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Abstract. In this paper we investigate the module-theoretic properties
of ⊥− and >-reachability modules in terms of inseparability relations for
the DL SRIQ. We show that, although these modules are not deplet-
ing or self-contained, they share the robustness properties of syntactic
locality modules and preserve all justifications for an entailment.

1 Introduction

Modularization plays an important part in the design and maintenance of large
scale ontologies. Modules are loosely defined as subsets of ontologies that cover
some topic of interest, where the topic of interest is defined by a set of symbols.
Extracting minimal modules is computationally expensive and even undecidable
for expressive DLs [3, 4]. Therefore, the use of approximation techniques and
heuristics plays an important role in the efficient design of algorithms. Syntactic
locality [3, 4], because of its excellent model theoretic properties, has become an
ideal heuristic and is widely used in a diverse set of algorithms [14, 2, 5].

Suntisrivaraporn [14] showed that, for the DL EL+, ⊥-locality module ex-
traction is equivalent to the reachability problem in directed hypergraphs. Nortjé
et al. [10, 11] extended the reachability problem to include >-locality and intro-
duced bidirectional reachability modules as a subset of ⊥>∗-locality modules.
This work was further extended to the DL SROIQ Nortje et al. [12] who showed
that extracting ⊥>∗-reachability modules is equivalent to extracting frontier
graphs in hypergraphs. Reachability modules are not only of importance in
hypergraph-based reasoning support for TBoxes [12], but are potentially smaller
than syntactic locality modules.

In this paper we investigate the module-theoretic properties of reachability
modules for the DL SRIQ. We show that these modules are not self-contained
or depleting but they are robust under vocabulary restrictions, vocabulary ex-
tensions, replacement and joins. By showing that reachability modules preserve
all justifications for entailments, we show that depleting modules are sufficient
for preserving all justifications but not necessary.

In Section 2 we give a brief introduction to the DL SRIQ and modulariza-
tion as defined by inseparability relations. Section 3 introduces a normal form
for SRIQ TBoxes as well as the rules necessary to transform any such TBox to



normal form. In Section 4 we introduce both ⊥- and > reachability modules and
investigate all their module theoretic properties in terms of inseperability rela-
tions. All proofs of the work presented appears in the accompanying appendix.
Lastly in Section 5 we conclude this paper with a short summary of the results.

2 Background

In this section we give a brief introduction to modularization and the DL SRIQ
[7] with its syntax and semantics listed in Table 2. NC and NR denote disjoint
sets of atomic concept names and role names. The set NR includes the universal
role whilst NC excludes the > and ⊥ concepts. For a complete definition of
SRIQ, refer to Horrocks et al. [7], and for Description Logics refer to [1].

Constructs Syntax Semantics

atomic concept C CI ∈ ∆I , C ∈ NC

role R RI ⊆ ∆I ×∆I , R ∈ NR

inverse role R− R−I = {(y, x) | (x, y) ∈ RI}, R ∈ NR

universal role U UI = ∆I ×∆I
role composition R1 ◦ . . . ◦Rn {(x, z) | (x, y1) ∈ RI1 ∧ (y1, y2) ∈ RI2 ∧ . . .

∧(yn, z) ∈ RIn, n ≥ 2, Ri ∈ NR}
top > >I = ∆I

bottom ⊥ ⊥I = ∅
negation ¬C (¬C)I = ∆I \ CI
conjunction C1 u C2 (C1 u C2)I = CI1 ∩ CI2
disjunction C1 t C2 (C1 t C2)I = CI1 ∪ CI2
exist restriction ∃R.C {x | (∃y)[(x, y) ∈ RI ∧ y ∈ CI ]}
value restriction ∀R.C {x | (∀y)[(x, y) ∈ RI → y ∈ CI ]}
self restriction ∃R.Self {x | (x, x) ∈ RI}
atmost restriction 6 nR.C {x | #{y | (x, y) ∈ RI ∧ y ∈ CI} 6 n}
atleast restriction > nR.C {x | #{y | (x, y) ∈ RI ∧ y ∈ CI} > n}
Axiom Syntax Semantics

concept inclusion C1 v C2 CI1 ⊆ CI2
role inclusion R1 ◦ . . . ◦Rn v Rn+1 (R1 ◦ . . . ◦Rn)I ⊆ RI , n ≥ 1
reflexivity Ref(R) {(x, x) | x ∈ ∆I} ⊆ RI
irreflexivity Irr(R) {(x, x) | x ∈ ∆I} ∩RI = ∅
disjointness Dis(R,S) SI ∩RI = ∅

Table 1. Syntax and semantics of SRIQ

Module extraction is the process of extracting subsets of axioms from TBoxes
that are self contained with respect to some criteria. These sets of axioms, called
modules, may be used for various purposes such as reuse, optimization and error
pinpointing amongst others [4, 14].

Definition 1. (Module for the arbitrary DL L) Let L be an arbitrary de-
scription language, O an L ontology, and σ a statement formulated in L. Then,
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O′ ⊆ O is a module for σ in O(a σ-module in O) whenever: O |= σ if and only
if O′ |= σ.

Definition 1 is sufficiently general so that any subset of an ontology preserving
a statement of interest is considered a module, the entire ontology is therefore a
module in itself.

Different use cases usually result in different notions of what the definition
and characteristics of a module should be. Modules are often defined via the
notion of conservative extensions. Given some signature (a set of concept and
role names) and a set of axioms, a conservative extension of this set is simply
one that implies all the same consequences over the signature. More formally:

Definition 2. (Conservative extension [4]) Let T and T1 be two TBoxes
such that T1 ⊆ T , and let Σ be a signature. Then

– T is a Σ-conservative extension of T1 if, for every α with Sig(α) ⊆ Σ, we
have T |= α iff T1 |= α.

