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We propose a hybrid missing data imputation tech-
nique using positive selection and correlation-based 
feature selection for insurance data. The hybrid is 
used to help supervised learning methods improve 
their classification accuracy and resilience in the pres-
ence of increasing missing data. The positive selection 
algorithm searches for potential candidates for impu-
tation and the correlation-based feature selection 
method searches for attributes have a significant effect 
on the target outcome. The imputation is performed 
only on those attributes that have an impact on the 
target outcome. The results show that the classifica-
tion accuracy and resilience of supervised learning 
methods improve significantly when applied with the 
imputation strategy under these assumptions. 
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DATASETS used in insurance underwriting or risk classifi-
cation have a large number of variables and are suscepti-
ble to increasing missing data. Francis1 outlines a number 
of reasons for this phenomenon, which include failure to 
disclose information and error or faulty handling of data 
by processing systems.  
 Here we propose a missing data partial imputation stra-
tegy (MDPIS) using a hybrid positive selection algorithm 
and a correlation-based feature selection (CFS) method. 
The positive selection algorithm performs a selection of  
potential candidates that can be used for imputation. The 
CFS method identifies the attributes that have great  
impact on the target outcome. The imputation is partial to 
permit reduced computational costs while improving the 
classification performance of supervised learning models in 
the presence of increasing missing data. 
 The supervised learning models chosen for the study 
are the ripper, naïve Bayes (NB), k-nearest neighbour  
(k-NN), logistic discriminant analysis (LgDA) and the 

support vector machines (SVMs). These models are cho-
sen because they are now being adopted as predictive 
modelling methods in classification in credit and insur-
ance risk analysis domains. The ripper has been emplo-
yed in financial risk analysis to aid financial institutes 
select the appropriate policy for credit products, increase 
revenues and reduce losses2. NB has been applied in risk 
analysis of life insurance for clients, fraud claim analysis 
and determining if a client is a good or bad creditor3–5.  
k-NN and LgDA have been applied in credit risk analysis 
to segment loan applicants as good or bad creditors. 
SVMs have been employed to aid managers identify and 
manage credit risk as well as predicting solvency6,7. 
 Missing data problems are not novel and there have 
been some significant attempts or strategies developed in 
the past few years to address the issue. These strategies 
either handle missing data by deletion3, feature extrac-
tion3,8, imputation or infer missing data using observable 
entries4,9–11. 
 Zhang et al.12 created a naïve Bayes and expected 
maximization model with an embedded strategy to handle 
or tolerate missing data and missing data imputation. The 
results showed improved performance and accuracy using 
the proposed strategies when compared with neural net-
works. The model works under the assumption that data 
are missing at random. 
 Lakshminarayan et al.13 used a combination of Auto-
Class, an unsupervised algorithm designed to automati-
cally discover clusters in data, and C4.5 for missing data 
imputation and prediction of a large-scale database. 
AutoClass is used as a hot-deck imputation for missing 
data imputation and C4.5 is used for learning and predict-
ing values of the target variable. The proposed model is 
evaluated empirically with only the categorical variables 
with missing data. The results indicate accuracies of up to 
80% imputation accuracies. 
 Gruenwald et al.14 illustrated an algorithm that employs 
association rule mining and data clustering for missing 
data imputation for a multi-hop sensor network. (The  
issue with the sensor networks is that when missing data 
occur because of a malfunctioning sensor, the sensors  
either have to resend the entire message or ignore missing 
data. The former is an expensive solution and the latter is 
not viable.) The clustering algorithm is based on the dis-
tance between two sensors and is used for simultaneous 
missing data and phenomenon change in the surrounding 
environment. The experiments were conducted on syn-
thetic and real-world datasets and the results show excep-
tional estimation accuracy, with error rates as low as 
0.78% and 1.7% compared to other algorithms (such as 
SPIRIT and TinyDB). Furthermore, the algorithm illu-
strates the ability to preserve energy of the sensor net-
works. 
 Ramoni and Sebastian15 presented a robust Bayesian 
estimator model, designed to learn conditional probability 
distributions from datasets with missing data. The model 
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does not make any assumptions about the missing data 
mechanism. The main strategy of the robust Bayesian  
estimator is to determine robust probability estimates  
in terms of different types of missing data. Robustness is 
achieved by supplying the probability intervals with  
estimates that can be adapted or learned from every  
observable datasets. The results of the experiment 
showed that when the model is trained by assigning miss-
ing entries, it performs better when training the model by 
ignoring the missing entries.  
 Nanni et al.16 proposed an ensemble multiple imputa-
tion strategy based on a random subspace. A missing 
value is determined using a fuzzy clustering approach. 
Their experiments show that the proposed ensemble out-
performs other state-of-the-art approaches to missing data 
imputation. They used the Wilcoxon single-rank test to 
illustrate that the ensemble is outperformed by the model 
trained using data with only >20% missing data. The  
ensemble achieves the best performance (or outperforms 
other classifiers) when there is a large number of missing 
data (about >30% missing data). 
 Polikar et al.17 presented Learn++ MF, an ensemble of 
classifiers that uses random subspace selection strategy 
for handling missing values. The model does not perform 
missing data imputation to replace missing values. It 
builds or trains an ensemble of classifiers and each indi-
vidual classifier is trained on a random subset of avail-
able variables. Records with missing data are classified 
using the majority voting of other classifiers whose train-
ing set does not contain missing values. The study shows 
that the ensemble can handle large amounts of missing data, 
with a decline in performance as the amount of missing 
data increases. 
 Wagner et al.18 presented a study aimed at constructing 
a multimodal, ensemble of classifiers for emotion recog-
nition with missing values in one or multiple modalities 
(e.g. voice, face or gesture). The results show that classi-
fication accuracies of single modalities range between 
42% and 51% while recognizing and dealing with missing 
values in observed channels. The ensemble on the other 
hand, achieved classification accuracies of 55%, which 
includes certain generic fusion schemes and emotion 
adapted strategies like arousal, valence and cross-axis. 
 There are four kinds of missing data mechanisms found 
in the literature, namely missing at random (MAR), miss-
ing not at random (MNAR), missing completely at ran-
dom (MCAR) and missing by natural design (MBND)3. 
MAR refers to a case where the missing data are not  
related to or independent of the attributes themselves, but 
rather are related to values of other attributes in the data-
set. MNAR refers to the case where the missing data are 
directly related to the attributes themselves and not any 
other value from the other attributes. MCAR refers to the 
case where missing data are independent of the attributes 
themselves and any other attribute in the dataset. MBND 
is the case where missing data occur because they are 

