
A Focussed Dynamic Path Finding Algorithm with
Constraints

Louise Leenen
Cyber Defence Research Group

Council for Industrial and Scientific Research
PO Box 395, Pretoria 001
Email: lleenen@csir.co.za

Alex Terlunen
Smart Systems Research Group

Council for Industrial and Scientific Research
PO Box 395, Pretoria 001

Email: aterlunen@csir.co.za

Abstract—The Military Unit Path Finding Problem (MUPFP)
is the problem of finding a path from a starting point to a
destination where a military unit has to move, or be moved, safely
whilst avoiding threats and obstacles and minimising path cost in
some digital representation of the actual terrain [1]. The MUPFP
has to be solved in an environment where information can change
whilst the optimal path is being calculated, i.e. obstacles and
threats can move or appear and path costs can change.

In previous work, the authors formulated the MUPFP as
a constraint satisfaction problem (CSP) where path costs are
minimised whilst threat and obstacle avoidance constraints are
satisfied in a dynamic environment [2]. In this paper the previous
algorithm is improved by adding a heuristic to focus the search
for an optimal path. Existing approaches to solving path planning
problems tend to combine path costs with various other criteria
such as obstacle avoidance in the objective function which is being
optimised. The authors’ approach is to optimise only path costs
while ensuring that other criteria such as safety requirements,
are met through the satisfaction of added constraints. Both the
authors’ previous algorithm and the improved version presented
in this paper are based on dynamic path planning algorithms
presented by Stenz [3], [4]. Stenz’s original D* algorithm solves
dynamic path finding problems (by optimising path costs without
satisfying additional constraints) and his Focussed D* algorithm
employs a heuristic function to focus the search. Stenz’s algo-
rithms only optimises path costs; no additional factors such as
threat and obstacle avoidance are addressed.

Keywords —optimisation, path finding, constraint program-
ming, dynamic A* search

I. INTRODUCTION

Path planning algorithms calculate an optimal path for an
object from a start point to a destination point, whilst avoiding
obstacles and minimising costs. It has many applications such
as computer games, transportation, robotics, networks, and
others. In a static algorithm, the environment is known and
an optimal path is calculated before the object is moved. In
a dynamic algorithm, the environment may not be completely
known before the object starts moving, or it may change whilst
the object is moving. In this case, the path plan has to be
updated while it is being executed. An overview of methods
to solve the path finding problem is given by Leenen et al. [2].

The modelling of problems in terms of constraints has
the advantage of a natural, declarative formulation. A CSP
formulation of a problem states what must be satisfied, without
specifying how it should be satisfied. It consists of a set of

variables, a set of domains for the variables, and a set of
constraints. Each constraint is defined over a subset of the
set of variables. A constraint is a logical relation involving
one or more variables, where each variable has a domain
of possible values. A constraint thus restricts the possible
values that variables can have. Constraints can specify partial
information about variables, are declarative and may be non-
linear. A solution to a CSP specifies values for all the variables
such that all the constraints are satisfied.

In the military unit path finding problem, a military unit
aims to avoid obstacles and threats, or to pass threats with
at least a minimum distance between them and the threat,
while moving to their destination as quickly as possible. In the
MUPFP a balance has to be maintained between the two main
criteria, route speed and safety [1]. Although there are various
methods to solve the MUPFP, the existing approaches combine
various criteria in a weighted objective function which is
optimised. Our CSP approach, on the other hand, is to optimise
only path costs while ensuring that certain other criteria, such
as safety requirements, are met. Our objective function is
a pure cost function. We adopt a constraint-based approach
with a clear distinction between the goal of obtaining an
optimal path cost and satisfying safety measures. A constraint
programming (CP) approach allows for flexibility in terms of
modeling different constraints. If a new requirement has to be
met, the addition of a suitable constraint or the modification
of existing constraints will suffice to model the new problem.

In previous work [5] we formulated the MUPFP as a
CSP and modified the D* algorithm (dynamic A* search) [3]
by adding threat and obstacle avoidance constraints. The D*
algorithm builds an optimal path by repairing potential optimal
paths in every step as new information becomes available. The
Focussed D* algorithm [4] focusses the search for an optimal
path with an heuristic function to reduce the graph expansion
and thus the total calculation time required. In this paper we
extend our previous algrorithm by adding a heuristic similar
to that used in the Focussed D* algorithm.

There are many general techniques that can be used to solve
CSPs such as integer programming, local search, and neural
networks, but tree search in conjunction with backtracking and
consistency checking is widely used. CP refers to the computa-
tional systems used to solve CSPs. It emerged from a number
of disciplines such as Artificial Intelligence, Computational
Logic, Programming Languages, and Operations Research. CP
has proven to be effective at solving combinatorial and over-



constrained problems. Several texts provide an introduction to
CP and CSPs [6], [7].

In Section II, the formulation of the MUPFP as a CSP is
described and an overview of Stenz’s Focussed D* algorithm
is given. In Section III, our improved algorithm is presented
and Section IV shows an example.

II. BACKGROUND

The formulation of the MUPFP as a CSP was initially
presented by Leenen et al. [2]. We also give an overview of
Stenz’s Focussed D* algorithm [4].