– T is a conservative extension of T1 if T is a Σ-conservative extension of T1
for Σ = Sig(T1).

Given that both sets of axioms imply the same consequences for a given
signature we may then use the smaller set whenever we wish to reason over
this signature. A closely related notion to conservative extensions is that of
inseparability.

Definition 3. [13] T1 and T2 are Σ-concept name inseparable, written T1 ≡cΣ
T2, if for all Σ- concept names C,D, it holds that T1 |= C v D if and only if
T2 |= C v D.

Definition 4. [13] T1 and T2 are Σ-subsumption inseparable, written T1 ≡sΣ T2,
if for all terms X,Y that are concepts or roles over Σ, it holds that T1 |= X v Y
if and only if T2 |= X v Y .

Definition 5. [13] Let T be a TBox, M⊆ T , S an inseparability relation and
Σ a signature. We call M

– an SΣ-module of T if M≡SΣ T .
– a self-contained SΣ-module of T if M≡SΣ∪Sig(M) T .

– a depleting SΣ-module of T if ∅ ≡SΣ∪Sig(M) T \M.

Modules may therefore be characterized by some inseparability criteria. It
is of interest how modules defined this way would behave under different use
case scenarios. For this purpose, several properties of inseparability relations [8]
have been investigated in the literature, which allows us to compare different
definitions of modules. Given a TBox T and a module M ⊆ T for a signature
Σ, we are interested in the following inseparability properties:
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– Robustness under vocabulary restrictions implies that when we wish to re-
strict the symbols from Σ further we do not need to import a different
module and may continue to use M.

– Robustness under vocabulary extension implies that should we wish to add
new symbols to Σ that do not appear in T we do not need to use a different
module but may use M.

– Robustness under replacement ensures that the result of importingM into a
TBox T1 is a module of the result of importing T into T1. This is also called
module coverage and refers to the fact that importing a module does not
affect its property of being a module.

– Robusness under joins implies that if T and T1 are inseparable w.r.t. Σ and
all the terms they share are from Σ, then each of them are inseparable with
their union w.r.t. Σ.

More formally:

Definition 6. [8] The inseparability relation S is called

– robust under vocabulary restrictions if, for all TBoxes T1, T2 and all signa-
tures Σ, Σ′ with Σ ⊆ Σ′, the following holds: if T1 ≡SΣ′ T2, then T1 ≡SΣ T2.

– robust under vocabulary extensions if, for all TBoxes T1, T2 and all signatures
Σ, Σ′ with Σ′ ∩ (Sig(T1) ∪ Sig(T2)) ⊆ Σ, the following holds: if T1 ≡SΣ T2,
then T1 ≡SΣ′ T2.

– robust under replacement if, for all TBoxes T1, T2 and all signatures Σ and
every TBox T with Sig(T ) ∩ (Sig(T1) ∪ Sig(T2)) ⊆ Σ, the following holds:
if T1 ≡SΣ T2 then T1 ∪ T ≡SΣ T2 ∪ T .

– robust under joins if, for all TBoxes T1, T2 and all signatures Σ with Sig(T )∩
Sig(T2) ⊆ Σ, if T1 ≡SΣ T2 then Ti ≡SΣ T1 ∪ T2, for i = 1, 2.

3 Normal Form

In this section we introduce a normal form for SRIQ TBoxes. We utilize nor-
malization in order to simplify the definitions, to ease the understanding of the
work that follows, as well as to simplify the presentation of proofs.

Definition 7. Given Bi ∈ (NC ∪ {>}), Ci ∈ (NC ∪ {⊥}), D ∈ {∃R.B, ≥
nR.B, ∃R.Self}, with R,S,Ri, Si role names from NR or their inverses and
n > 1, a SRIQ TBox T is in normal form if every axiom α ∈ T is in one of
the following forms:

α1: B1 u . . . uBn v C1 t . . . t Cm α2: D v C1 t . . . t Cm
α3: B1 u . . . uBn v D α4: R1 ◦ . . . ◦Rn v Rn+1

α5: R1 v R2 α6: D1 v D2

α7: Dis(R1, R2)
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In order to normalize a SRIQ TBox T we repeatedly apply the normalization
rules from Table 2. Each application of a rule rewrites an axiom into its equivalent
normal form. It is easy to see that the application of every rule ensures that the
normalized TBox is a conservative extension of the original. We note that the
SRIQ axiom Ref(R) is represented by its equivalent > v ∃R.Self and Irr(R)
by ∃R.Self v ⊥ [1].

Table 2. SRIQ normalization rules

NR1 B̂ u ¬Ĉ2 v Ĉ1  B̂ v Ĉ1 t Ĉ2

NR2 B̂1 v Ĉ t ¬B̂2  B̂1 u B̂2 v Ĉ
NR3 B̂ u D̂ v Ĉ  B̂ uA v Ĉ, D̂ v A, A v D̂
NR4 B̂ v Ĉ t D̂  B̂ v Ĉ tA, D̂ v A, A v D̂
NR5 B̂ v Ĉ1 u Ĉ2  B̂ v Ĉ1, B̂ v Ĉ2

NR6 B̂1 t B̂2 v Ĉ  B̂1 v Ĉ, B̂2 v Ĉ
NR7 . . .∀R.Ĉ . . .  . . .¬∃R.A . . ., A u Ĉ v ⊥, > v A t Ĉ
NR8 . . .∃R.D̂ . . .  . . .∃R.A . . ., D̂ v A, A v D̂
NR9 . . . > nR.D̂ . . .  . . . > nR.A . . ., D̂ v A, A v D̂
NR10 . . . 6 nR.Ĉ . . .  . . .¬(> (n+ 1)R.Ĉ) . . .

