HySA Catalysis and ZBT Workshop, Cape Town, 11–13 March 2013

& technology
Department:
Science and Technology

science

Science and Technology REPUBLIC OF SOUTH AFRICA

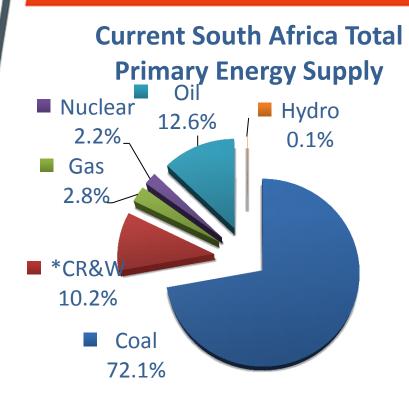
DST HySA Infrastructure Centre of Competence:

Advanced Hydrogen Technologies for FC Applications and PGM Beneficiation in South Africa

Dr. Henrietta Langmi , HySA Infrastructure CSIR and Dr. Dmitri Bessarabov, HySA Infrastructure NWU

Presentation Outline

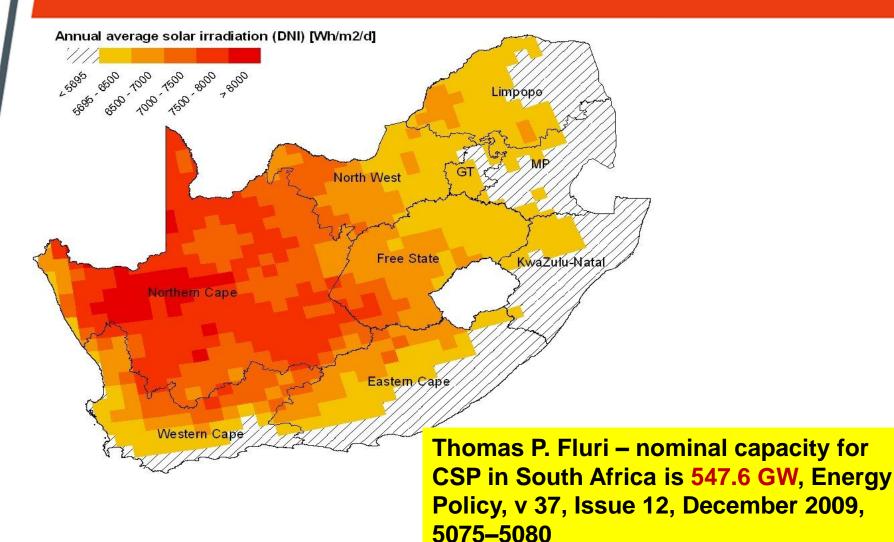
- □ South African Energy Profile
- Strategic drivers for investment in H₂ and Fuel Cell Technologies in RSA: Resource base, Environment
- The RSA H₂ and Fuel Cell Technology R&D and Innovation Strategy: Strategic Goals, Vision, Implementation
- □ Scope of HySA Infrastructure Centre of Competence
- HySA Infrastructure Project Portfolio (Selected)
- HySA Infrastructure Road Map



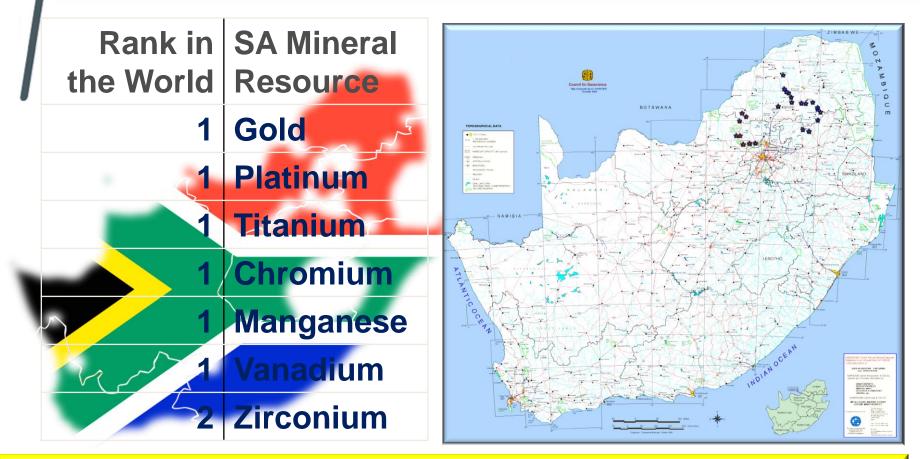
South African Energy Profile

*CR&W: Combustible Renewable and Waste Source: International Energy Agency (IEA)

