding equation is: 

  

(22) 

Hence, there are five terms in this equation. In the traditional 

approach to the method of lines formulation it is necessary to 

use finite difference representation of both first and second 

derivatives (  and ). Moreover it is 

necessary to calculate derivatives of products of the 

geometrical and physical parameters  and 
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 (there are no differentiations of the 

parameters in the Lagrangian density (21)). 

 

In the Rayleigh-Bishop model the Lagrangian is as follows: 

 

(23) 

Hence, there are four terms in the Lagrangian density and the 

variational approach to the method of lines needs a finite 

difference representation of the first and second partial 

derivatives  and .  

The corresponding equation is: 

 

(24) 

Hence, there are eight terms in this equation. In the traditional 

approach to the method of lines formulation it is necessary to 

use finite difference representation of the first, second, third 

and fourth derivatives ( , ,  and 

). Moreover it is necessary to calculate derivatives of 

products of the geometrical and physical parameters 

, , 

 and  (second 

derivatives, compare with (23) where there are no 

differentiations of the parameters in the Lagrangian density 

are needed). 

The third advantage of the variational approach to the 

method of lines is obvious in the case of the vibration analysis 

of a stepped structure. In this case it is necessary to 

decompose the structure into several relatively smooth 

sections, consider the system of partial differential equations 

corresponding to each section, make finite difference 

discretization of each equation and formulate continuity 

conditions (both displacements and, if necessary, 

combinations of displacements and strains). This is a very 

tedious and awkward procedure. Vice versa, in the variational 

approach it is possible to exploit the additivity of the 

Lagrangian and consider only the continuity of displacements 

at junctions of the neighbor sections). 
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