NR11 B̂ ≡ Ĉ  B̂ v Ĉ,Ĉ v B̂
NR12 > 0R.B v Ĉ  > v Ĉ
NR13 B̂ v ∃R.⊥  B̂ v ⊥
NR14 B̂ v> nR.⊥  B̂ v ⊥
NR15 B̂ v> 0R.B  
NR16 > nR.⊥ v Ĉ  
NR17 ∃R.⊥ v Ĉ  
NR18 B̂ u ⊥ v Ĉ  
NR19 ⊥ v Ĉ  
NR20 B̂ v Ĉ t >  
NR21 B̂ v >  
Above A is a new concept name not in NC , B̂i and Ĉi are possibly complex concept

descriptions and D̂ a complex concept description. R ∈ NR or it’s inverse, n > 0

Theorem 1. Exhaustively applying the rules from Table 2 to any SRIQ TBox
T results in a SRIQ TBox T ′ in normal form. The normalization process can
be completed in linear time in the number of axioms.

Example 1. Let α1 = B v ¬C, and α2 = ¬A v B. Then, α1 may be normalized
by application of rule NR2 to αN1 = B uC v ⊥ since ¬C = ¬C t⊥. α2 may be
normalized by application of rule NR1 to αN2 = > v B ∪A since ¬A = ¬Au>.

For the rest of this paper we assume that all TBoxes are in normal form.
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4 Reachability Modules

Deciding conservative extensions has been shown to be computationally expen-
sive or even undecidable for relatively inexpressive DLs. Therefore, an approxi-
mation of these modules, based on syntax, called syntactic locality modules [4]
has been introduced. Given a normalized TBox T , the definition of syntactic
locality can be simplified to the following:

Definition 8. (Normalized Syntactic Locality) Let Σ be a signature and
T a normalized SRIQ TBox. An axiom α is ⊥-local w.r.t. Σ (>-local w.r.t Σ)
if α ∈ Ax(Σ)⊥ (α ∈ Ax(Σ)>), as defined in the grammar:

⊥-Locality
Ax(Σ)⊥ ::= C⊥ v C | w⊥ v R | Dis(S⊥, S) | Dis(S, S⊥)
Con⊥(Σ) ::= A⊥ | C⊥ u C | C u C⊥ | ∃R⊥.C | ∃R.C⊥ | ∃R⊥.Self |

> nR⊥.C |> nR.C⊥
>-Locality
Ax(Σ)> ::= C v C> | w v R>
Con>(Σ) ::= A> | C> t C | C t C> | ∃R>.C> |> nR>.C> |

∃R>.Self
In the grammar, we have that A⊥, A> 6∈ Σ is an atomic concept, R⊥ (resp.
S⊥) is either an atomic role (resp. a simple atomic role) not in Σ or the inverse
of an atomic role (resp. of a simple atomic role) not in Σ, C is any concept, R
is any role, S is any simple role, and C⊥ ∈ Con⊥(Σ), C> ∈ Con>(Σ). We also
denote by w⊥ a role chain w = R1 ◦ . . .◦Rn such that for some i with 1 ≤ i ≤ n,
we have that Ri is (possibly inverse of) an atomic role not in Σ. A TBox T is
⊥-local (>-local) w.r.t. Σ if α is ⊥-local (>-local) w.r.t. Σ for all α ∈ T .

Algorithm 1 may be used to extract both the minimal ⊥ and >-locality based
modules for a signature S.

A variant of⊥-syntactic locality modules called⊥-reachability based modules
[14] is based on the reachability problem in directed hypergraphs. Hypergraphs
[9, 15] are a generalization of graphs and have been studied extensively since the
1970s as a powerful tool for modelling many problems in Discrete Mathematics.
We extend the work done by Nortje et al.[11] and define reachability for SRIQ
TBoxes. We then continue to show that these modules share all the robustness
properties of locality modules and therefore is well suited to be used in the
ontology reuse scenario.

Definition 9. (⊥-Reachability) Let T be a SRIQ TBox in normal form and
Σ ⊆ Sig(T ) a signature. The set of ⊥-reachable names in T w.r.t. Σ, denoted
by Σ←⊥T , is defined inductively as follows:

– For every x ∈ (Σ ∪ {>}) we have x ∈ Σ←⊥T .
– For every inclusion axiom (αL v αR) ∈ T , if Sig(αL) ⊆ Σ←⊥T then every
y ∈ Sig(αR) is also in Σ←>T .
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Algorithm 1 (Module Extraction Algorithm for SRIQ [2])
Procedure extract module(O, S)
Input: O: ontology; S: signature;
Output: O1: a module for S in O
1 : O1 := ∅,O2 := O
2 : while not empty(O2) do
3 : α := select axiom(O2)
4 : if local(α, S ∪ Sig(O1)) then
5 : O2 := O2 \ {α}
6 : else
7 : O1 := O1 ∪ {α}
8 : O2 := O \ O1

9 : end if
10 : end while
11 : return O1

Every axiom α := αL v αR such that Sig(αL) ⊆ Σ←⊥T we call Σ←⊥T -reachable.
Axioms of the form Dis(R,S) ∈ T are Σ←⊥T -reachable whenever {R,S} ⊆ Σ←⊥T .
The set of all Σ←⊥T -reachable axioms is denoted by T ←⊥Σ and is called the ⊥-
reachability module for T over Σ.

It is self-evident from Definition 8 that an axiom is ⊥-reachable w.r.t Σ
exactly when it is not ⊥-local w.r.t. Σ. Similarly we define an axiom to be
>-reachable exactly when it is not >-local.

