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Abstract—Gesture recognition has become a popular area of
research with applications in medical systems, assistive tech-
nologies, entertainment, crisis management, disaster relief and
human-machine interaction. This paper presents a static gesture
recognition system which uses an Asus Xtion Pro Live sensor
to obtain the skeletal model of the user. Typically, joint angles
and joint positions have been used as features. However these
features do not adequately divide the gesture space, resulting
in non-optimal classification accuracy. Therefore to improve the
classification accuracy, a new feature vector, combining joint
angles and the relative position of the arm joints with respect to
the head, is proposed. A k-means classifier is used to cluster each
gesture. New gestures are classified using a Euclidean distance
metric. The new feature vector is evaluated on a 10 static gesture
dataset, consisting of 7 participants. The vector containing only
joint angles achieves a classification accuracy of 91.98%. In
contrast, the new feature vector containing both joint angles and
the relative positions of the arm joint with respect to the head
achieves a classification accuracy of over 99%.
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I. INTRODUCTION

The study of gestures has been of great interest to re-
searchers since the 18th century as they are thought to be a
natural way in which human beings communicate expression
and intent. More recently, much work has been focused on
imbuing computers and robots with the ability to recognize
and interpret gestures to enable more natural Human Computer
Interaction (HCI). Typically, this would involve analysing
captured images of a person performing a gesture using their
bare hands. In static gesture recognition, each image represents
a single gesture.

Each image is analysed and features such as skin colour,
joint position, orientation and joint angles are extracted from
the image using image processing. These are then used as an
input to a classifier. In this paper features are extracted from
the NiTE skeleton model obtained using depth data from an
Asus Xtion Pro Live. Two feature vectors are extracted: one
containing the angles of the arm joint and another containing
both the joint angles and position of the arm joints relative
to the head. A k-means classifier is used to cluster the data
and the performance of the feature vectors is evaluated on a
collected static dataset.

The rest of this paper is ordered as follows: Section II de-
scribes current gesture recognition systems. Section III details

the calculations used to extract the joint angle features and rel-
ative position features from the skeletal data and describes the
algorithms, training and test procedure used in classification of
the samples. Section IV provides details on the static dataset
collection used for testing. Section V presents the experimental
results obtained on both the recorded dataset and a publically
available dataset and Section VI concludes.

II. RELATED WORK

Much research been done in the field of gesture recogni-
tion, with two main approaches being employed – vision-based
systems and glove-based systems. The glove-based system
captures the motion of the joints using sensors worn by the
user which may hamper natural movements. On the other
hand, vision-based systems do not require the user to wear
any additional equipment as they use cameras and other types
of vision sensors to capture the gesture.

More recently depth sensors, such as the Kinect, have
been used for the purposes of gesture recognition. Suarez and
Murphy [1] present an in-depth review of gesture recognition
using depth images.

Examples of gesture recognition systems which use depth
sensors are those developed by Lai et al. [2], Jaemin [3] and
Zafrulla et al. [4].

Lai et al. [2] use a Kinect camera in order to control a
computer interface. Similarly to the approach presented in
this paper, features are extracted from the skeleton model.
However, the Kinect SDK skeleton model is used rather than
the NiTE skeleton. Additionally, two types of feature vectors
are used and compared - joint positions and a covariance
matrix of the joint positions. The gestures are temporal rather
than static. Both of the approaches presented in [2] achieve a
classification accuracy of 97.25%. Jaemin [3] also uses depth
data for the purposes of gesture recognition. Joint angles are
extracted from the Kinect skeleton model and these are fed
as inputs to a HMM (Hidden Markov Model) classifier. As
in [2], the gestures are temporal rather than static and an
accuracy of 81.8% is achieved. Zafrulla et al. [4] achieve a
classification accuracy of 73.62% using Kinect data and an
HMM classifier. They define a gesture set consisting of 19
gestures for the purposes of sign language recognition. The
features extracted from the skeleton are the vectors between
joints, joint angle and the distance between the hands resulting
in a 20-dimensional feature vector.



Fig. 1. NiTE Skeleton Model

This paper proposes the use of a new feature – the relative
position of the arm joints with respect to the head.