- Coal supplies ~75 % of South Africa's primary energy and 90 % of its electricity requirements
- South Africa has estimated coal reserves of 35 billion tons
- Annually ~285 million tons is mined from 73 mines in 19 coalfields
- Domestic consumption of coal amounts to ~171 million tons (~ 100 mt for electricity and ~ 70 mt for synfuels) and ~69 million tons is exported
 - RSA has energy intensive economy
 - \circ RSA has a large SO₂/CO₂ footprint
 - RSA's CO₂ footprint per capita ranks among the top 12 in the world



Solar Energy Potential in South Africa



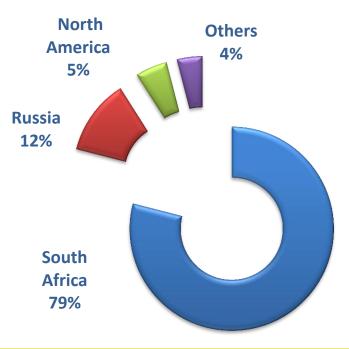
NORTH-WEGT UNIMERSITY [®] YUNIBESITI'YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Mineral Resources in South Africa

South Africa produces about 59 different minerals from 1115 mines and quarries. South Africa is the world leader in platinum and PGM production, having produced around 4.5 million ounces of platinum and 8 million ounces of PGMs in 2009

WEST UNIVERSITY

South Africa is dominant PGM supplier



Hy<mark>S</mark>

Infrastructure

Hydrogen South Africa

PGM Supply by region

South Africa has nearly 80% of the world's PGMs, and these metals contribute US\$2,200 billion of the country's total resource value of US\$2,494 billion. Russia and Australia came in second and third, with values of US\$1,636 billion and US\$1,588 billion, respectively.

NORTH-WEGT UNIMERSITY [®] YUNIBESITI'YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

H&FC R&D Technology and Innovation Strategy

Strategic Goals

Establish a base for hydrogen production, storage technologies and processes

Establish a base for developing catalysts based on PGMs; supply 25% of PGM catalysts demand by 2020

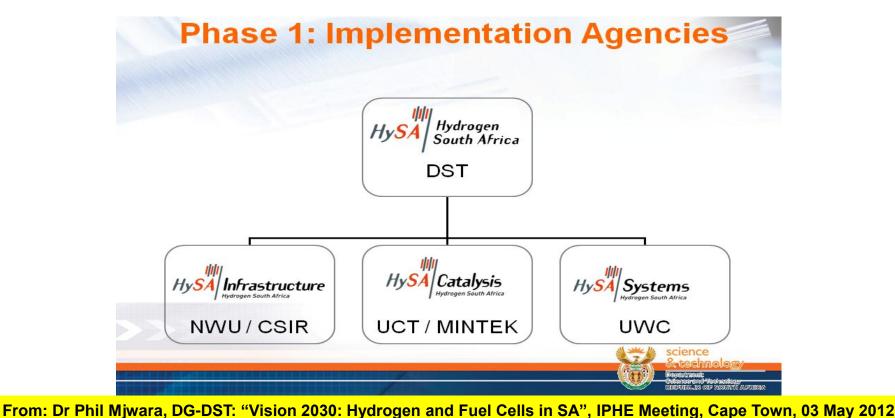
Build on existing global knowledge to develop know-how to leap-frog existing fuel cell technologies for niche applications to address regional developmental challenges

H&FC R&D Technology and Innovation Strategy

Our Hydrogen Vision

" to create knowledge and human resource capacity that will develop high value commercial activities in hydrogen and fuel cell technologies utilising local resources and existing know-how"

From: Dr Phil Mjwara, DG-DST: "Vision 2030: Hydrogen and Fuel Cells in SA", IPHE Meeting, Cape Town, 03 May 2012



H&FC R&D Technology and Innovation Strategy

 Phase 1 – Establishment of a national R&D capability, comprising of three established Centres of Competence, based on a hub and spoke model.