Definition 10. (>-Reachability) Let T be a SRIQ TBox in normal form and
Σ ⊆ Sig(T ) a signature. The set of >-reachable names in T w.r.t. Σ, denoted
by Σ←>T , is defined inductively as follows:

– For every x ∈ (Σ ∪ ⊥) we have that x ∈ Σ←>T .
– For all inclusion axioms (αL v αR) ∈ T , if

• αR = ⊥, or
• αR is of the form A1 t . . . tAn and all Ai ∈ Σ←>T , or
• αR has any other form and there exists some x ∈ Sig(αR) ∩Σ←>T

then every y ∈ Sig(αL) is also in Σ←>T .

Every axiom α := αL v αR such that, αR = ⊥, or αR is of the form A1 t . . . t
An and all Ai ∈ Σ←>T , or αR has any other form and there exists some x ∈
Sig(αR)∩Σ←>T , we call Σ←>T -reachable. All axioms of the form Dis(R,S) ∈ T
are always Σ←>T -reachable and {R,S} ⊆ Σ←>T . The set of all Σ←>T -reachable
axioms is denoted by T ←>Σ and is called the >-reachability module for T over
Σ.

It is easy to show that ⊥-reachability modules are equivalent to ⊥-locality
modules. However, by the definition of >-reachability we observe that these are
not equivalent to >-locality modules.
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Example 2. Let T be a TBox such that T = {α1, α2, α3, α4}, with α1 := A v
∃r.D1, α2 := B v≥ nr.D2, α3 := ∃r.> v C,α4 := D1 v D2 and let Σ =
{C}. Then T ←>Σ = {α1, α2, α3} but the >-locality module for T w.r.t. Σ is
{α1, α2, α3, α4}.

The difference stems from the fact that in α1 and α2 the >-reachability
of r does not ensure the >-reachability of D1 and D2 respectively. This occurs
because, given an axiom α = αL v αR, >-locality ensure that if α is >-local then
so are all of the symbols in Sig(α), whereas >-reachability is defined such that
the >-reachability of α only guarantees that all symbols of αL and only some
symbols of αR will be >-reachable. Thus >-reachability based modules are at
most the size of >-locality modules but in general could be substantially smaller.
Similar to ⊥>∗-locality modules we note that reachability module extraction
may also be alternated until a fixpoint is reached. These modules are denoted
by T ←⊥>∗Σ .

In order to investigate the module-theoretic properties of reachability mod-
ules, we follow a similar approach to Sattler et al. [13] and define inseparability
different from that of conservative extensions. We say that T1 and T2 are insep-
arable if their modules are equivalent, that is, a module extraction algorithm
returns the same output for each of them. We define the following inseparability
relations for reachability modules:

Definition 11. Let T1 and T2 be TBoxes and Σ a signature. Then T1 and T2
are:

– Σ −> reachability inseparable, denoted by T1 ≡>Σ T2, if T1←>Σ = T2←>Σ ;
– Σ −⊥ reachability inseparable, denoted by T1 ≡⊥Σ T2, if T1←⊥Σ = T2←⊥Σ ;

– Σ − ⊥>∗ reachability inseparable, denoted by T1 ≡⊥>
∗

Σ T2, if T1←⊥>
∗

Σ =

T2←⊥>
∗

Σ .

Firstly we show that >-reachability modules are subsumption inseparable.
Concept inseparability follows as a special case of subsumption inseparability.

Lemma 1. Let T be a SRIQ TBox, and Σ ⊆ Sig(T ) a signature. Then T |=
C v D if and only if T ←>Σ |= C v D for arbitrary SRIQ concept descriptions
C and D such that Sig(C) ∪ Sig(D) ⊆ Σ.

Corollary 1. Let T be a normalized SRIQ TBox, Σ ⊆ Sig(T ) a signature and
S an inseparability relation from Definitions 3 and 4. Then T ←>Σ ≡SΣ T . T ←>Σ

is therefore a SΣ-module of T .

We show by way of counter example that T ←>Σ is not a self-contained or
depleting SΣ module of T when Σ←>T 6= Sig(T ←>Σ ).

Example 3. Let T be a TBox such that T = {α1 = A v ∃r.D1, α2 = B v≥
nr.D2, α3 = ∃r.> v C,α4 = D1 v D2}, and let Σ = {C}. Then T ←>Σ =
{α1, α2, α3}, δ = Σ ∪ Sig(T ←>Σ ) = {A,B,C, r,D1, D2} 6= Σ←>T . But T |= D1 v
D2 and T ←>Σ 6|= D1 v D2. Therefore T ←>Σ is not a self-contained cΣ-module of
T . Similarly, T \ T ←>Σ |= α4 6= ∅ with Σ = D1, D2 and D1, D2 ∈ δ. Therefore,
T ←>Σ is not a depleting cΣ-module of T .
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Before investigating the robustness properties of reachability modules we
introduce some lemmas to aid us in the proofs that follow.

Lemma 2. Let α be an axiom, Σ and Σ′ be signatures, x ∈ {>,⊥} and T a
SRIQ TBox. Then:

1. If Σ ⊆ Σ′ and α is not Σ′
←x
T reachable, then α is not Σ←xT reachable.

2. If Σ′ ∩ Sig(α) ⊆ Σ and α is not Σ reachable then α is not Σ′ reachable.

Lemma 3. Let α be an axiom, Σ and Σ′ be signatures, x ∈ {>,⊥} and T , T ′
SRIQ TBoxes. Then:

1. Given T1 = T ←xΣ′ , if Σ ⊆ Σ′ then T ←xΣ = T1←xΣ . In particular T ←xΣ ⊆ T ←xΣ′ .
2. If Σ′ ∩ Sig(T ) ⊆ Σ, then T ←xΣ′ ⊆ T ←xΣ .
3. If T ⊆ T ′, then T ←xΣ ⊆ T ′←xΣ .