A. The Military Unit Path Finding Constraint Satisfaction
Problem

A constraint-based approach to the military path finding
problem offers flexibility in an environment that can effectively
be represented by constraints, where new information can be
added with ease. The terrain map is presented as a graph. A
node represents a geographical location and an edge represents
a route between two nodes, i.e. two geographical areas. The
cost of an edge represents the difficulty of moving through
a particular part of the actual route represented by that edge.
We represent the avoidance of danger through constraints. An
example of a threat is a sniper whose presence at a certain
node is known. In this formulation we include constraints to
disallow movement to a node where there is a known obstacle
or a threat, and constraints that disallow movement within a
certain distance of a node containing a known threat. Threats
and obstacles are dynamic in the sense that they can move or
disappear. Edge costs can also change; if a route becomes more
difficult to traverse, for instance due to muddy conditions, then
the representing edge costs will be increased.

Consider the graph with a set of nodes, N =
{x1, x2, . . . , xk} and a set of edges, A = {(xi, xj)|xi, xj ∈
N}. Every edge in A, (xi, yj), has an associated cost value,
c(xi, yj). The function status: N → {O, T, U} defines
whether there is an obstacle (O) or a threat (T ) present at a
node, or if the node is unoccupied (U ). In the latter case there
is no known obstruction. Let the set of variables in the solution
path be V = {V1, V2, . . . , Vn}, where each variable represents
one node in the solution path. A path is a sequence of nodes in
a graph such that there is edge from each node in the sequence
to the next node in the sequence. The domain of each variable
is Dom = {x1, x2, . . . , xk}. The set of constraints, C, contains
at least the ones listed below:

• C1: An all-different constraint, V1 6= V2 6= . . . 6= Vn
ensures each node in the solution path is unique.

• C2: V1 = sstart & Vn = sgoal with sstart the starting
node in the path and sgoal the destination node.

• C3: For every Vi+1, i = 1, . . . n − 1, if Vi = xj
then Vi+1 = xm if and only if there exists an edge
(xj , xm) ∈ N . This constraint ensures that the value
assignment of the variables forms a path.

• C4: For every Vi, i = 2, . . . n − 1, Vi 6= xj if
status(xj) = {O, T}. This constraint disallows a
node containing a threat or an obstacle to form part
of the solution path.

• C5: For every Vi, i = 2, . . . n − 1, Vi 6= xj if there
exists an edge (xi, xj) such that status(xj) = {T}.
This ensures that the solution path does not venture
too close to a threat. We model a safe distance to be
more than a single edge, i.e. a node that is a neighbour
of a threat cannot be included in the optimal path.

The solution is an assignment of values for the variables in
the set V such that min Σs=1,...n−1c(xi, yj) where Vs = xi
and Vs+1 = yj , and all constraints are satisfied.

A CSP has a finite, known number of variables. We thus
have to decide on a value for n (number of decision variables in
the CSP) before solving our CSP. The D* algorithm calculates
an optimal solution path and then retraces this path while
testing for changes in cost values. If the initial solution path
contains m edges, then we assign values to n = m + 1
variables. The value of n may change if there had been cost
changes and another execution of the algorithm is required.

B. Overview of Stenz’s Focussed D Algorithm

Stenz introduced a D* algorithm for solving dynamic path
finding problems in 1994 [3] and a Focussed D* algorithm
in 1995 [4]. A brief overview of the latter algorithm follows.
The algorithm initially calculates an optimal path from the
destination node, G, back to the start node, S, using a
focussing heuristic function. The optimal path can then be
traversed from the start point until new information is received
and adjustments are required. Replanning is then done and
the new optimal path is calculated from the current point of
traversal. The current position of the military unit is at node
R, and initially R is equal to S.

Similar to the D* algorithm, Focussed D* maintains an
OPEN list of states for expansion: RAISE states and LOWER
states. A RAISE state means the path cost has increased and
this information has to be propagated, while a LOWER state
indicates that there may have been a path cost reduction.
When a state is removed from the OPEN list, it is expanded
to pass cost changes to its neighbours which are placed on
the OPEN list in turn. For each node X , an estimate of the
total sum of the edge costs from the node to the destination
node, h(X), is maintained as well as a focussing heuristic,
g(X,R), that estimates the path cost from node R (the current
position of the military unit) to the node X . For each node
X , an estimate of the total path cost from R to G via
X: f(X,R) = h(X) + g(X,R) is maintained. Ideally, this
estimate is equal to the minimum cost from the start node via
node X to the destination node. The algorithm also maintains
the key value, k(X), of each node. The key value of a
node X is the minimum of its h(X) value before possible
modifications to map values, and all its h(X) values since the
node X was first placed on the OPEN list. k(x) identifies X as
either a RAISE state or a LOWER state. The algorithm keeps
track of current best paths by setting back-pointers from each
node back to its current predecessor in the solution path. The
OPEN list is sorted according to a biased f value for a node
x, fB(x) = f(x,Ri)+d(Ri, R0). The d function is called the
accrued bias function and d(Ri, R0) keeps track of the cost of
movement of the military unit from its initial position at R0

to Ri (the unit’s position at the time a node x was inserted on
the OPEN list). Ties in fB values are resolved by taking the
minimum f value, and ties in f values by k values.