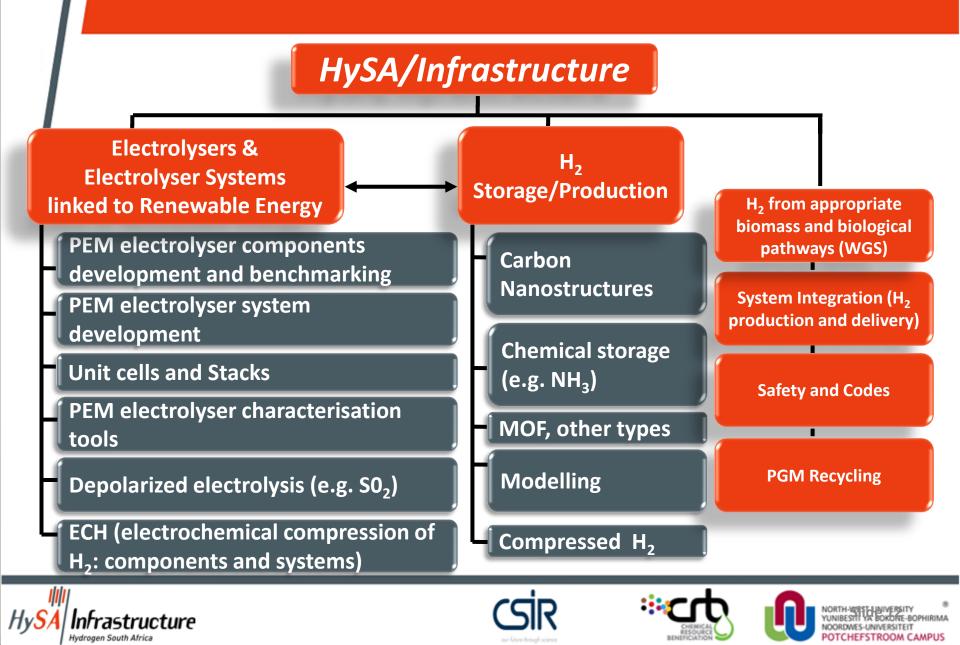
HySA Infrastructure

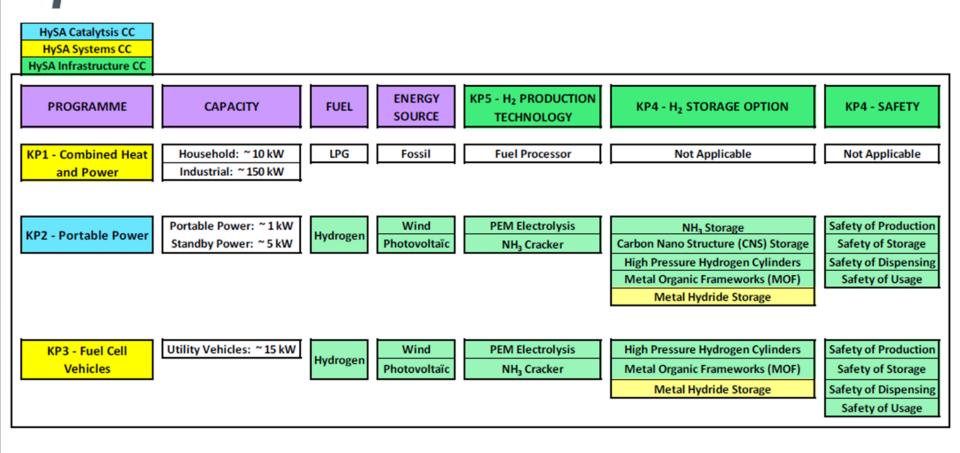
To deliver technologies for H_2 Production, Storage and Distribution Infrastructure that meet set cost targets and provide best balance of safety, reliability, robustness, quality and functionality

HySA Infrastructure: Five-Year Vision

Formulate, coordinate and execute strategic unified research portfolio aiming at successful implementation of South African H₂ and Fuel Cell Roadmap

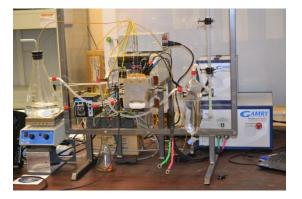
Become a significant player in mastering of existing and discovery of new solutions for H₂ production, storage and distribution, leading to development and application of new products and processes


Prepare RSA to participate in H₂-related applications, primarily by beneficiating its resource base in becoming a significant supplier of material, components, products, sub-systems and systems for export



HySA Infrastructure: Programme Scope

Cross Cutting of Key Programmes within HySA



Characterisation Tools Development for PEM Water Electrolysis

Electrochemical Impedance Spectroscopy

Using EIS to calculate the contribution of the losses at different current densities

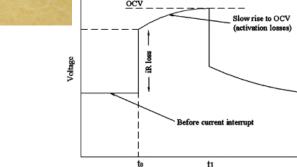
Gamry Reference 3000 DC out AC signal

 H_2O

Target:

- Ohmic losses
- Mass transfer losses
- Activation losses

Characterisation Tools Development for PEM Water Electrolysis


Current Interrupt Method

Target:MembraneFast diagnostic tool

Time

Oscilloscope control interface.