Lemma 4. Let Σ be an signature, T1 and T2 be SRIQ TBoxes with Sig(T1) ∩
Sig(T2) ⊆ Σ and x ∈ {>,⊥}. Then (T1 ∪ T2)

←x
Σ = T1←xΣ ∪ T2←xΣ .

Proposition 1. For x ∈ {>,⊥}, x-reachability is robust under replacement.

Proposition 2. For x ∈ {>,⊥}, x-reachability is robust under vocabulary ex-
tensions.

Proposition 3. For x ∈ {>,⊥}, x-reachability is robust under vocabulary re-
strictions.

Proposition 4. For x ∈ {>,⊥}, x-reachability is robust under joins.

Reachability modules therefore share all the robustness properties listed.
However, we have seen that these modules are neither depleting nor self-contained
modules. Amongst other things, the depleting and self-contained nature of mod-
ules are utilised in order to find all MinAs (justifications) for an entailment [6].

Definition 12. Let T be a SRIQ Tbox and M ⊆ T . M is a MinA (justifica-
tion) for T |= C v D if M |= C v D and there exists no M1 ⊂ M such that
M1 |= C v D.

We show that although our modules do not share these properties they do
contain all MinAs for a given signature.

Theorem 2. Let T be a normalized SRIQ TBox and Σ a signature such that
Σ ⊆ Sig(T ). Then for arbitrary concept descriptions C,D, such that T |= C v
D and Sig(C) ∪ Sig(D) ⊆ Σ←>T we have that T ←>Σ contains all MinAs for
T |= C v D.

The proof to show that T ←⊥>∗Σ modules share all the robustness properties
of T ←>Σ modules follows from the above lemmas and follows the proof for ⊥>∗-
locality modules by Sattler, et al. [13].
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5 Conclusion

We have investigated the module-theoretic properties of reachability modules
for SRIQ TBoxes. Reachability modules differ from syntactic locality mod-
ules in that they are not self-contained or depleting. One application of the
self-contained and depleting nature of locality modules is the finding of all justi-
fications for entailments. However, in terms of finding justifications, by showing
that reachability modules do preserve all justifications for entailments, we have
shown that these properties are sufficient but that they are not necessary.

We did preliminary investigations into the size difference between locality
and reachability modules. We extracted a random sample of 1000 modules from
each of the Pizza, Nci, Nap and Xylocopa v4 ontologies. Reachability modules
were between 2.5% and 33% smaller than locality modules with an average of
22% reduction in size across all ontologies tested.

Our focus for future research is to do an in-depth empirical evaluation on
differences with respect to size and performance between extracting reachability
modules for SRIQ and existing syntactic locality methods. We also plan to
extend these results to SROIQ.
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12. Nortjé, R., Britz, K., Meyer, T.: A normal form for hypergraph-based module
extraction for SROIQ. In: Gerber, A., Taylor, K., Meyer, T., Orgun, M. (eds.)
Australasian Ontology Workshop 2009 (AOW 2009). Ceur-ws, vol. 969, pp. 40–51.
CEUR, Melbourne, Australia (2012), http://ceur-ws.org/Vol-969/proceedings.pdf

13. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Description
Logics. CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009)

14. Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. Ph.D. thesis, Technical University
of Dresden (2009)

15. Thakur, M., Tripathi, R.: Complexity of Linear Connectivity Problems in Directed
Hypergraphs. Linear Connectivity Conference pp. 1–12 (2001)

11



A Proofs for Theorems and Lemmas

Theorem 1 Exhaustively applying the rules from Table 2 to any SRIQ TBox
T results in a SRIQ TBox T ′ in normal form. The normalization process can
be completed in linear time in the number of axioms.

Proof: We show that any SRIQ TBox can be converted to an equivalent normal
form as follows:

– Step 1 - ≡-elimination: Rule NR11 may be applied at most once for each
axiom in the TBox. No other rule introduces new axioms that contain equiv-
alences. Therefore the elimination of all equivalences from the TBox will
require linear time and add at most a linear number of axioms.

– Step 2 - ∀-elimination: Applying rule NR7 to every occurrence of a universal
restriction in any axiom, irrespective of order, will result in the elimination of
all universal restrictions within that axiom. Nested restrictions are handled
recursively as they are removed and inserted into the added axioms as Ĉ.
There are a constant number of universal restrictions per axiom and therefore
the application of rule NR7 will run in constant time, with each application
adding a constant number of new axioms. Therefore eliminating all universal
restrictions across all axioms will require linear time and add at most a linear
number of new axioms.

– Step 3 - 6-elimination: Applying rule NR10 to every occurrence of an atmost
restriction in any axiom, irrespective of order, will result in the elimination
of all atmost restrictions within that axiom. Nested restrictions are handled
recursively as needed. There are a constant number of atmost restrictions per
axiom and therefore the application of rule NR10 will run in constant time.
Therefore eliminating all atmost restrictions across all axioms will require
linear time.

– Step 4 - Complex role-filler elimination: At the start of this step there are
no universal or at most restrictions. We eliminate all complex role fillers by
applying rules NR8 and NR9 to all axioms. There are a constant number
of complex role fillers per axiom, therefore the application of these rules
requires constant time per axiom and will add at most a constant number
of axioms. Therefore, removing all complex role fillers from an ontology by
using rules NR8 and NR9 will require at most linear time and add a linear
number of new axioms.

– Step 5 - ¬-elimination and u, t-simplification: At this step there are no
existential restriction or at-least restriction with complex role fillers. Given
any axiom α = (αL v αR), in a left to right fashion we apply the rules as
follows:
1. Apply rules NR1, NR3, NR6 to αL until αL consists of an existential

restriction, an at-least restriction or the conjunction of concept names.
There are a constant number of complex concept description, negations,
disjunctions and conjunctions in αL, each of these rules either eliminates
a negation, removes a complex concept description or eliminates a dis-
junction. There are a constant number of times each of these operations
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may be applied. Rules NR3 and NR6 each add a constant number of
axioms. Therefore, αL can be processed in constant time for each axiom.

2. Apply rules NR2, NR4, NR5 to αR until αR consists of an existential
restriction, an at-least restriction or a disjunction of concept names.
There are a constant number of times each of these operations may be
applied. Rules NR4 and NR5 each add a constant number of axioms.
Therefore, αL can be processed in constant time for each axiom.

These rules are applied repeatedly until no further processing may be ap-
plied to either αL and αR. Since each step can be completed in constant
time and add at most a constant number of new axioms, normalization can
be completed in linear time in the number of axioms with at most a linear
increase in the number of axioms. 2

Lemma 1 Let T be a SRIQ TBox, and Σ ⊆ Sig(T ) a signature. Then T |=
C v D if and only if T ←>Σ |= C v D for arbitrary SRIQ concept descriptions
C and D such that Sig(C) ∪ Sig(D) ⊆ Σ.

Proof: We have to prove two parts. First: If T ←>Σ |= C v D then T |= C v D.
This follows directly from the fact that T ←>Σ ⊆ T and that SRIQ is monotonic.

Conversely, we show that, if T |= C v D then T ←>Σ |= C v D. Assume the
contrary, that is, assume T |= C v D but that T ←>Σ 6|= C v D. Then there
must exist an interpretation I and an individual w ∈ ∆I such that I is a model
of T ←>Σ and w ∈ CI \DI . Modify I to I ′ by setting xI

′
:= ∆I for all concept

names x ∈ Sig(T ) \Σ←>T , and rI
′

:= ∆I ×∆I for all roles names r ∈ Sig(T )\
Σ←> and leaving everything else unchanged. We show that I ′ is a model of
T ←>Σ . For all α := αL v αR, with α ∈ T ←>Σ , we have that:

– If αR is such that Sig(αR) ⊆ Σ←>T we have that (αR)I = (αR)I
′

since it
does not change the interpretation of any symbols.

– If αR is an existential restriction of the form ∃r.A with y ∈ Sig(αR) \Σ←>T ,

then (y)I
′

= ∆I or (y)I
′

= ∆I × ∆I depending on whether y is a role or
concept name. In both cases we have that (αR)I ⊆ (αR)I

′
.

– If αR is an at-least restriction of the form ≥ nr.A with y ∈ Sig(αR) \Σ←>T ,

then (y)I
′

= ∆I or (y)I
′

= ∆I × ∆I depending on whether y is a role or
concept name. In both cases we have that (αR)I ⊆ (αR)I

′
.

– If αR is of the form ∃R.Self with R ∈ Σ←>T we have that (αR)I = (αR)I
′

since it does not change the interpretation of the symbol R.
– If α is of the form Dis(R,S) then by definition it is always in T ←>Σ , thus
R,S ∈ Σ←>T . Therefore, the interpretation of alpha does not change.

In all cases (αL)I = (αL)I
′

since α ∈ T ←>Σ and Sig(αL) ∈ Σ←>T and thus

(αL)I
′ ⊆ (αR)I

′
. Thus, I ′ is a model for T ←>Σ . Now for every α = (αL v αR) ∈

T \ T ←>Σ we have:

– αR is a concept name and αI
′

R = ∆I , or

– αR is a role name and αI
′

R = ∆I ×∆I , or
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– αR is a disjunction of the form A1 t . . . t An with at least one Ai 6∈ Σ←>T ,

thus AI
′

i = ∆I and αI
′

R = AI1 ∪ . . . ∪∆I ∪ . . . ∪AIn = ∆I , or
– αR is an existential restriction ∃r.A1, thus rI

′
= ∆I ×∆I and AI

′

1 = ∆I so
that (∃r.A1)I

′
= ∆I , or

– αR is ∃r.Self , thus rI
′

= ∆I ×∆I so that (∃r.Self)I
′

= ∆I , or
– αR is an atleast restriction ≥ nr.A2, thus rI

′
= ∆I × ∆I , AI

′

2 = ∆I and
|∆I | ≥ n so that (≥ nr.A2)I

′
= ∆I . This follows from the fact that for any

concept description ≥ nr.A, |∆I | ≥ |(r.A)I | ≥ n for it to be satisfiable.

Since for all cases αI
′

L ⊆ αI
′

R , we conclude that I ′ is a model for T . But I and
I ′ correspond on all symbols y ∈ (Sig(D) ∪ Sig(C)) ⊆ Σ ⊆ Σ←>T and therefore

DI
′

= DI and CI
′

= CI . Now since CI = CI
′

and w ∈ CI we have that
w ∈ CI′ \DI′ and hence T 6|= C v D, contradicting the assumption. 2

Lemma 2 Let α be an axiom, Σ and Σ′ be signatures, x ∈ {>,⊥} and T a
SRIQ TBox. Then:

1. If Σ ⊆ Σ′ and α is not Σ′
←x
T reachable, then α is not Σ←xT reachable.

2. If Σ′ ∩ Sig(α) ⊆ Σ and α is not Σ reachable then α is not Σ′ reachable.

Proof:

1. By the inductive definition of x-reachability if Σ ⊆ Σ′ then Σ←xT ⊆ Σ′
←x
T .

Thus if α is not Σ′
←x
T reachable it can also not be Σ←xT -reachable.

