Korea-South Africa H₂ Fuel Cell Collaboration Workshop,15-18 July 2013, Hyundai Hotel, Gyeongju, Rep. of Korea

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

HYDROGEN STORAGE FOR FUEL CELL APPLICATIONS:

CHALLENGES, OPPORTUNITIES AND PROSPECTS FOR METAL-ORGANIC FRAMEWORKS

Dr. <u>Henrietta Langmi</u>, HySA Infrastructure CSIR and Dr. Dmitri Bessarabov, HySA Infrastructure NWU

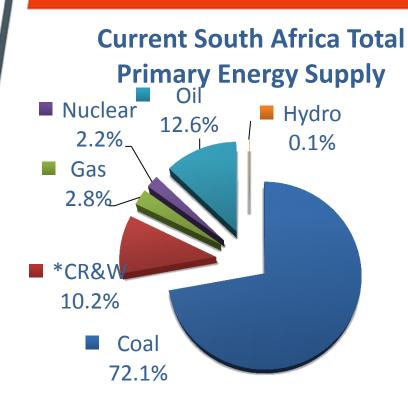
Presentation Outline

Hydrogen and Fuel Cells in South Africa

- Strategic drivers
- R&D and Innovation Strategy
- □ Scope of HySA Infrastructure Centre of Competence
- HySA Infrastructure Project Portfolio (Selected)

Hydrogen Storage

- □ Challenge
- □ Storage options
- Technical targets
- □ Metal-Organic Frameworks

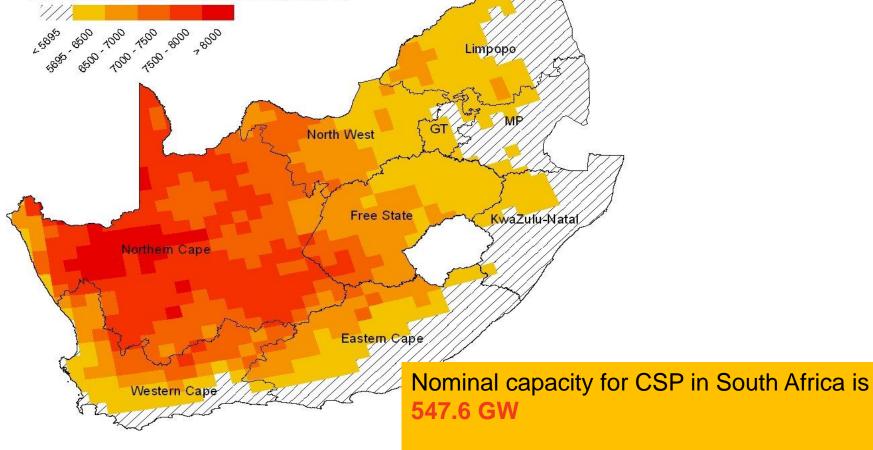


South African Energy Profile

 Coal supplies ~75 % of South Africa's primary energy and 90 % of its electricity requirements

*CR&W: Combustible Renewable and Waste Source: International Energy Agency (IEA)

- RSA has energy intensive economy
- \circ RSA has a large SO₂/CO₂ footprint
- RSA's CO₂ footprint per capita ranks among the top 12 in the world



Solar Energy Potential in South Africa

Annual average solar irradiation (DNI) [Wh/m2/d]

Thomas P. Fluri, *Energy Policy, v 37, Issue 12, December 2009, 5075–5080*



Mineral Resources in South Africa

South Africa produces about 59 different minerals from 1115 mines and quarries
South Africa has nearly 80% of the world's PGMs.