Fig. 1. An illustration for the focussing heuristic

To summarise, the military unit starts at some position R0

and the estimated total path cost is given by f(X,R0). After an
initial optimal path has been calculated the unit starts travers-
ing this optimal path until it reaches some position Ri. Sensors
may detect some changes to the graph values and recalculate
the optimal path from the current position Ri to the destination
node at G. For every node X that is added to the OPEN
list from this stage, the estimated total cost from Ri to G
is given by f(X,Ri), but fB(X,Ri) = f(X,Ri) + d(Ri, R0)
represents the distance the unit has already travelled from R0 to
R1 added to f(X,Ri). This avoids having to recalculate these
values for all the nodes that were inserted on OPEN before
the unit moved to Ri. The true path costs are calculated at the
time of expansion. Figure 1 illustrates these concepts.

The first phase of the algorithm halts when the current node
at which the military unit is positioned, is removed from the
OPEN list. The backpointers are then followed from the current
position of the unit to the destination node. If any information
has changed, the traversal is halted and the algorithm re-
calculates an optimal path from the node where the discrepancy
has been identified to the destination node.

III. THE FOCUSSED CONSTRAINT D* ALGORITHM

In this section, we present an algorithm to solve the
MUPFP which improves on our previous constraint-based
algorithm by using a heuristic to focus the search for an
optimal path. In our solution approach, we model constraints
to avoid obstacles and to keep a specified distance from known
threats. For simplicity, we model this distance to be “one
node away”, i.e. our path will not include any node that is
a neighbour of a threat node. When we consider the list of
neighbours of a particular node, x, for expansion, we check if
a neighbour node, y, is an obstacle or a threat (i.e. we perform
constraint checking).

Our algorithm calls a function, ComputeOptimalPath, to

compute an optimal path for the current graph whilst satisfying
safety constraints, and then it enters a loop which traverses the
optimal path until changes in the environment are detected:
the cost of an edge has been modified, or the status of a
node has been modified. The ComputeOptimalPath function
computes an optimal path in a similar way as the Focussed
D* algorithm, but with the addition of constraint checking. The
main algorithm, called FConstraint DStar, allows the military
unit to traverse this path as long as no cost changes or status
changes are observed. As soon as one or more changes have
been detected, traversal will be halted and corrections made.
The ComputeOptimalPath function is then called to calculate
a new optimal path from the unit’s current position.

In the case of a cost change, we follow steps similar to such
an occurrence in the Focussed D* algorithm by identifying
nodes to be reinserted into the OPEN list. Various values
of nodes which may be affected by the change in cost, are
adjusted. In the case of a node whose status has changed,
the algorithm does the necessary checks to identify nodes that
have to be reevaluated by calling the function StatusChange
in which one of the following cases are identified:

• The status of a node s changed from an obstacle or
unoccupied to that of a threat. s cannot be included
in an optimal path and RevertPath is called for each
of its neighbours, x. This function traces expanded
paths through the node x and makes adjustments to
predecessor nodes. This is necessary because the node
x is now the neighbour of a threat node and may not
be included in a current best path to any node from
the goal node. These paths need to be destroyed.

• If the status of a node s changed from unoccupied to
an obstacle, then RevertPath is called to ensure that s
is not included in a best path from the goal node to
any other node.

• If the status of a node s changed from an obstacle to
unoccupied, then the neighbour nodes of s are inserted
into the OPEN list if they qualify for consideration.

• The status of a node s changed from a threat to either
unoccupied or an obstacle. In this case the neighbours
of s had not been considered for expansion prior to
the status change, so the neighbour nodes are now
considered for insertion into the OPEN list.

We now describe the algorithm in greater detail. The existence
of the following information and data structures are assumed:

A CSP with n number of variables, a set of constraints C,
and a set of domain values Dom. A graph with a set of nodes,
N , a set of edges, A, a designated source node, sstart, and a
designated destination node, sgoal. OpenQ is a priority queue
that represents the OPEN list of nodes to be expanded, sorted
in non-decreasing order according to fB values. Rcurr is the
current state (of the unit) on which the search is focussed and
dcurr is the accrued bias from the unit’s start state to its current
state. Every node x ∈ N has the following labels: status(x),
h(x), k(x), f(x), fB(x), r(x) and b(x). b(x) is a backpointer
that can point to another node in N ; r(x) is the position of
the military unit at the time x is inserted into OpenQ; h(x)
is the estimated path cost from x to sstart; k(x) is the key
value; f(x) is the estimated path cost from Rcurr via x to



sgoal; and fB(x) is the biased estimated total path from cost
Ri to the destination node via x where Ri is the military unit’s
position at the time x was inserted onto OpenQ. Every edge
(x, y) ∈ A has an associated cost, c(x, y) and s(x, y) is the
cost of the edge returned by a sensor. A function, status :
N → {U,O, T} where U is an unoccupied node, T a threat
and O an obstacle. A labelling function, t : N → {NEW ,
OPEN , CLOSED }. NEW indicates that a node has not
yet been expanded, OPEN that the node is a member of the
OPEN list, and CLOSED that the node has been considered
and removed from the OPEN list. PutOn is a set of nodes
that may have to be returned to OpenQ after a status change
in a node.