2. Assume that α is not Σ reachable but it is Σ′ reachable. Then there is some
symbol y ∈ Sig(α) such that y 6∈ Σ and y is required for α to be Σ reachable.
α is Σ′ reachable so it must be the case that y ∈ Σ′. But this contradicts
our assumption that Σ′ ∩ Sig(α) ⊆ Σ. Thus, α is not Σ′ reachable.

Lemma 3 Let α be an axiom, Σ and Σ′ be signatures, x ∈ {>,⊥} and T , T ′
SRIQ TBoxes. Then:

1. Given T1 = T ←xΣ′ , if Σ ⊆ Σ′ then T ←xΣ = T1←xΣ . In particular T ←xΣ ⊆ T ←xΣ′ .
2. If Σ′ ∩ Sig(T ) ⊆ Σ, then T ←xΣ′ ⊆ T ←xΣ .
3. If T ⊆ T ′, then T ←xΣ ⊆ T ′←xΣ .

Proof:

1. Assume that there is some axiom α ∈ T ←xΣ such that α 6∈ T ←xΣ′ . Therefore,
we have that α is not Σ′

←x
T reachable but that it is Σ←xT reachable. But

this is a contradiction by Lemma 2.1 since Σ ⊆ Σ′. Thus, T ←xΣ ⊆ T ←xΣ′ . A
similar argument is used to show that T ←xΣ ⊆ T1←xΣ and T1←xΣ ⊆ T ←xΣ .

2. For every α ⊆ T we have that Σ′ ∩Sig(α) ⊆ Σ. Therefore, from Lemma 2.2
we have that whenever α ⊆ T is not Σ reachable it is also not Σ′ reachable
and we have that T ←xΣ′ contains at most all those axioms in T ←xΣ . Thus,
T ←xΣ′ ⊆ T ←xΣ .

3. Let δ = Σ←xT , δ′ = Σ′
←x
T1 and α ∈ (T ∩T1). Assume α is δ reachable but not

δ′ reachable. Since T ⊆ T1 and Sig(T ) ⊆ Sig(T1) we have by the inductive
definition of x reachability that δ ⊆ δ′. But by Lemma 2.1 we have that
whenever α is not δ′ reachable then it is also not δ reachable. Therefore,
T ←xΣ contains at most all those axioms in T1←xΣ . Thus, T ←xΣ ⊆ T1←xΣ .
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Lemma 4 Let Σ be an signature, T1 and T2 be SRIQ TBoxes with Sig(T1) ∩
Sig(T2) ⊆ Σ and x ∈ {>,⊥}. Then (T1 ∪ T2)

←x
Σ = T1←xΣ ∪ T2←xΣ .

Proof: LetM = (T1 ∪ T2)
←x
Σ ,M1 = T1←xΣ ,M2 = T2←xΣ . Now T1 ⊆ T1∪T2 thus

by Lemma 3.3 we have thatM1 ⊆M. SimilarlyM2 ⊆M and thusM1∪M2 ⊆
M∪M which gives usM1∪M2 ⊆M. Let Σ′ = Σ∪Σ←xT1 ∪Σ

←x
T2 . To show that

M⊆M1∪M2 we note that, when extracting these modules, the order in which
axioms are extracted are irrelevant. We therefore assume that any algorithm first
extracts axioms inM1∪M2 then tests all other axioms for Σ′

←x
T1∪T2-reachability.

Consider any axiom α ∈ (T1 ∪T2) \ (M1 ∪M2). If α ∈ T1 then α ∈ T1 \M1 and
α is not Σ←xT1 ∪ Σ reachable. Now precondition Sig(T2) ∩ Sig(T1) ⊆ Σ implies
Σ←xT2 ∩ Sig(α) ⊆ Σ, taken that α is not Σ←xT1 ∪Σ reachable we manipulate this
statement to derive (Σ ∪ Σ←xT2 ∪ Σ

←x
T1 ) ∩ Sig(α) ⊆ Σ ∪ Σ←xT1 . Thus by Lemma

2.2 we have that α is not Σ ∪Σ←xT2 ∪Σ
←x
T1 reachable. The case where α ∈ T2 is

treated analogously. 2

Proposition 1 For x ∈ {>,⊥}, x-reachability is robust under replacement.

Proof: Let Sig(T ) ∩ (Sig(T1) ∪ Sig(T2)) ⊆ Σ. This implies that Sig(T ) ∩
Sig(Ti) ⊆ Σ, for i = 1, 2. Now we have:

(T ∪ T1)
←x
Σ = T ←xΣ ∪ T1←xΣ (Lemma 4)

= T2←xΣ ∪ T ←xΣ (Precondition)
= (T2 ∪ T )

←x
Σ (Lemma 4) 2

Proposition 2 For x ∈ {>,⊥}, x-reachability is robust under vocabulary ex-
tensions.

Proof: Let Σ′ ∩ (Sig(T1) ∪ Sig(T2)) ⊆ Σ and T1 ≡xΣ T2 i.e., T1←xΣ = T2←xΣ . Let
Σ′′ = Σ ∩Σ′ (which implies Σ′′ ⊆ Σ and Σ′′ ⊆ Σ′). Then we have that:

T1←xΣ′ = T1←xΣ′′ (∗)
= (T1←xΣ )←xΣ′′ (Lemma 3.1)
= (T2←xΣ )←xΣ′′ (Precondition)
= T2←xΣ′′ (Lemma 3.1)
= T2←xΣ′ (∗∗)

As for equality (∗), set inclusion is due to Σ′ ∩ Sig(T1) = Σ′′ and the combi-
nation of Lemma 3.2 and Lemma 3.3, and the converse is due to Σ′′ ⊆ Σ′ and
Lemma 3.1. Equality (∗∗) is justified analogously. 2

Proposition 3 For x ∈ {>,⊥}, x-reachability is robust under vocabulary re-
strictions.

Proof: Follows from the fact that we have robustness under vocabulary exten-
sions. 2
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Proposition 4 For x ∈ {>,⊥}, x-reachability is robust under joins.

Proof: For i = 1, 2, let Mi = Ti←xΣ with Sig(T1) ∩ Sig(T2) ⊆ Σ, and let
M = (T1 ∪ T2)←xΣ . The precondition says that M1 = M2 . It is clear from
Lemma 3.3 that M ⊇ Mi. It suffices to show M ⊆ M1. Take any axiom
α ∈ (T1 ∪ T2) \ M1. It remains to show that α is not Σ ∪ Σ←xM1

reachable. In
case α ∈ T1 \ M1, then α is not Σ←xM1

reachable since M1 = T1←xΣ . In case
α ∈ T2 \M1, we also have that α ∈ T2 \M2 because M1 = M2. This means
that α is not Σ ∪Σ←xM2

reachable therefore not Σ ∪Σ←xM1
reachable. 2

Theorem 2 Let T be a normalized SRIQ TBox and Σ a signature such that
Σ ⊆ Sig(T ). For arbitrary concept descriptions C,D such that T |= C v D and
Sig(C)∪Sig(D) ⊆ Σ←>T we have that T ←>Σ contains all MinAs for T |= C v D.

Proof: Assume that T |= C v D for some Sig(C) ∪ Sig(D) ⊆ Σ←>T , but there
is a MinA M for T |= C v D that is not contained in T ←>Σ . If C v D is a
tautology thenMmust be empty withM⊆ T ←>Σ . Thus, we assume that C v D
is not a tautology. Since M 6⊆ T ←>Σ , there must be an axiom α ∈ M \ T ←>Σ .
Define M1 :=M∩ T ←>Σ . M1 is a strict subset of M since α 6∈ M1. There are
two cases, either M1 = ∅ or it contains at least one axiom.

In the case where M1 = ∅, define T1 = T \ T ←>Σ with M ⊆ T1. Now since
M |= C v D we have by monotinocity that T1 |= C v D. Since T1 ⊆ T we have
by Lemma 3.3 that T1←>Σ ⊆ T ←>Σ and thus that T1←>Σ = ∅. But by Lemma 1
we have that T1←>Σ |= C v D if, and only if, T1 |= C v D. Since C v D is not a
tautology we have that T1←>Σ 6|= C v D and thus that M 6|= C v D.

In the case where M1 6= ∅ we claim that M1 |= C v D, which contradicts
the fact that M is a MinA for T |= C v D.

We use proof by contraposition to show this. Assume thatM1 6|= C v D, i.e.,
there is a model I1 of M1 such that CI1 6⊆ DI1 . We modify I1 to I by setting
yI := ∆I1 for all concept names y ∈ Sig(T ) \Σ←>T , and rI := ∆I1 ×∆I1 for all
roles names r ∈ Sig(T ) \Σ←>T . We have DI = DI1 since Sig(D) ⊆ Σ←>T , and
CI = CI1 since Sig(C) ⊆ Σ←>T . It follows that CI 6⊆ DI . It remains to be shown
that I is indeed a model ofM, and therefore satisfies all axioms β = (βL v βR)
inM, including α. If β = Dis(Rr, R2) then by definition Sig(β) ⊆ Σ←>T so that

(β)I = (β)I
1

. Otherwise there are two possibilities:

– β ∈ M1. Since M1 ⊆ T ←>Σ , all symbols in Sig(βL) are also in Σ←>T and
possibly some symbols of Sig(βR) may not be in Σ←>T . Consequently, I1 and
I coincide on the names occurring in βL and since I1 is a model of M1, we
have that (βL)I = (βL)I1 and (βR)I1 ⊆ (βR)I . Therefore (βL)I ⊆ (βR)I .

– β 6∈ M1. Since β ∈ M, we have that β 6∈ T ←>Σ , and hence β is not Σ←>T -
reachable. Thus,
• βR is a concept name and βI

′

R = ∆I , or

• βR is a role name and βI
′

R = ∆I ×∆I , or
• βR is a disjunction of the form A1t . . .tAn with at least one Ai 6∈ Σ←>T ,

thus AI
′

i = ∆I and βI
′

R = AI1 ∪ . . . ∪∆I ∪ . . . ∪AIn = ∆I , or
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• βR is an existential restriction ∃r.A1, thus rI
′

= ∆I×∆I and AI
′

1 = ∆I

so that (∃r.A1)I
′

= ∆I , or
• βR is ∃r.Self , thus rI

′
= ∆I ×∆I so that (∃r.Self)I

′
= ∆I , or

• βR is an atleast restriction ≥ nr.A2, thus rI
′

= ∆I × ∆I , AI
′

2 = ∆I

and |∆I | ≥ n so that (≥ nr.A2)I
′

= ∆I . This follows from the fact that
for any concept description ≥ nr.A, |∆I | ≥ |(r.A)I | ≥ n for it to be
satisfiable.

By definition of I, (βR)I = ∆I1 . Hence (βL)I ⊆ (βR)I .

Therefore I is a model for M. But since CI 6⊆ DI we have that M 6|= C v D
proving the contrapositive. 2
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