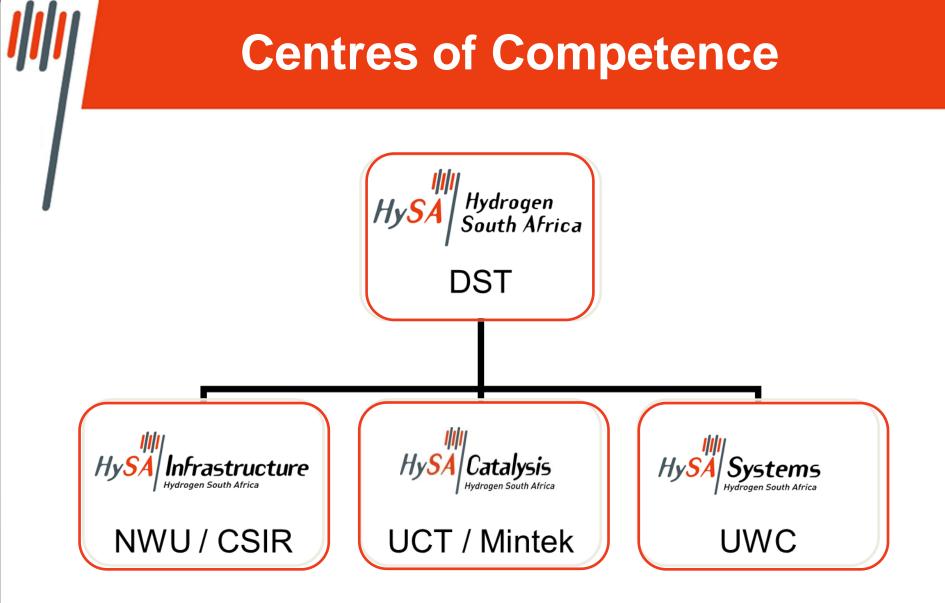
These metals contribute US\$2,200 billion of the country's total resource value of US\$2,494 billion.

H&FC R&D Technology and Innovation Strategy

Strategic Goals

Establish a base for hydrogen production, storage technologies and processes

Establish a base for developing catalysts based on PGMs; supply 25% of PGM catalysts demand by 2020


Build on existing global knowledge to develop know-how to leap-frog existing fuel cell technologies for niche applications to address regional developmental challenges

HySA Infrastructure Centre of Competence

Dr. Dmitri Bessarabov Centre of Competence Director

Key Programme 4 (CSIR)

Hydrogen Storage/Distribution/Safety

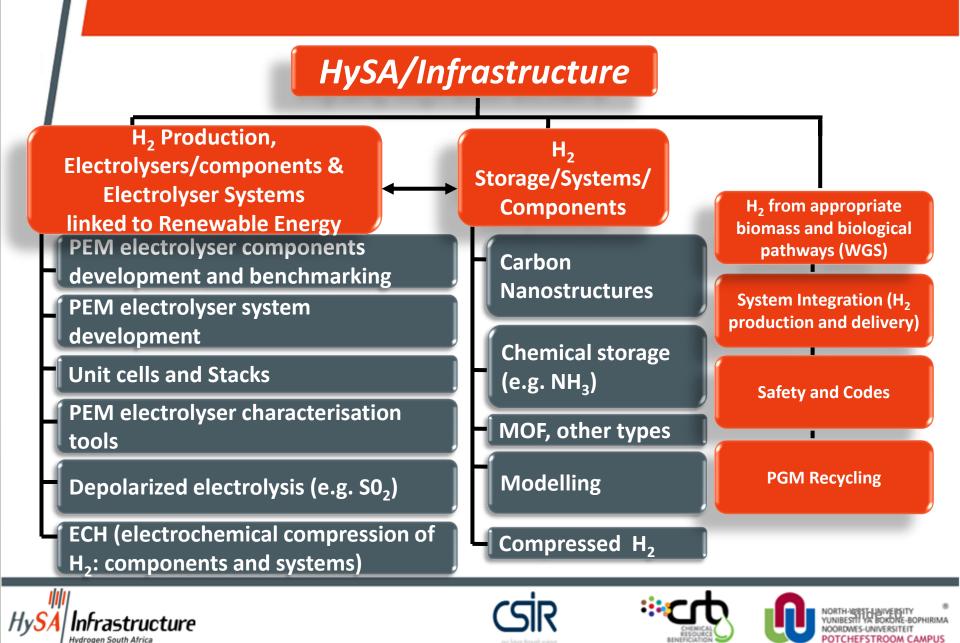
Key Programme 5 (NWU)