Neither the start node nor the destination node is an
obstacle, a threat, or the neighbour of a threat. The following
functions are called in the algorithm:

ComputeOptimalPath(val) computes an optimal path
from the source node to the destination node while sat-
isfying the threat and obstacle constraints. The parameter
val is a global variable. ConstraintCheck(s) performs the
constraint checking: it checks whether any neighbour of
the node s is an obstacle, a threat, or the neighbour of
a threat. StatusChange(s,NewStatus) is called when a
node s is identified to have received a new status value.
It makes the necessary modifications to variables such that
a new optimal path can be computed and calls the two
repair functions RevertPath and DangleNode if necessary.
Note that the second parameter of RevertPath is optional.
DangleNode(s) and RevertNode(s, i) are repair functions
that are invoked when a node’s status has changed and path
repairs are required. Initialise() initialises variables and in-
serts the goal node into OpenQ. Neighbours(s) returns all
s’s neighbours. InsertOnQpenQ(s, value) insert a node s
into the queue OpenQ after calculating its new k, f and fB
values. MinState(val) returns the node on the OpenQ with
the minimum f value. If the military unit has moved since
the insertion of the node on OpenQ, required adjustments
are made. The ordered pair val contains the f and k values
of the returned node. ModifyCost(x, y,NewCost) is called
when the cost of an edge (x, y) has been changed. It returns
relevant nodes to OpenQ. Cost(v) computes the estimated
minimal path cost, f(v,Rcurr), from the unit’s current posi-
tion, Rcurr, via the node v to the destination node. It returns
an ordered pair of values. GV al(x, y) is a user provided
function that computes the focussing heuristic g(x, y) which
is an estimate of the path cost from the node x to the node
y. LessEq(A,B) and Less(A,B) compare ordered pairs of
values. Enqueue(Q, s, v) adds a node s with a value v to a
priority queue Q and Dequeue(Q) removes and returns the
first element from a priority queue, Q.

The main function, FConstraint DStar, is shown as Func-
tion 1. It calls Initialise, shown as Function 2. After computing
an optimal path in line 2 of the main function, there is a while
loop in lines 5-29 that runs until the optimal path has been tra-
versed and the destination state has been reached. ComputeOp-
timalPath is similar to the first phase of Stenz’s Focussed
D* algorithm with the addition of constraint checking, and
it is shown as Function 3. It calls MinState, ConstraintCheck,
LessEq, Less, Cost and InsertOnOpenQ shown as Functions 4
to 9 respectively.

Function 1 FConstraint DStar()
1: Initialise();
2: ComputeOptimalPath(val);
3: if t(sstart) = NEW then
4: return NoPath;
5: while R 6= sgoal do
6: DCurrUpdate = OtherUpdate = false;
7: if there is some edge (x, y) for which c(x, y) 6= s(x, y)

then
8: OtherUpdate = true;
9: if Rcurr 6= R then

10: dcurr = dcurr+ GVal(R,Rcurr) + ε;
11: Rcurr = R;
12: DCurrUpdate = true;
13: for all edges (x, y) where c(x, y) 6= s(x, y) do
14: ModifyCost(x, y, s(x, y));
15: if there is some node s for which status(s) 6=

status sensor(x, y) then
16: OtherUpdate = true;
17: if Rcurr 6= R then
18: if DCurrUpdate = false then
19: dcurr = dcurr+ GVal(R,Rcurr) + ε;
20: Rcurr = R;
21: for all nodes s such that status(s) 6=

status sensor(s) do
22: StatusChange(s, status sensor);
23: for all x ∈ PutOn do
24: if t(x) 6= NEW then
25: InsertOnOpenQ(x, h(x));
26: PutOn = ∅;
27: if OtherUpdate = true then
28: ComputeOptimalPath(val);
29: R = b(R);

Function 2 Initialise()
OpenQ = ∅;
PutOn = ∅;
R = Rcurr = sstart;
dcurr = 0;
for s ∈ N do
h(s) = f(s) = fB(s) = k(s) =∞;
t(s) = NEW ;
b(s) = NULL;

InsertOnOpenQ(sgoal, 0);

After an optimal path has been calculated, the while loop
in line 5 (of Function 1) is executed. If a sensor detects
that the cost of any edge (x, y) has been changed (line 7),
ModifyCost is called in line 14 after adjustments have been
made for possible partial traversal of a path by the military
unit (lines 8-12). ModifyCost is shown in Function 10. The
function checks if the nodes x and y are included in some
best current path from the start to the goal. In this case, the
ancestor node is reinserted into OpenQ if it has a CLOSED
status. Otherwise, if either x or y is CLOSED it also has to
be re-inserted on OpenQ. Note that changes in edge costs or
the status of any node are allowed at any time. These changes
can be detected by sensors and compared to the stored values.
StatusChange (line 22 of the main function) is called when