naturally deemed unmeasurable, even though they are  
required for analysis. In this case, the missing values are 
modelled using mathematical techniques3. 
 MCAR is the approach used here for the problem under 
discussion. It is chosen so that single and multiple impu-
tations return unbiased outcomes. 
 Here four datasets are used to conduct the experiment. 
The first dataset is a Texas insurance used to draw up an 
insurance report. The report provides an overview of 
various claims involving bodily injuries that were either 
settled in court or disposed off. This dataset is used to  
determine if the plaintiff has legal cover or not. It con-
sists of just over 1,800 instances. One thousand instances 
are used for training and 800 instances are used for test-
ing. There are 227 features (mixed with numerical and 
categorical values) which were trimmed down manually 
to 182 by removing features that are clearly unimportant 
or redundant for the experiment, like unique identities, 
dates and categorical attributes with a single value. The 
target attribute consists of two classes only.  
 The second dataset was obtained from the Medical  
Expenditure Panel (MEP) survey conducted in 1996 by 
Harvey Rosen (Princeton University, USA). The dataset 
consists of over 8000 instances, all completely observ-
able. In this study, a total of 1,000 instances were used to 
conduct the experiment. The dataset also consists of a  
total of 11 attributes, pre-processed to 9 categorical  
attributes. The target attribute consists of two classes. 
 The third dataset is from a South African Insurance 
(SAI) company. The dataset consists of over 30,000  
instances and over 150 attributes. There were only 5,000 
used for this experiment and the number of attributes was 
trimmed to 16 by removing those attributes that were 
easy to identify as irrelevant, as with the Texas dataset. 
The 16 attributes are made up of 10 categorical and 6 
continuous attributes. The target attribute contains two 
classes.  
 The fourth dataset is the COIL dataset from the UCI 
machine learning repository. The dataset is used to pre-
dict which customers are likely to have an interest in buy-
ing a caravan insurance policy. Here, we are interested in 
finding out customers who are likely to have a car insur-
ance policy. The training dataset consists of over 5,400 
instances, of which 2,000 were used for the experiment. 
The testing dataset consists of only 4,000 instances and 
1,000 were used in this study. Each set has a total of 86 
attributes with completely observable data, 5 of which are 
categorical attributes and 80 are continuous attributes. 
The target attribute consists of only two classes. 
 The implementation for the proposed MDPIS is  
illustrated in Figure 1. The strategy is performed using  
a completely observable training dataset and a testing 
dataset containing increasing missing values. We have  
already shown that the supervised learning methods  
used in this study do not perform well under this assump-
tion19. 
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Figure 1. Missing data imputation process using positive selection. 
 