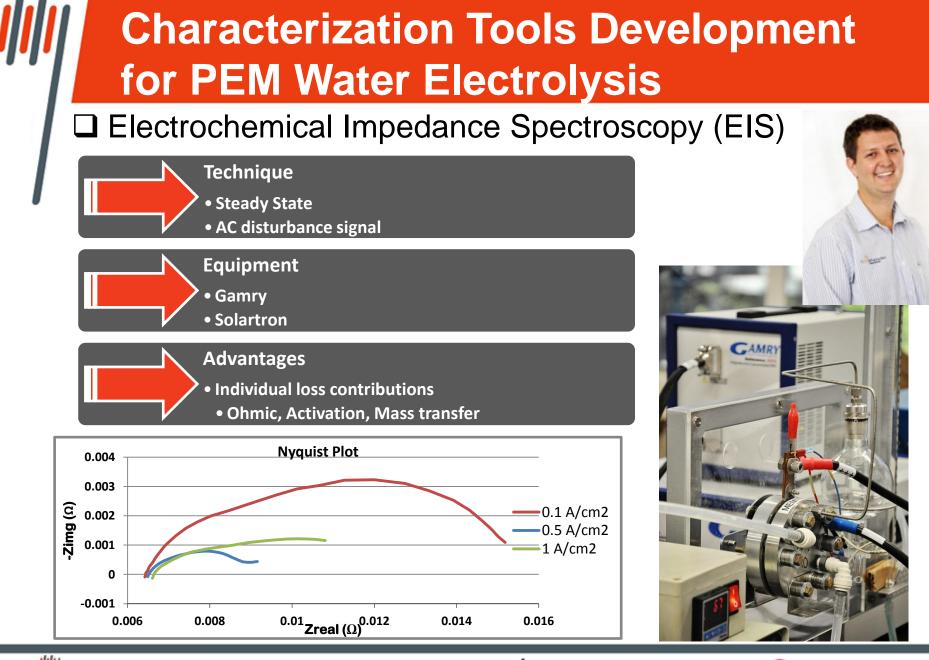
Hydrogen Production/ Electrolysers/components & Electrolyser Systems linked to Renewable Energy

WEST HUMERSITY

HySA Infrastructure: Mission

To deliver technologies for H_2 Production, Storage and Distribution Infrastructure that meet set cost targets and provide best balance of safety, reliability, robustness, quality and functionality





HySA Infrastructure: Programme Scope

Characterization Tools Development for PEM Water Electrolysis

Current Interrupt (CI)

Equipment

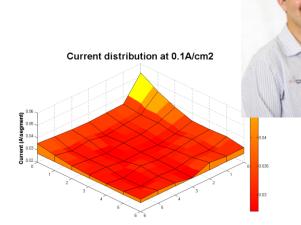
In-house developed switchLeCroy Oscilloscope

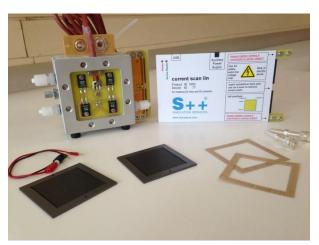
NORTH-WEIST-UNIVERSITY YUNIBESITI YA BOKOKE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Characterization Tools Development for PEM Water Electrolysis

Current Mapping (CM)

Technique


• Steady State • Current measurements

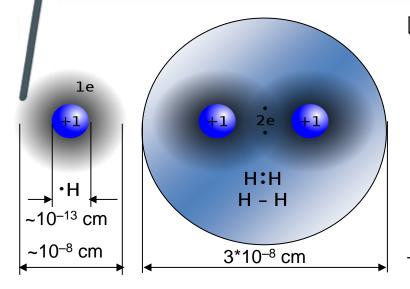

Equipment

• S++

Advantages

- Identify irregular current distributions
- Investigate the effects of: temperature, water management, flow-field patterns, start up / shut down, operating pressure

Hydrogen Storage



The Hydrogen Storage Challenge

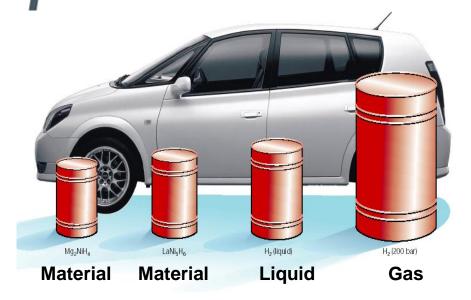
HYDROGEN:

- One proton, one electron
- □ Lightest element, lowest density
- Stong covalent bond
- Non-polar bond
- Low polarisation ability

 \rightarrow Weak interaction between H₂ molecules

At 298 K and 1 atm:

 $4 \text{ kg H}_2 = 45,000 \text{ L} \equiv \text{ balloon of 5 m diameter}$


(4 kg H₂ gives 500 km driving range)

HySA Infrastructure

Hydrogen Storage Options

Hydrogen can be stored in various ways

- Compressed gas
- Liquid hydrogen
- Materials-based storage
 - □ Metal hydrides
 - Complex hydrides
 - Chemical hydrides
 - Porous materials
- L. Schlapbach, A. Züttel, *Nature* **414** (2001) 353; R. Harris et al., *Fuel Cell Rev.* **1** (2004) 17.

Al

US DOE On-board Technical Targets

Storage Parameter	Unit	2010	2017	Ultimate
System gravimetric capacity	wt.% (kWh/kg)	4.5 (1.5)	5.5 (1.8)	7.5 (2.5)
System volumetric capacity	kg H ₂ /m ³ (kWh/L)	28 (0.9)	40 (1.3)	70 (2.3)
Fuelling time (5 kg)	min	4.2	3.3	2.5
Fuel system cost	\$/kg H ₂	TBD	TBD	TBD
Durability	cycles	1000	1500	1500
H ₂ loss rate	(g/h)/kg	0.1	0.05	0.05

□ Targets are less stringent for stationary / portable power applications

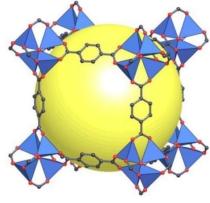
Analysis from US DOE

Current status	Gravimetric (kWh/kg sys)	Volumetric (kWh/L sys)	Costs (\$/kWh)
700 bar compressed (Type IV)	1.7	0.9	18.9
350 bar compressed (Type IV)	1.8	0.6	15.5
Cryo-compressed (276 bar)	1.9	1.4	12.0
Metal Hydride (NaAlH ₄)	0.4	0.4	11.3
Sorbent (MOF-5, 200 bar)	1.7	0.9	18.0
Off-board regenerable (AB)	1.4	1.3	N/A
2017 targets	1.8	1.3	TBD

Source: N.T. Stetson, US DOE 2012 Annual Merit Review and Peer Evaluation Meeting

NORTH-WEIST-LIMIVERSITY YUNIBESTIT YA BOKONE-BOPHIRIMI NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Inorganic-organic hybrid crystalline materials

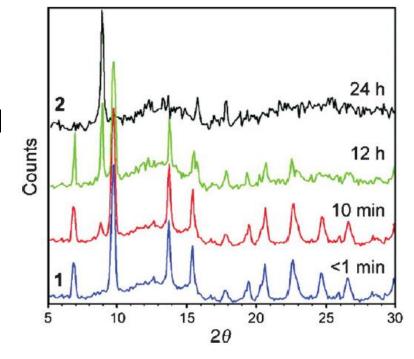

- Metal ions + organic linkers
- □ Structural diversity
- \Box High surface area (up to 7140 m²/g)
- □ Ultrahigh porosity (up to 90% free volume)
- □ Tunable pore sizes and functionalities

MOF-5: Zn₄O(BDC)₃

Rosi N.L., Eckert J., Eddaoud M., Vodak D.T., Kim J., O'Keeffe M., Yaghi O.M.. Science, 2003, **300**, 1127-1129.

Highlights

- □ MOF synthesis and scale-up
- □ MOFs characterization
- Effect of variables
- Preliminary modifications
- □ H₂ storage behaviour


Technology gaps:

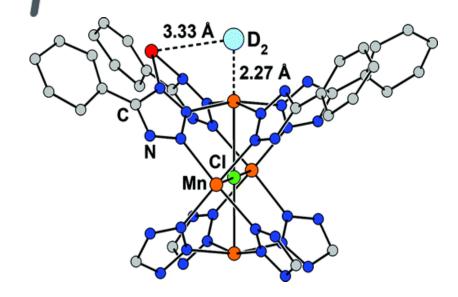
Moisture sensitivity

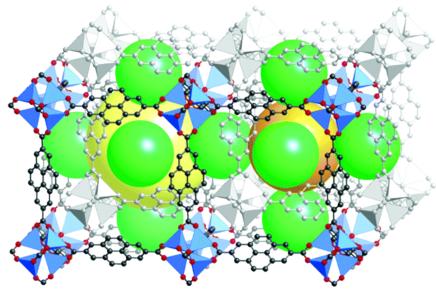
Cryogenic storage of H₂ (77 K)
Low heat of ads 4–12 kJ/mol

Need 15—25 kJ/mol

Cost

S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, J. Am. Chem. Soc. 2007, 129, 14176.



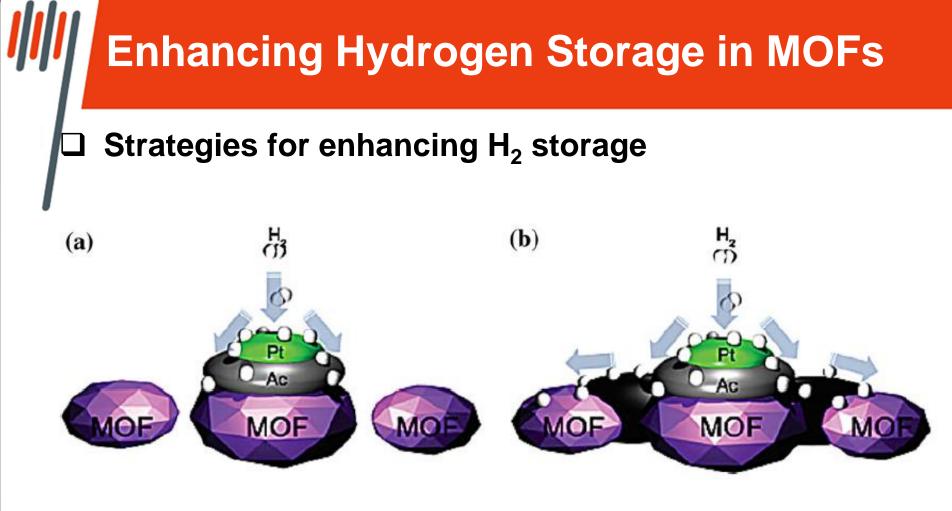


Strategies for enhancing H₂ storage

Control of pore size

- Unsaturated metal sites
- Ligand functionalisation

M. Dinca, J.R. Long, J. Am. Chem. Soc. 129 (2007) 11172-11176.


J.L.C. Rowsell, O.M. Yaghi, J. Am. Chem. Soc. 128 (2006) 1304-1315.

☐ Incorporate Pd or Pt nanoparticles

Li, Y.; Yang, R. T. J. Am. Chem. Soc. 2006, 128, 8136

WEST-UNIVERSITY ® STIT YA BOKONE-BOPHIRIMA MES-UNIVERSITEIT HEFSTROOM CAMPUS

Conclusion

Hydrogen storage is still a serious challenge

MOFs are promising with potential to meet US DOE targets

- Breakthrough for MOFs:
 - Low cost
 - High heat of H_2 adsorption
 - Large surface area and pore volume
 - High hydrostability and thermal stability

Acknowledgements

□ Financial Support

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Host Institutions

Korea-South Africa H₂ Fuel Cell Collaboration Workshop,15-18 July 2013, Hyundai Hotel, Gyeongju, Rep. of Korea

Thank You