Function 3 ComputeOptimalPath(val)
1: while t(sstart) 6= CLOSED AND OpenQ 6= empty do
2: s = MinState(val);
3: if s 6= NULL then
4: kval = k(s);
5: Dequeue(OpenQ, s);
6: t(s) = CLOSED;
7: NSet = Neighbour(s);
8: for all x ∈ NSet do {Remove any invalid nodes in

loop}
9: if ¬ ConstraintCheck(x) then

10: NSet = NSet− {x};
11: if kval < h(s) then {a RAISE state}
12: for all x ∈ NSet do
13: if t(x) 6= NEW AND LessEq(Cost(x), val)

AND
h(s) > h(x) + c(x, s) then {path via x better
than via s}

14: b(s) = x;
15: h(s) = h(x) + c(x, s);
16: if kval = h(s) then {path via s is optimal}
17: for all x ∈ NSet do {can path cost be lowered

via x?}
18: if (t(x) = NEW )

OR (b(x) = s AND h(x) 6= h(s) + c(s, x))
OR (b(x) 6= s AND h(x) > h(s) + c(s, x))
then

19: b(x) = s;
20: InsertOnOpenQ(x, h(s) + c(s, x));
21: else {s is a LOWER state}
22: for all x ∈ NSet do
23: if (t(x) = NEW )

OR (b(x) = s AND h(x) 6= h(s) + c(s, x))
then

24: b(x) = s;
25: InsertOnOpenQ(x, h(s) + c(s, x);
26: else if b(x) 6= s AND h(x) > h(s) + c(s, x)

then
27: InsertOnOpenQ(s, h(s))
28: else if b(x) 6= s AND h(s) > h(x) + c(x, s)

AND Less(val, Cost(x))
AND t(x) = CLOSED then

29: InsertOnOpenQ(x, h(x))
30: else
31: val = NoV al;

any node s has had a change in its status, after adjustments
have been made for possible partial traversal of a path by
the unit (lines16-20). This function appears as Function 12. If
the new status of a node s is that of a threat (lines 3-11 in
StatusChange), then it cannot be considered for inclusion in
any best path and neither can its neighbours. RevertPath is
called for every neighbour x of s to destroy partial best paths
that include x. If the status of s changed from unoccupied
to an obstacle (lines 12-14), RevertPath is called to destroy
partial best paths that include s. In the case of a status change
from an obstacle to unoccupied (lines 15-18), all unoccupied
neighbours that are not NEW are reinserted into OpenQ.
Finally, in the case of a change from a threat to a non-threat
or an obstacle, the complete neighbourhood of s had been

Function 4 MinState(val)
1: s = Top element on OpenQ; {Assume OpenQ is not

empty}
2: if r(s) 6= Rcurr then
3: hnew = h(s);
4: h(s) = k(s);
5: Dequeue(OpenQ, s);
6: t(s) = CLOSED;
7: InsertOnOpenQ(s, hnew);
8: return NULL;
9: else

10: val =< f(s), k(s) >;
11: return s;

Function 5 ConstraintCheck(s)
1: if status(s) = O then {is s an Obstacle}
2: return false;
3: for x ∈ Neighbour(s) do
4: if status(x) = T then {is s a ’Threat’}
5: return false;
6: return true; { All the other checks failed, so the node is

safe}

invalid nodes prior to the status change. Thus we have to
consider every node x which is a neighbour of s, and place
all the neighbours of x into OpenQ unless they are NEW
or unoccupied. RevertPath calls DangleNode to identify
invalid best path created by the status change. These functions
are shown as Functions 11 and 13 respectively. Lines 23-26
of the main function consider nodes that were placed in the
set PutOn by calls to DangleNode. Nodes in this set have
to be inserted into OpenQ if they have any neighbour that is
either CLOSED or OPEN .

ComputeOptimalPath removes a node s with a minimal
fB value from OpenQ (line 5) and removes all its invalid
neighbours from its neighbour set (lines 8-10). An invalid
neighbour is a node that does not satisfy one of the safety
constraints, i.e. it is an obstacle, a threat or the neighbour of
a threat. In lines 11-15 we identify whether s is a RAISE
state (its k value is smaller than its h value) i, or a LOWER

Function 6 LessEq(A,B)
A =< a1, a2 > and B =< b1, b2 >

1: if a1 < b1 OR (a1 = b1 AND a2 ≤ b2) then
2: return true;
3: else
4: return false;

Function 7 Less(A,B)
A =< a1, a2 > and B =< b1, b2 >

1: if a1 < b1 OR (a1 = b1 AND a2 < b2) then
2: return true;
3: else
4: return false;



Function 8 Cost(v)
1: f(v,Rcurr) = h(v)+GVal(v,Rcurr);
2: return < f(v,Rcurr), h(v) >;

state (its k value is larger than its h value) in lines 21-29. In
these cases it propagates the changed costs. If s is optimal
(its k value is equal to its h value) it expands the neighbours
of s (lines 16-20). In line 3 of StatusChange, we identify
that the node s has changes its status to that of a threat. This
means that neither s nor any of its neighbours may be included
in the best path from the goal node to any other valid node.
If s is currently on OpenQ, it is removed (line 6). In lines
8-10, the function ensures that the invalidity of a neighbour
node of s is recognised. If s has become an obstacle node,
then lines 12-14 ensure that it (and paths through it) is made
invalid. Lines 15-24 deal with a previously invalid node that
has become valid and must now be considered for inclusion in
the best paths from the goal to other nodes by inserting relevant
nodes into OpenQ. The RevertPath(s, i) function identifies
and destroys partial best paths that include the node s which
has become an invalid node. The parameter i is optional and
is used to avoid the re-checking of a known invalid node, for
example a node which is known to have become a threat. Lines
2-3 ensure that s is not on OpenQ. In lines 5-6 the ancestor
neighbour of s is re-inserted on OpenQ if necessary. In lines
8-10 we check for the existence of best paths that include the
newly invalid node s. In this case, the function DangleNode
is called to destroy backpointers for nodes on such a path. In
DangleNode(s), node s forms part of a best path that has
become invalid. If it is on OpenQ, it is removed (lines 2-3).
The node s is initialised to NEW . The neighbours of s are
checked for any paths through which it will also now be invalid
(lines 7-10), or otherwise for a neighbour that may have to be
reinserted into OpenQ (lines 11-12).

Function 9 InsertOnOpenQ(s, hnew)
1: if t(s) = NEW then
2: k(s) = hnew;
3: else if t(s) = OPEN then
4: k(s) =min(k(s), hnew);
5: Dequeue(s);
6: else
7: k(s) =min(h(s), hnew);
8: h(s) = hnew;
9: r(s) = Rcurr;

10: f(s) = k(s)+GVal(s,Rcurr);
11: fB(s) = f(s) + dcurr;
12: t(s) = OPEN ;
13: Enqueue(OpenQ, s, fB(s), f(s), k(s));

IV. IMPLEMENTATION AND AN EXAMPLE

The algorithm has been implemented in C+ + and QT (a
graphical user interface). The user can generate a random graph
by specifying the size and other details such as edge costs,
obstacle and threat nodes and a start and destination node. The
status of variables are shown and the user can opt to change any
edge’s cost or node’s status at any time step. The example is
based on the graph in Figure 2. The start node is node number

Function 10 ModifyCost(x, y, NewCost)
1: c(x, y) = NewCost;
2: if b(y) = x then
3: if t(x) = CLOSED then
4: InsertOnOpenQ(x, h(x));
5: else if b(x) = y then
6: if t(y) = CLOSED then
7: InsertOnOpenQ(y, h(y));
8: else
9: if t(y) = CLOSED then

10: InsertOnOpenQ(y, h(y));
11: if t(x) = CLOSED then
12: InsertOnOpenQ(x, h(x));

Function 11 RevertPath(s,i)
1: h(s) = k(s) = f(s) = fB(s) =∞;
2: if t(s) = OPEN then
3: Dequeue(OpenQ, s);
4: t(s) = NEW ;
5: if b(s) 6= NULL AND t(b(s)) 6= NEW then
6: InsertOnOpenQ(b(s), h(b(s)));
7: b(s) = NULL;
8: for x ∈ Neighbour(s) do
9: if ConstraintCheck(x) AND i 6= x AND b(x) = s then

10: DangleNode(x);

Function 12 StatusChange(s, NewStatus)
1: OldStatus = status(s);
2: status(s) = NewStatus;
3: if NewStatus = T then {new status is a ’Threat’}
4: h(s) = k(s) = f(s) = fB(s) =∞;
5: if t(s) = OPEN then
6: Dequeque(OpenQ, s);
7: t(s) = NEW ;
8: for x ∈ Neighbour(s) do
9: if t(x) 6= NEW then

10: RevertPath(x, s);
11: b(s) = NULL;
12: else if OldStatus = U then {changed from

’Unoccupied’⇒’Obstacle’}
13: if t(s) 6= NEW then
14: RevertPath(s);
15: else if OldStatus = O then {changed from

’Obstacle’⇒’Unoccupied’}
16: for all x ∈ Neighbour(s) do
17: if t(x) 6= NEW AND status(x) = U then
18: InsertOnOpenQ(x, h(x));
19: else if OldStatus = T then {was status ’Threat’ before}
20: for all x ∈ Neighbour(s) do
21: if t(x) = U then
22: for all y ∈ Neighbour(x) do
23: if x 6= s AND t(y) 6= NEW AND status(y) =

U then
24: InsertOnOpenQ(y, h(y));



Function 13 DangleNode(s)
1: temp = b(s);
2: if t(s) = OPEN then
3: Dequeue(OpenQ, s);
4: t(s) = NEW ;
5: h(s) = f(s) = fB(s) = k(s) =∞;
6: b(s) = NULL;
7: for all x ∈ Neighbour(s) do
8: if x 6= temp AND ConstraintCheck(x) then
9: if b(x) = s then

10: DangleNode(x);
11: else if t(x) = CLOSED then
12: PutOn = PutOn+ {x};

{Nodes in PutOn will later be considered for
insertion on OpenQ}

2 (the node with a flag at the top of the graph between nodes
4 and 9) and the destination node is node number 16 (the node
with a flag at the bottom middle of the graph between nodes
13 and 14). A direct distance (between nodes in the graph)
heuristic function is used to calculate the GV al function. Some
of the distances between nodes are displayed in Table 1. For
simplicity, all the edges have a cost of 1.

Phase 1: Calculate an initial optimal path: At the end of
this phase we show node expansion for the previous version
of this algorithm [2] which did not include a heuristic func-
tion. This illustrates how the addition of a heuristic function
decreases node expansion.

The nodes numbered 1 (in the middle and to the left
side of the graph) and 18 (right, close to the bottom right
side of the graph) are obstacles (shaded darker), and all the
other nodes are unoccupied. We show how the algorithm,
function FConstraint DStar, calculates the initial optimal path.
The destination node is inserted into OpenQ by the Initialise
function with k(16) = h(16) = r(16) = 0, f(16) = fB(16)
= 1.04 and Rcurr = R = 2. In the first execution of the while
loop in ComputeOptimalPath, s = 16, and its neighbours,
nodes 13 and 14, are placed into OpenQ with the vectors
〈1, 99; 1, 99; 1〉 and 〈2, 69; 2, 69; 1〉 respectively. The following
steps are performed during each execution of the while loop :
s = 13 and OpenQ : 5〈2, 54; 2, 54; 2〉; 9〈2, 59; 2, 59; 2〉; 14
〈2, 69; 2, 69; 1〉. s = 5 and OpenQ: 9〈2, 59; 2, 59; 2〉; 14 〈2, 69;
2, 69; 1〉; 3〈3, 59; 3, 59; 3〉. s = 9 and OpenQ: 14〈2, 69;
2, 69; 1〉; 2〈3; 3; 3〉; 12〈3, 27; 3, 27; 3〉; 3〈3, 59; 3, 59; 3〉.
s = 14 and OpenQ: 2〈3; 3; 3〉; 7〈3, 12; 3, 12; 2〉; 6〈3, 27; 3, 27;
2〉; 12〈3, 27; 3, 27; 3〉; 3〈3, 59; 3, 59; 3〉. s = 2 and OpenQ:
7〈3, 12; 3, 12; 2〉; 6〈3, 27; 3, 27; 2〉; 12〈3, 27; 3, 27; 3〉; 3〈3, 59;
3, 59; 3〉. The optimal path, 2-9-13-16, has a total path cost of
3.

Note: Without the focussing heuristic, i.e. with the authors’
previous algorithm, the path expansion to obtain the same
optimal path would have been much wider:
s = 13 and OpenQ : 14, 9, 5. s = 14 and OpenQ: 9, 6, 7,
5. s = 9 and OpenQ: 6, 7, 5, 12, 2. s = 6 and OpenQ: 7, 5,
12, 11, 2, 17. s = 7 and OpenQ: 5, 12, 17, 11, 2. s = 5 and
OpenQ: 12, 17, 3, 11, 2. s = 12 and OpenQ: 17, 3, 11, 2,
15. s = 17 and OpenQ: 3, 11, 2, 15. s = 3 and OpenQ: 11,
2, 15, 0, 19. s = 11 and OpenQ: 2, 15, 0, 19, 8. s = 2 and
OpenQ: 15, 0, 19, 8, 4.

Phase 2: The Status of a Node Changes from Unoccupied
to Obstacle: The execution of FConstraint DStar continues
where we left off in Phase 1 above. Execute the while loop
(lines 5-29) once such that R = 9. This means the unit started
traversing the optimal path and is now at node 9. Suppose
node 13’s status has changed from Unoccupied to Obstacle,
that is, status sensor(13) = O. When the while loop is
executed again, the if statement in line 15 is satisfied as well
as the if statements in lines 17-18. dcurr = 0.6 (assuming
ε = 0.01) and Rcurr = 9. The function StatusChange(13,O)
is called and it, in turn, calls RevertPath(13) in line 14.
Node 16 is inserted into OpenQ (line 6 of RevertPath) with
f(16) = 1.30, fB(16) = 1.30+0.6 = 1.9 and r(16) = 9. The
neighbours of node 13, nodes 5, 9, 16 and 18, are evaluated
in lines 8-10 of RevertPath. Nothing is done for nodes 16
and 18 (an obstacle) and DangleNode is called for nodes
5 and 9 (line 11). The best paths through nodes 5 and 9
must now be invalidated. The call DangleNode(5) results in
node 3 being removed from OpenQ and the call DangleN-
ode(9) results in the calls DangleNode(2) and DangleNode(12)
where node 12 is removed from OpenQ. Now OpenQ con-
tains: 16〈1.9; 1.3; 0〉; 7〈3, 12; 3, 12; 2〉; 6〈3, 27; 3, 27; 2〉. Com-
puteOptimalPath is called again with s = 16. The only viable
neighbour of 16 is 14. A new optimal path is then expanded
through from the current position of the military unit, 9 to 2-
0-8-11-6-14-16.The miltary unit can then reach the destination
through this path if no new changes are detected.

Phase 3: The Status of Two Nodes Change: In Phase 1
an optimal path was computed for the initial graph depicted
in Figure 2. Nodes 1 and 18 are obstacles and all other
nodes are unoccupied. The start node is 2 and the destination
node is 16. The optimal path is nodes 2-9-13-16, and OpenQ
contains: 7〈3, 12; 3, 12; 2〉; 6〈3, 27; 3, 27; 2〉; 12〈3, 27; 3, 27; 3〉;
3〈3, 59; 3, 59; 3〉. This phase continues from this point in the
execution of the main algorithm. Before the while loop in
lines 5-29 of FConstraint DStar is executed, the following
nodes change their status: node 12 becomes a threat and
node 18 becomes unoccupied. (Rcurr = R = 2.) The if
statement in line 15 is true but the if statement in line 17
is false. The for loop in lines 21-26 is executed and the call
StatusChange(12,T) is made. Node 12 is initialised to a NEW
status and removed from OpenQ, and the if statement in
lines 3-11 (of StatusChange) is executed. RevertPath(9,12) is
called. Node 9 is initialised to NEW , node 13 is re-inserted
into OpenQ and b(9) = NULL. The call DangleNode(2)
results in the initialisation of node 2 to NEW and b(2) =
NULL. To complete the call to StatusChange(12,T), b(12)
becomes NULL. Now OpenQ contains: 13〈1, 99; 1.99; 1〉;
7〈3, 12; 3, 12; 2〉; 6〈3, 27; 3, 27; 2〉;3〈3, 59; 3, 59; 3〉. Back in
FConstraint DStar, the second iteration of the for loop in lines
21-26 has to be executed: A call to StatusChange(18,U) is
made and node 13 is re-inserted on OpenQ. This re-insertion
has to be made to check whether the unit has moved since the
last insertion of node 13 on OpenQ. ComputeOptimalPath is
called in line 28 of the main function. Node 13 is taken from
OpenQ and a path to node 18 is expanded. The following
nodes are expanded in turn: 10,19, 11, 17, 0, 8 and 2. The
optimal path is 2-0-3-5-13-16.

Stenz has shown that his Focussed D* algorithm [4] cuts
down the number of expanded considerably compared to his
original algorithm [3]. The Focussed Constraint algorithm



TABLE I. DIRECT DISTANCE BETWEEN SOME NODES IN EXAMPLE GRAPH

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 .85
1 .90
2 .3 .9 .59 .41 .54 1.27 1.12 .84 .59 .91 1.15 .27 .99 1.69 1.04 0.88 .85 .71
3 .59
4 .41
5 .54
6 1.27
7 1.12
8 .84
9 0.85 .59 1 1.85 1.53 1.32 1.75 1.3 1.45

10 .91
11 1.15 1.75
12 .27
13 .99
14 1.69
15
16 1.04 1.3
17 .88 1.45
18 .85
19 .71

Fig. 2. Intial Example Graph

presented in this paper is based on the Focussed D* algorithm
of Stenz and will thus improve our original algorithm (based
on Stenz’s original algorithm) in a similar way. This aim of
this paper was to modify and extend our original contraint
algorithm by focussing the search similar to that done by Stenz.

V. CONCLUSIONS

The authors introduce a constraint-based algorithm with a
focussing heuristic to solve a CSP formulation of the Dynamic
Military Unit Path Finding Problem. This algorithm improves
the authors’ previous constraint-based D* algorithm [2] and
is based on Stenz’s Focussed D* algorithm for dynamic path
finding problems [4]. The advantage of a CSP approach to
path finding problems is the flexibility it provides in modelling
problems with particular characteristics such as the military
unit path finding where path costs have to be minimised whilst
safety aspects have to be taken into account. Experimentation
with other heuristics to direct the search should be done.
Future work should also consider generalisations of the current
constraints for different applications of the algorithm.

REFERENCES

[1] A. M. Mora, J. J. Merelo, J. L. J. Laredo, P. A. Castillo, C. Millan,
and J. Torrecillas, “Balancing safety and speed in the military path
finding problem: Analysis of different aco algorithms,” in Proceedings
of the 9th Annual Conference on Genetic and Evolutionary Computation
(GECCO’07), London, UK, July, 2007.

[2] L. Leenen, A. Terlunen, and W. le Roux, A Constraint Programming So-
lution for the Military Unit Path Finding Problem, ser. Mobile Intelligent
Autonomous Systems: Recent Advances. Bota Raton, USA: Taylor &
Francis Group, 2012, pp. 225–240.

[3] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), vol. 4, 1994, pp. 3310–3317.

[4] A. Stenz, “The focussed D* algorithm for real-time replanning,” in
Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI’95), vol. 2, 1995, pp. 1652–1659.

[5] L.Leenen, J. Vorster, and W. le Roux, “A constraint-based solver for
the military unit path finding problem,” in The 2010 Spring Simulation
Multiconference, Florida, USA, 2010.

[6] R. Dechter, Constraint processing, 1st ed. San Fancisco: Morgan
Kaufman Publishers, 2003.

[7] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint program-
ming (ed), 1st ed. Elsevier, 2006.