Control oscilloscope through network port.

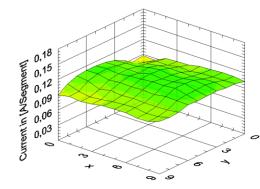
Configure oscilloscope settings to desired levels.

Generate PRBS signal to be applied.

Capture waveform from oscilloscope into LabVIEW memory.

Sequences to be finalized for autonomous control, data acquisition and data analysis.

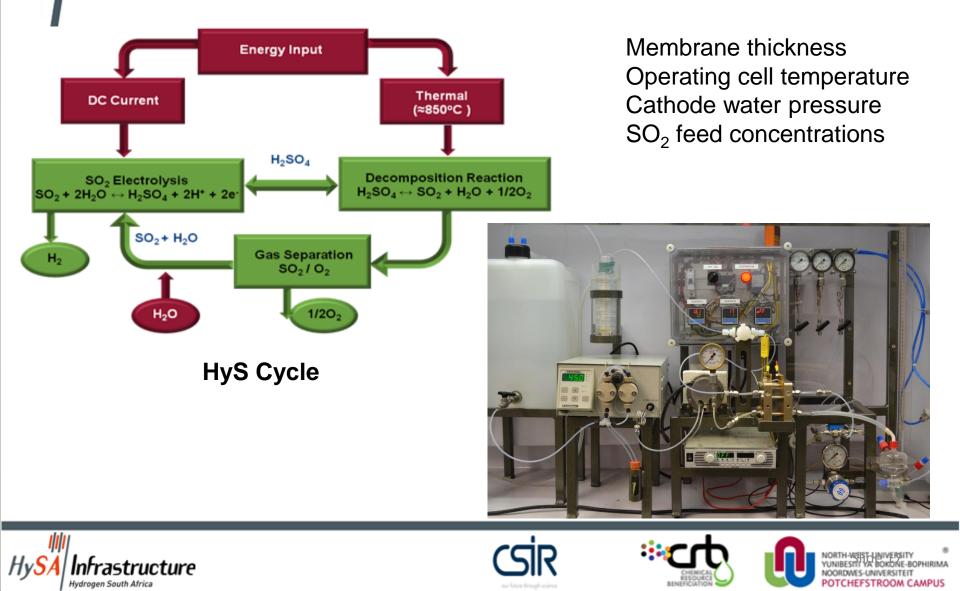
After the data is sampled, the current interrupt method can be applied to obtain the values of the Randles cell and Randles-Warburg parameters.

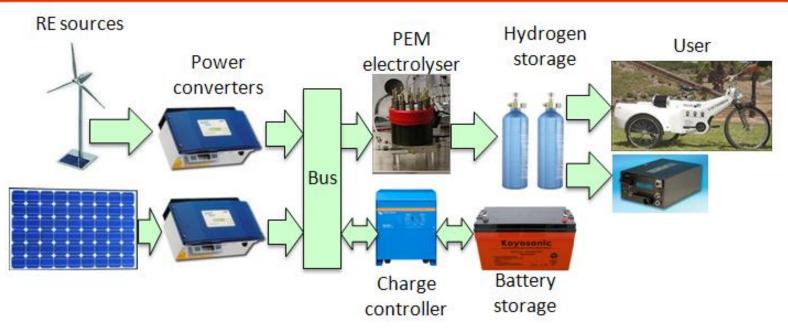


Characterisation Tools Development for PEM Water Electrolysis

Current Mapping

Target:Current distributionWater management





Testing MEAs for SO₂ electrolysis

Electrolyser Integration with Renewables

Purpose:

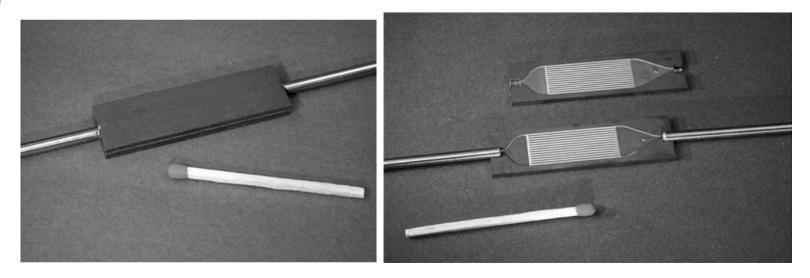
Improve system efficiency and sizing through a combination of power management strategies and component configurations.