III. EXPERIMENTAL DESIGN

A. Feature Extraction

The Asus Xtion Pro Live depth sensor generates depth
maps, RGB images and audio streams without requiring a user
to wear any additional aids [5]. To interface with the device,
the OpenNI [6] and NiTE SDKs [7] are used. These SDKs
provide a user control API to the end user by utilising the
depth, RGB and audio information received from the depth
sensor. In particular, the NiTE library includes a skeleton
tracker [7]. The skeleton model generated by NiTE is a tree
graph whose nodes correspond to certain joints in the human
body as seen in Figure 1. The skeleton tracker tracks the
3-D (x, y, z) coordinates of these 15 joints in real-time, at
30 frames per second (fps). The skeleton model is robust to
differences in user size and shape, clothing colour and texture
and background clutter making it ideal for feature generation.

As this work considers hand gestures, only the joints in the
upper body are of interest. Specifically, the joints of interest
are the: left shoulder (ls), right shoulder (rs), left elbow (le),
right elbow (re), left hand (lh), right hand (rh) and head (he)
joints.

1) Relative Joint Distances: For each pose, the 3-D dis-
tance between each of the 6 arm joints and the head joint was
calculated forming an 18-dimensional feature vector based on

Fig. 2. Joint angles calculated from the skeleton tracker data

Fig. 3. Calculation of elbow angle

joint distances:

FJD = [xls − xhe, yls − yhe, zls − zhe, ..., zrh − zhe]. (1)

In order to compensate for the variation in user height, each
distance was divided by the vertical distance between the neck
and torso joint as in [2].

2) Joint Angles: As discussed, the distance between joints
is affected by the height of the user. Therefore, relative distance
is not a scale invariant feature. Joint angles on the other hand,
are both scale and rotation invariant, as they are not dependent
on the height of the subject, or the distance from the camera,
or the orientation of the user relative to the camera plane. Six
joint angles were calculated for each pose. These are shown
in Figure 2. Figure 3 illustrates the elbow angle. To calculate
the joint angle, the vector between joints must be computed.
The shoulder-elbow vector (s− e) and elbow-hand vector are
given by Equations 2 and 3 respectively.

s− e = (x2 − x1)̂i+ (y2 − y1)ĵ + (z2 − z1)k̂ (2)

e− h = (x2 − x3)̂i+ (y2 − y3)ĵ + (z2 − z3)k̂ (3)



Fig. 4. Depiction of the relative position of the right and left hands with
respect to the head.

The elbow angle is then given by Equation 4.

θ = arccos

(
s− e · e− h
|s− e||e− h|

)
(4)

where the numerator, s− e · e− h is the scalar product of the
vectors s− e and e− h. The denominator is the product of
the magnitudes of the vectors s− e and e− h.

The joint angle feature vector is a six-dimensional feature
vector defined as follows:

FJA = [γL, γR, βL, βR, αL, αR]. (5)

where the symbols are as defined in Figure 2.

3) Relative Joint Positions: As joint angles are rotation
invariant, a pose with the arms stretched on either side of the
torso and arms stretched in front of the torso will have similar
feature vectors. Therefore, the relative joint position between
the elbow and hand joints and the head joint is calculated for
each pose. Figure 4 shows the position of the hand relative to
the x-component of the head joint. Similarly to Equation 2,
the head-hand vector is given by:

he− h = (x2 − x1)̂i+ (y2 − y1)ĵ + (z2 − z1)k̂. (6)

The x-component of the head joint is:

hex = x1î+ 0ĵ + 0k̂. (7)

Thus the position of the hand relative to the head is:

ϕ = arccos

(
he− h · hex
|he− h||hex|

)
. (8)

If the joint is below the head, the angle is subtracted from
360◦ to ensure that relative joint positions have unique angular
representations.

TABLE I. DESCRIPTION OF FEATURE VECTOR ELEMENTS

γ Elbow-Shoulder-Neck
Angle

ϕ Relative position of the el-
bow relative to the head

β Torso-Shoulder-Neck An-
gle

σ Relative position of the
hand relative to the head

α Hand-Elbow-Shoulder
Angle

lh− rh Distance between the left
and right hands

4) Combined Feature Vector: The joint angles, relative
joint positions and the distance between the left and right hands
are combined to form an eleven-dimensional feature vector:

FC = [γL, γR, βL, βR, αL, αR, ϕL, ϕR, σL, σR, lh− rh] (9)

Table I provides a brief description of each element in the
feature vector.

B. Training and Testing

After the features have been collected, a k-means
classifier is trained for each of the ten poses (shown
in Figure 5) to obtain cluster centres in the form
{C1

1 ...C
K
1 , C

1
2 ...C

K
2 , ..., C

1
10...C

K
10} where K is the number of

clusters per gesture. The k-means classifier clusters the data
into distinct region such that the distance between points within
a cluster is small compared to the distances between points in
different regions [8]. The value of K used for these experiments
is 14. This value was determined as empirically yielding the
best inter-class divion.

For each new query, FQ, the Euclidean distance to each
cluster centre is computed by Equation 10.

ε(FQ, Ckgn) :=

√√√√ N∑
n=1

(fQn − Ckgn)2 (10)

where N is the number of features. Then, the classification of
a new query is given by Equation 11.

label(FQ) = label(Fm),

m = argmin
k=1..K,g=1..10

ε(FQ, Ckgn)
(11)

The performance of the feature vectors is compared. To
evaluate the performance of the system, leave-one-out cross
validation (LOOCV) is performed. In LOOCV, the data is
partitioned into a n subsets of equal size. The classifier is
then trained n times using each of the n subsets in turn as
the test set and the remaining data as the training set [9]. In
this case, all instances of a particular individual performing
all gestures were set aside for testing. The remaining data was
used to train the k-means classifier. Then, the gesture label for
each gesture in the test set was determined individually. This
was repeated for each user. To find the percentage of correctly
classified gestures or the classification accuracy rate, the total
number of correct classifications is divided by the total number
of tests.

IV. STATIC DATASET COLLECTION

A. Gesture Set

In order to validate and compare the performance of the
proposed feature vectors, a gesture set consisting of 10 dif-
ferent static gesture classes was created. Figure 5 shows the



Fig. 5. Sample frames from the static gesture set

Fig. 6. The depth image in the left depicts the actual pose of the user ”Sleep”
whilst the skeleton model being tracked is shown on the right. It is evident
that the skeleton tracking for the pose is inaccurate.

sample frames of a single person performing the 10 gestures.
The gesture classes were given the following labels: ”star”,
”cross”, ”flow”, ”my”, ”sleep”, ”victory”, ”hands-up”, ”left
arm extended”, ”right arm extended”, and ”both arms ex-
tended”.

B. Data Collection

The dataset was collected using an Asus Xtion Pro Live and
the NiTE skeleton tracking SDK. In each frame, the skeleton
joint positions of the tracked user are received from NiTE.
These are used to calculate the joint angles. The joint positions
and joint angles are stored in a text file.

The dataset was collected in a laboratory environment.
As discussed, the skeleton model is robust to variations in
lighting and background therefore these conditions were not
controlled. Seven participants performed each of the ten ges-
tures three times, holding the pose for five seconds. Hence
there are 7 participants×10 gestures×3 repetitions×5 seconds
×30 frames per second = 31 500 samples.

1) Data Pruning: It was observed that the skeleton tracker
did not always accurately track the users pose. This was noted
particularly for gestures which crossed the chest such as the
sleep, cross and my gestures. Examples of the ’lost’ tracking
can be seen in Figure 6. Therefore, samples with tracking
errors were removed from the dataset. The content of the
resulting dataset is shown in Table II.

V. EXPERIMENTAL RESULTS

Tables III and IV show the confusion matrices for the joint
angle and combination feature vector methods. A confusion

TABLE II. DATASET CONTENTS AFTER SAMPLES WITH TRACKING
ERRORS WERE REMOVED

Gesture Number of Samples Gesture Number of Samples
Bextend 3150 Rextend 3150

Cross 2979 Sleep 2602

Hands Up 3150 Star 3000

Lextend 3150 Flow 2150

My 3081 Victory 3150

Total 29 562

TABLE III. CONFUSION MATRIX WHEN THE JOINT ANGLE FEATURE
VECTOR IS USED (AVERAGE ACCURACY = 91.98%).
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Bextend 1.00
Cross 0.77 0.252 0.01
Hands Up 0.96 0.04
Lextend 0.98 0.02
My 1.00
Rextend 1.00
Sleep 0.18 0.75 0.07
Star 0.87 0.13
Flow 0.02 0.98
Victory 0.06 0.08 0.85

TABLE IV. CONFUSION MATRIX WHEN THE JOINT ANGLE AND
RELATIVE JOINT POSITION FEATURE VECTOR ARE USED (AVERAGE

ACCURACY = 99.35%).
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Bextend 1.00
Cross 0.98 0.02
Hands Up 1.00
Lextend 1.00
My 1.00
Rextend 1.00
Sleep 0.01 0.01 0.98
Star 0.99 0.01
Flow 0.02 0.98
Victory 1.00

matrix details the actual and predicted classifications per-
formed by a classification sytems. The rows of the confusion
matrices indicate the true class label for each gesture and
the columns indicate the predicted class label [10]. Cells
highlighted in green indicate the percentage of the gesture
which are correctly classified or the true positive rate. The
cells highlighted in orange depict the proportion of gesture
samples which are misclassified. Rows highlighted in red
indicate gestures where the correct classsification rate is less
than 80%. The joint angle method achieves a classification
accuracy of 91.98% and the combined feature vector method
a classification accuracy of 99.35%. It is evident that the
feature vector which includes the relative position of the joints
achieves much higher classification accuracy.

Increasing the number of features often introduces issues
related to computational complexity and the amount of training
data required[11]. This is illustrated in Table V which shows
the training and classification time for the two methods.



TABLE V. COMPARISON OF THE TRAINING AND CLASSIFICATION
TIME FOR THE JOINT ANGLE FEATURE VECTOR AND THE COMBINATION

FEATURE VECTOR

Joint Angle Feature Vec-
tor

Joint Angle and Relative
Position Feature Vector

Training Time 2.496 s 4.256 s

Classification Time 74 µs 29 µs

TABLE VI. CONFUSION MATRIX FOR THE CORNELL MILITARY
GESTURE DATASET (AVERAGE ACCURACY = 99.24%).
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Abreast 1.00
Antigesture 1.00
Backup 0.99 0.01
Enemy 1.00
Freeze 1.00
Gas 0.92 0.04 0.04
Hide 1.00
Injury 1.00
Land 0.01 0.99
Listen 1.00
Pistol 1.00
Rifle 1.00
Stop 1.00
Unknown 1.00
Watch 1.00

It can be seen that the joint angle feature vector is almost
two times faster to train than the combination feature vector
with both tests been performed on an Intel Core i7 CPU
@ 3.20 GHz using software developed in C++. However,
the classification time for both methods is significantly less
than 45 ms. Thus, the response time would be perceived
as instantaneous by humans according to a study done by
Sheriden and Ferrell [12].

In order to test the robustness of the proposed feature
vector, the performance of the feature vector was also evaluated
on a publically available dataset.

The Cornell Military Gesture Dataset [13], consists of 15
static gestures of 3 people performing each gesture ten times.
Each recording is taken at 50 fps and lasts five seconds, hence
there are 112 500 samples. LOOCV was used. The confusion
matrix is shown in Table VI. A classification accuracy of
99.24% is achieved. This is a 0.1% drop in accuracy compared
to the accuracy achieved using the collected dataset and may
be attributed to the fact that the Cornell dataset contains
more gestures. In addition, the proposed feature vector attains
a better classification accuracy than that reported in [13].
A comparison of the classification accuracies is shown in
Table VII.

VI. CONCLUSION

A real-time static gesture recognition system using an
Asus depth sensor has been developed. Using a feature vector
consisting of both joint angles and relative joint positions
achieves a much higher classification rate compared to using
a feature vector consisting of just joint angles. In addition
the robustness of the feature vector has been proven using
a publically available dataset.
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