 
 The initial step of the process is choosing the attributes 
that have the greatest impact on the target attribute. To 
achieve this, the correlation-based feature selection (CFS) 
strategy is used20. CFS assesses the correlation of a group 
or a subset of attributes by calculating the predictive abi-
lity of each attribute per instance and the degree of  
dependency between the attributes. The selected attri-
butes are the ones with a strong correlation with the tar-
get attribute and low correlation with other attributes. 
 CFS is a filtering method that orders a set of attributes 
using a correlation-based heuristic evaluation function. 
The function finds subsets of attributes that are strongly 
correlated with the target attribute and weakly correlated 
amongst each other. The function is expressed as  
follows20 
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DX is the heuristic value of a set or a subset of attributes 
X and consists of n attributes. ijm  is the average attribute-
target correlation, j ∈ X and ijm  is the average  
attribute–attribute inter-correlation. The expression n ijm  
is the predictive strength of the target value for a given 
subset of attributes. The denominator of eq. (1) indicates 
the redundancy between attributes. CFS is practical as it 
permits the imputation of missing values for attributes 
that impact the target variable. The effect is reduction in 
the computational cost for data imputation. Furthermore, 
as we do not infer missing values from other attributes, the 
weak correlation between attributes is insignificant.  

 As the attributes that impact the target variable are  
selected (from Figure 1), a list of potential candidates for 
imputation is determined. Positive selection algorithm is 
employed to achieve this. It takes the training dataset, a 
pre-determined R value and a testing instance I as inputs. 
The algorithm is expressed as follows: 
 
1. Select an instance A from the training dataset. 
2. Calculate the affinity between A and I. 
3. If the affinity from step 2 is greater that R, then add A 

to a list of potential candidates C. 
4. If there are instances in the training to be evaluated, 

go to step 1, otherwise go to step 5. 
5. Select the strongest candidate B that best represents I. 
 
Positive selection algorithm attempts to find the best can-
didate by comparing the affinity of each instance in the 
dataset with R. Calculating the affinity is done by com-
paring the similarities between a training instance and I in 
the order of succession between the attributes (attributes 
with missing values are ignored) and maintaining a count 
for each attribute that is same. For example, let S = 
{‘ABBACEDDPUK’, ‘KBBAFLGDPUK’} represent the 
training data and P = {‘HBBACL??PUK’} represent the 
testing set. If we compare ‘ABBACEDDPUK’ and 
‘HBBACL??PUK’, then the total is four (highlighted in 
bold), as there are four attributes in succession that have  
the same values and we cannot get a value greater than 
that. If we compare patterns ‘KBBAFLGDPUK’ and 
‘HBBACL??PUK’, the total is also four, as we ignore  
attributes with missing values while doing the compari-
son between the two instances. Hence, in the previous 
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Figure 2. Datasets (a), (c), (e) and (g) having full set with missing values, and (b), (d), (f ) and (h) having half the set with missing values. 
 
 
example, we imply that in the pattern ‘HBBACL??PUK’, 
P succeeds L.  
 Once the list of candidates has been determined, the 
strongest candidate from the list is selected. The strongest 
candidate has the highest affinity. If no candidates are 
found, the value of R needs to be re-evaluated or adjusted.  

 The R value is used when performing a partial com-
parison between two instances to determine their similari-
ties. This partial comparison has an advantage when 
dealing with datasets with a large number of variables. 
Even though we iterate through all the variables of an  
instance, we are only concerned if a certain number of 
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variables is the same or similar. Figure 2 illustrates the 
value of R for the datasets mentioned earlier. It illustrates 
how we derived the value of R for the experiments con-
ducted here. It is clear from the figure that R is dataset-
specific and hence the value is derived empirically.  
 Figure 2 illustrates the performance of the proposed 
MDPIS. There are five levels of proportions of missing-
ness on the testing datasets that are generated (10%, 25%, 
30%, 40% and 50%). At each level, the missingness is 
arbitrarily generated across the entire dataset, and then on 
half the attributes of the set. For the COIL dataset, if 
R = 9 and 10%, missing data are generated across the  
entire dataset, the data imputation strategy achieves high 
performance with an error of 13.57% (Figure 2 a). On an 
average, approximately 1,897 entries across the whole 
COIL dataset have missing data that affect the outcome. 
An error of 13.57% implies that only about 257 were  
replaced with incorrect data. If 25%, 30%, 40% or 50% is 
generated across the entire COIL dataset, the MDPIS still 
achieves high performance. This is significant, because if 
we consider the case where 40% missing data are generated 
across the entire dataset (which on average is approxi-
mately 8,127), we get approximately 708 entries that 
were incorrectly replaced.  
 If R = 17, the performance of MDPIS is similar to the 
case where R = 9. The exception is when 50% missing 
data are generated across the entire dataset. The error is 
double that compared to the case where R = 9. When 
R = 26, the performance of MDPIS decreases with  
increase in missingness of data. The gap in performance 
is quite significant and the performance is poor for the 
cases where there are 40% or 50% missing data across 
the entire dataset. When R = 34, MDPIS performs well 
only for the case where there are 10% missing data in the 
set. For other cases the performance is poor (or has 
dropped significantly) compared to when R = 26 or lower 
values. For R between 43 and 60, the performance of 
MDPIS is extremely poor. This behaviour is expected  
because the positive selection algorithm is performing  
a partial comparison of a large number of variables and in 
a situation where some or most variables have missing  
entries. The performance of MDPIS for Texas, SAI and 
MEP datasets is similar to that with COIL (Figure 2 c, e 
and g). The difference is that the performance deterio-
rates for different values of R per set. 
 Figure 2 b illustrates the case where missing data exist 
on half the attributes of the COIL dataset. For R = 9 and 
when 10% missing data are generated on half the attri-
butes of the dataset, the average error is 14%. In this 
case, an average of 2006 entries on half the attributes for 
the COIL dataset have missing values, in which 281 were 
replaced with incorrect values. With half the attributes in 
the COIL dataset having missing values, the MDPIS 
shows no significant difference in performance for R = 9, 
17, 26 or 34. This performance is similar to the case 
where 10% missingness is generated across the entire 

dataset. For R = 9 and with 40% missing data generated 
on half the dataset, there is an apparent difference in per-
formance of the imputation strategy compared to when 
missing data are generated across the set. In this case the 
error is approximately 15.89% compared to 8.71% 
achieved when missing data are generated across the set. 
On an average, approximately 7,991 entries with missing 
data on half the attributes had missing values, in which an 
average of 1,270 were replaced incorrectly. 
 What is apparent from Figure 2 a and b is that at R = 26 
or 34, MDPIS achieves high performance when half the 
attributes have missing values than when missing data are 
generated across the dataset. A similar pattern of behav-
iour can be observed with the Texas, SAI and MEP data-
sets in Figure 2. It can be observed that a small value of R 
is needed for the positive selection algorithm to achieve 
high performance in imputation. The effect of this, as we 
will observe later, is improved classification perform-
ance.  
 As an initial step of the experiment, we normalize per 
instance all the datasets that have numerical attributes. 
Thereafter, we distinguish between training and testing 
data. The SAI and MEP datasets have no testing data. 
Therefore, each dataset is partitioned into five folds (S1, 
S2, S3, S4, S5) of approximately the same size as illustrated 
in Table 1. Table 1 resembles cross-validation with five 
folds with a small modification to the traditional approach. 
 Each fold is made up of four parts used as a training set 
and the remaining part is used as a testing set. The train-
ing set has completely observable data and the testing set 
has simulated missing data. There are five levels of pro-
portion of missingness simulated on the testing data 
(10%, 25%, 30%, 40% and 50%). At each level, the miss-
ingness is randomly generated across the entire dataset 
and then on half the variables of the set. This strategy  
ensures that we assess all possible scenarios of the miss-
ing data to best assess the performance of MDPIS and 
classifiers. The COIL and Texas datasets have testing sets 
with missing data simulated in the same way as the SAI 
and MEP datasets. 
 Once the partial imputation of missing data is comple-
ted, the testing data are supplied to each classifier for 
classification of unseen instances. 
 Table 2 provides a summary of the parameters used for 
each dataset to conduct the experiment. The positive  
selection algorithm is built using C# 3.5 programing lan-
guage and the value of R is derived as discussed earlier. 
 

Table 1. Splitting of datasets into training and testing sets 

  Training set Test set 
 

Fold 1 B + C + D + E A 
Fold 2 A + C + D + E B 
Fold 3 A + B + D + E C 
Fold 4 A + B + C + E D 
Fold 5 A + B + C + D E 
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Figure 3. Overall performance of the classifiers from all the datasets. 
 
 

Table 2. Parameters used for each dataset 

 R-value k-NN SVM 
 

SAI  4 k = 601, NNSA = Euclidian KF = RBF, γ = 0.005 
MEP  2 k = 5, NNSA = Euclidian KF = RBF, γ = 0.005 
COIL 17 k = 601, NNSA = Euclidian KF = RBF, γ = 0.005 
Texas 38 k = 101, NNSA = Euclidian KF = RBF, γ = 0.005 

 
 
CFS is constructed using Weka 3.6.2. The SVM model is 
built using libSVM 2.91, a library tool for SVMs  
designed by Chih-Chung Chang and Chin-Jen Lin. The 
model also used the radial basis function (RBF) as the 
kernel function (KF) and the gamma parameter was set to 

0.005 (derived by trial and error) for the radial basis func-
tion. The k-NN model is constructed using IBk, a Weka 
3.6.2 implementation of k-NN; the value of k is derived 
by trial and error. The Euclidean distance is employed as 
the nearest neighbour search algorithm (NNSA). Naïve 
Bayes in Weka 3.6.2 is used as a model for the NB algo-
rithm. The MultiClassClassifier component using a logis-
tic classifier is used to build the LgDA model, and JRip is 
used to construct the ripper model.  
 Figure 3 illustrates the overall performance of the clas-
sifiers using all the aforementioned datasets. It is appar-
ent that there is significant improvement in classification 
performance when classifiers are used with proposed 
positive selection and imputation algorithm. All the 
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Figure 4. Overall performance of the classifiers from all the datasets with half the attributes with missing data. 
 
classifiers show an improvement between 5% and 7% in 
classification accuracy for the cases where 40% or 50% of 
missing data are simulated across the dataset. While the 
ripper achieves the highest overall performance, the clas-
sifiers that achieved the most recognizable improvement 
when used with the proposed imputation strategy are the 
NB, k-NN and SVM. These models achieved over 6% 
improvement in accuracy and greater resilience to miss-
ing data compared to the ripper and LgDA. 

 Figure 4 illustrates the overall performance of the clas-
sifiers when only half the attributes have missing data. 
The figure shows that the performance of the classifiers 
does not decrease significantly under these conditions. 
However, we can observe improved classification accura-
cies (when the imputation strategy is applied), with the 
ripper achieving the highest accuracy overall. NB, k-NN 
and SVM achieve better resilience to increasing missing 
data compared to LgDA. 
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Figure 5. Overall performance of the classifiers from all the datasets with missing data generated across the entire dataset. 
 
 
 Figure 5 illustrates the performance of the classifiers 
with missing data generated across the entire datasets. 
We observe that under these conditions the performance 
of the classifiers decreases significantly. It can be seen 
that with the proposed MDPIS, the performance of the 
classifiers improves significantly. For example, NB, k-NN 
and SVM show improvements in accuracies ranging bet-

ween 7% and 10%. Furthermore, all the classifiers show 
increase in resilience, similar to the results in Figure 4. 
 The proposed positive selection and data imputation 
strategy illustrates that by choosing the significant attri-
bute to input missing data, the performance of the classifi-
ers also improves. This approach sustains reduced 
computational cost as the number of attributes increase. 
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Furthermore, the resilience is increased for classifiers  
regardless of where missing data exist on half or across 
the attributes of a dataset.  
 In this communication we have illustrated a hybrid 
positive selection and correlation-based feature extraction 
method. We showed that the positive selection is dataset-
specific and a small value of R is required for comparing 
attributes between two instances. This is ideal for cases 
where there is a large number of variables in a dataset. 
We also showed that using the CFS method to impute 
data only on those attributes that impact the outcome is 
significant enough to improve that classification accura-
cies of classifiers as well as increase their resilience to 
increasing missing data. 
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The Nagaon district in Assam is in a sub-humid region 
with a greater part of the district comprising alluvial 
soil ranging from pure sand on the banks of the 
Brahmaputra to stiff clay. The area is subjected to 
frequent flooding by rivers during a spell of 4 months 
in a year. In the present study, flood hazard layer is 
considered as the primary input and is integrated with 
land use/land cover, infrastructure and population 
data and weightages are assigned to each class. Based 
on this, village flood risk index map for Nagaon dis-
trict has been generated. The results of analyses indi-
cate that about 267 villages are in the moderate–high 
risk index zone. About 35,354 ha of the district is in 
high flood hazard zone and about 25,281 ha of crop 
area is affected annually. We conclude that use of 
multi-temporal satellite datasets, coupled with GIS 
tools, are useful in identifying vulnerability of infra-
structure, population and land use in the event of 
flood disaster and in calculating the flood risk index. 
 
Keywords: Flood flood hazard layer, risk, multi-
temporal satellite data, vulnerability index. 