Determine optimal combination of hybrid renewable sources.

Research aim and objectives:

Modeling – Develop detailed models. Optimisation – Develop algorithm to find optimal component sizing.

Power management/control – Develop control strategy to improve system efficiency. Validation and verification.



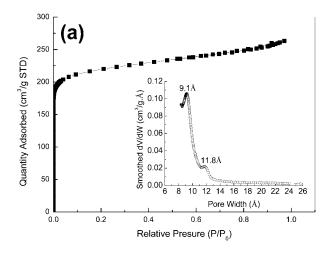
NORTH-WEIST-LINIVERSITY YUNIBESTITI YA BOKOWE-BOPHIRII NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPU

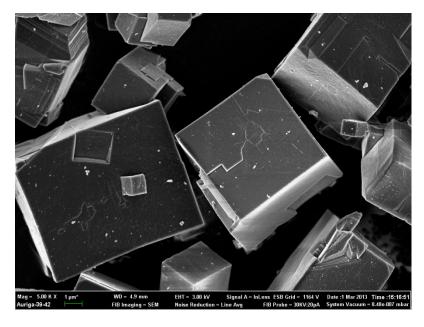
Chemical Hydrogen Storage

Micro-channel reactor for ammonia cracking

Ammonia decomposition reaction

Accomplished in simple reactors using a variety of catalysts including noble metals Technical readiness of small-scale NH_3 crackers: Diverse Energy, Apollo Energy Systems developing prototype small-scale NH_3 crackers





Hydrogen Storage in MOFs

Surface area Porosity Use of PGMs Crystallinity Functional groups Binding strength

HySA Infrastructure: Road Map

Current Programme Focus					
Energy Source	Energy Harvesting Technology	Product	Hydrogen Production Technology	Hydrogen Fuelling/ Storage Options	Applications
Solar	Photovoltaïc	Electricity	H ₂ O and SO ₂ Electrolysis	MH, Chemical, CNS, Gaseous, MOF	PP, FCV
Wind	Wind Turbines	Electricity	H ₂ O and SO ₂ Electrolysis	MH, Chemical, CNS, Gaseous, MOF	PP, FCV
Biomass	Bio-Digesters	Biogas (Methane)	Water-Gas-Shift reactor	MH, Chemical, CNS, Gaseous, MOF	PP, FCV
LPG					СНР
Potential Future Activities					
Energy Source	Energy Harvesting Technology	Product	Hydrogen Production Technology	Hydrogen Fuelling/ Storage Options	Applications
Solar	CSP	Electricity / Process Heat	Thermo-chemical water splitting	Chemical, Gaseous, Liquid	Transport / Industrial (CTL) / Steel Manufacturing
Uranium	VHTR (Nuclear)	Electricity / Process Heat	Thermo-chemical water splitting	Chemical, Gaseous, Liquid	Transport / Industrial (CTL) / Steel Manufacturing

MH - in cooperation with HySA/Systems

NORTH-WE YUNIBESITI

NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

VERSITY

OKONE-BOPHIRIMA

Acknowledgements

 Co-authors and contributors for this presentation:
 Frik Van Niekerk, Frikkie Van Der Merwe, Manie Vosloo, Brian North, Mkhulu Mathe, Steven Chiuta, Andries Kruger, Christiaan Martinson, Gerhard Human, Jan Van Der Merwe, Jianwei Ren, Dave Rogers

General and financial support of the HySA Infrastructure Programme

- The Department of Science and Technology, specifically Dr Cordellia Sita
- The North-West University
- The Council for Scientific and Industrial Research
- Anglo-Platinum Mining Group
- NRF

HySA Catalysis and ZBT Workshop, Cape Town, 11–13 March 2013

Thank You

NORTH-WEST-UNIVERSITY YUNIBESTITY A BOKONE-BOPHIRIM NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS