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Abstract 19 
 20 

Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of 21 

rangeland quality and provide imperative information for sound management of 22 

wildlife and livestock. It is challenging to estimate grass N and P concentrations using 23 

remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous 24 

in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The 25 

objective of the study is to test the performance of  non-linear partial least squares 26 

regression (PLSR) for predicting grass N and P concentrations through integrating in 27 

situ hyperspectral remote sensing and environmental variables (climatic, edaphic and 28 

topographic). The data were collected along a land use gradient in the greater Kruger 29 

National Park region. The data consisted of:  (i) in situ-measured hyperspectral 30 

spectra, ii) environmental variables and measured grass N and P concentrations. The 31 

hyperspectral variables included published starch, N and protein spectral absorption 32 

features, red edge position, narrow-band indices such as simple ratio (SR) and 33 

normalized difference vegetation index (NDVI). The results of the non-linear PLSR 34 

were compared to those of conventional linear PLSR. Using non-linear PLSR, 35 

integrating in situ hyperspectral and environmental variables yielded the highest grass 36 

N and P estimation accuracy (R2=0.81, root mean square error (RMSE) =0.08, and 37 

p _p p _ _ _ _ p _ _ _
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2 
 

R2=0.80, RMSE=0.03, respectively) as compared to using remote sensing variables 1 

only, and conventional PLSR. The study demonstrates the importance of an integrated 2 

modelling approach for estimating grass quality which is a crucial effort towards 3 

effective management and planning of protected and communal savanna ecosystems. 4 

 5 

Keywords:  in situ hyperspectral remote sensing, ecosystem, partial least square 6 

regression, radial basis neural network, nitrogen concentrations, phosphorus 7 

concentrations 8 
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 1 

1. Introduction 2 

 3 

Spatial patterns of grass nitrogen (N) and phosphorus (P) are known to influence 4 

the grazing behaviour and migration patterns of wildlife and livestock in savanna 5 

landscapes (Drent and Prins, 1987; McNaughton, 1988, 1990; Prins and van 6 

Langevelde, 2008; Seagle and McNaughton, 1992). In Southern Africa, large 7 

herbivores are found in high numbers around nutrient rich areas e.g. termite mounds, 8 

sodic sites, or sites beneath large trees (Grant and Scholes, 2006; Ludwig et al., 2008; 9 

Treydte et al., 2007). Furthermore, the N:P ratio is postulated as one of the key 10 

indicators of nutrient limitation in savanna ecosystems (Koerselman and Meuleman, 11 

1996; Ludwig et al., 2001; Prins and van Langevelde, 2008). Therefore, an accurate 12 

assessment of the spatial patterns of N and P could play a vital role in the effective 13 

planning and management of savanna rangelands for sustainable livestock and 14 

wildlife grazing production.  15 

 16 

The communal savanna ecosystems serve as a source of livelihood for the rural 17 

community through providing valuable good and services including fuel wood (for 18 

cooking and heating) and grazing land (for livestock production) (Shackleton et al., 19 

2002). Sustainable livestock production depends on the quality of the grazing land. 20 

One of the causes of grazing land degradation is overgrazing resulting from poor land 21 

planning and management of grazing lands, mainly in the communal rangelands (Abel 22 

and Blaikie, 1989; Du Toit and Cumming, 1999). Therefore, information on the 23 

spatial patterns of grass quality will support sustainable rangeland management, and 24 

thus contribute to poverty alleviation in rural areas 25 

 26 

 27 

Remote sensing is widely used as a cost-effective means (Mumby et al., 1999) to 28 

estimate and map plant condition or quality at landscape level in various biomes, such 29 

as grasslands and savannas (Bogrekci and Lee, 2005; Ferwerda et al., 2005; Mutanga 30 

and Kumar, 2007; Mutanga and Skidmore, 2004a; Mutanga et al., 2005; Mutanga et 31 

al., 2004b, c; Numata et al., 2008; Skidmore et al., 2010), forests (Martin and Aber, 32 

1997; Schlerf et al., 2010) and agricultural areas (Hansen and Schjoerring, 2003; 33 
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Huang et al., 2004; LaCapra et al., 1996; Thenkabail et al., 2000; Wang et al., 2009; 1 

Zarco-Tejada et al., 2004). The conventional broadband remote sensing techniques 2 

based on the utilization of the relationship between grass quality (N and P) and spectral 3 

indices such as normalized difference vegetation index (NDVI) (Tucker, 1979), soil line 4 

concept (SLC), simple ratio (SR) (Baret and Guyot, 1991), and soil-adjusted vegetation 5 

index (SAVI) (Huete, 1988) have limited applications in high grass canopy 6 

environments as they saturate at high canopy cover (Mutanga and Skidmore, 2004b; 7 

Tucker, 1977). On the other hand, the use of spectral indices derived from the red-edge 8 

bands (700 – 750 nm) of  hyperspectral or narrow-band data has been demonstrated to 9 

mitigate the saturation effect observed with broadband indices (Cho and Skidmore, 10 

2006; Clevers et al., 2002; Darvishzadeh et al., 2008; Huang et al., 2004; Majeke et al., 11 

2008). The red-edge is the region of abrupt change in foliar reflectance between 680 12 

and 780 nm (Clevers et al., 2002). Narrow-band normalized difference vegetation index 13 

and SR indices computed from red-edge bands provided more accurate estimates of 14 

foliar N compared to conventional NDVI derived from 680 and 800 nm (Mutanga and 15 

Skidmore, 2007). Many other studies have identified several absorption features for N 16 

and protein (Cho et al., 2010; Curran, 1989; Elvidge, 1990; Knox et al., 2010; Kokaly 17 

and Clark, 1999; Kumar et al., 2001; Skidmore et al., 2010). Specific absorption 18 

features for P have not been identified, but several studies found that the short-wave 19 

infrared (SWIR) bands have a potential for predicting foliar P concentration (Cho et 20 

al., 2010; Mutanga and Kumar, 2007; Ramoelo et al., 2011). Spectral transformation 21 

techniques such as water and continuum removal have been proposed to enhance 22 

nutrient absorption features (Cho et al., 2010; Huang et al., 2004; Mutanga et al., 23 

2004c; Ramoelo et al., 2011; Schlerf et al., 2010). 24 

 25 

Savanna ecosystems are diverse and heterogeneous in soil and plant moisture, 26 

soil nutrients, fire regime, grazing pressures and anthropogenic activities (Ben-Shahar 27 

and Coe, 1992). Thus, making the estimation of grass N and P using remote sensing in 28 

savannas a challenging venture (He and Mui, 2010; Mutanga and Kumar, 2007; 29 

Mutanga et al., 2004c; Skidmore et al., 2010). Grass quality is influenced by geology 30 

(Ben-Shahar and Coe, 1992; Grant and Scholes, 2006), soil (Cho et al., 2010; 31 

Heitkönig and Owen-Smith, 1998), precipitation and temperature (Ben-Shahar and 32 

Coe, 1992), topography or catena position (Mutanga et al., 2004a; Seagle and 33 

McNaughton, 1992) as well as aspect (Mutanga et al., 2004a), and land use types. The 34 
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question is; could an integrated approaching involving remote sensing and 1 

environmental variables improve the assessment of grass quality as opposed to remote 2 

sensing variables only? We assume that a modelling approach that exploits the 3 

strength of environmental variables and remote sensing data could potentially 4 

improve the assessment of ecosystem state and functioning at various geographic 5 

scales (Cho et al., 2009; Knox et al., 2011; Mutanga et al., 2004a). The integrated 6 

approach could be an attempt towards estimating and mapping foliar N and P at 7 

regional scale, which according to our knowledge is yet to be done. A limited number 8 

of studies have investigated the possibility of integrating environmental and remote 9 

sensing variables to estimate foliar N and P concentrations e.g. Cho et al., (2009b) and 10 

Knox et al., (2011).  11 

 12 

Several studies have successfully used stepwise multiple linear regression 13 

(SMLR) (Grossman et al., 1996; Huang et al., 2004; Kokaly and Clark, 1999; Martin 14 

and Aber, 1997) to estimate N and P with hyperspectral remote sensing variables. 15 

However, SMLR operates on the assumption of normal distribution of the data, and 16 

could suffer from model overfitting and multicolinearity (Grossman et al., 1996; 17 

Huang et al., 2004). The use of partial least square regression (PLSR) has been 18 

advocated to address these issues (Asner and Martin, 2008; Darvishzadeh et al., 2008; 19 

Geladi and Kowalski, 1986; Huang et al., 2004; Ramoelo et al., 2011). The 20 

conventional PLSR also makes a normality assumption about the distribution of the 21 

response variable. Input data can be normalized using mean or median centring prior 22 

to use with the conventional PLSR (Viscarra Rossel, 2008), but this does not 23 

completely address the requirement for normal distribution.  24 

 25 

In the conventional linear PLSR model, the centred data matrices X and Y are 26 

projected onto the low-dimensional score matrices, T and U, respectively (Martens 27 

and Naes, 2001; Viscarra Rossel 2008; William and Norris, 1987), as well outlined by 28 

Walczak and Massart, (1996), 29 

 30 

X=TP’+C         (1) 31 

 32 

Y=UC’+F         (2) 33 

where P and C are the regression coefficients (loadings). 34 
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T and U in PLS are developed the same way as the principal component analysis 1 

(PCA) (Geladi and Kowalski, 1986), but the difference is that PLSR uses both 2 

dependent and independent variables to decompose the input data into latent variables 3 

(Geladi and Kowalski, 1986). 4 

 5 

When the weights are not normalized, the linear relation between the scores 6 

matrices T and U can be represented as  7 

 8 

U=T+H          (3) 9 

 10 

and then, 11 

 12 

Y=TC’ + F*,        (4) 13 

 14 

where matrices E, F, F* and H contain residuals. 15 

 16 

For the RBF-PLS, the activation matrix A should be constructed using a Gaussian 17 

function which is normally characterized by two parameters, namely, center and 18 

width (Walczak and Massart, 1996). The RBF can be considered as a 3-layer net 19 

containing input, hidden and output layers, similar to any neural network procedure 20 

(Walczak and Massart, 1996). When the width and centres are specified, the input 21 

value to each output node is a weighted sum of all outputs of the hidden nodes (i.e. 22 

corresponds to the dimension of the input data).  The final RBF model has the 23 

following form: 24 

 25 

Y=A x w 26 

 27 

where w are weights which are normally adjusted to minimize the mean square 28 

error of the net output. 29 

 30 

 31 

 32 

 33 
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7 
 

Therefore, the PLS procedure can be applied to model matrices A and Y. In this 1 

case, the centred A and Y construct a linear PLS model: 2 

 3 

Y=TC’+F, 4 

 5 

with T representing the score matrix of A.  6 

 7 

Scores A are the linear combinations of the Gaussian maximizing the covariance 8 

between A and Y (Walczak and Massart, 1996). In essence, the nonlinear relation is 9 

transformed to the problem in linear algebra (Walczak and Massart, 1996). A key 10 

thing is to construct the activation matrix, which is then used with PLSR to predict 11 

foliar biochemical. 12 

 13 

The non-linear PLSR as described above is also known as PLSR with radial basis 14 

function neural network (RBF-PLSR) (Walczak and Massart, 1996). The advantage of 15 

the non-linear PLSR is that it is a flexible non-linear regression technique which 16 

combines the capability of the conventional PLSR, i.e., power to maximize 17 

covariance between data sets, and the non-linear nature of the RBF neural network 18 

(Walczak and Massart, 1996). The predictive models developed by RBF-PLSR have 19 

limited or no overfitting and multicolinearity problems if the optimal number of latent 20 

variables are selected (Walczak and Massart, 1996). RBF-PLSR is also non-21 

parametric in nature and it does not require model input to be normally distributed. 22 

The technique has been successfully applied in soil (Fidêncio et al., 2002), time series 23 

prediction (Zemouri et al., 2003), air pollution (Giering et al., 2005) and engineering 24 

related fields (Garg et al., 2010). The performance of the non-linear PLSR has not 25 

been established for extracting vegetation biochemistry in the heterogeneous savanna 26 

ecosystems.  27 

 28 

The aim of the study was (i) to assess and compare the retrieval accuracy of grass 29 

N and P concentrations when using conventional vs. non-linear PLSR, and (ii) to test 30 

the performance of non-linear PLSR for integrating in situ hyperspectral remote 31 

sensing and environmental variables (climatic, edaphic, and topographic) for 32 

predicting grass N and P concentrations. The conventional and non-linear PLSR 33 

techniques were implemented with remote sensing variables only and subsequently 34 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

8 
 

with the integrated environmental and in situ hyperspectral remote sensing variables. 1 

Conventional and non-linear PLSR vs. integrated modelling results were compared. 2 

 3 

2. Material and Methods 4 

2.1. Study area and sampling design 5 

 6 

The study area is located in the Lowveld savanna at the north-eastern part of 7 

South Africa (Fig. 1). The Lowveld landscape corresponds to the low lying area 8 

extending from the foot slopes of the Drakensberg Great Escarpment to the west and 9 

the Mozambique coastal plain to the east (Venter et al., 2003). The topography is 10 

gently undulating with flat patches in localized areas, and with an average height of 11 

450m a.s.l. The study area covers a land use transect ranging from protected areas 12 

such as the private-owned Sabi Sands Game Reserve (SGR) and the state-owned 13 

Kruger National Park (KNP) to communal lands in the Bushbuckridge region. The 14 

western part of the transect (communal areas) receives higher mean annual rainfalls 15 

(800mm/yr.) compared to the eastern side of the transect (580 mm/yr.) (Venter et al., 16 

2003). The annual mean temperature is about 22oC. The dominant geology includes 17 

granite and gneiss with local intrusions of gabbro (Venter et al., 2003). Consequently, 18 

these areas are characterized by gradients of soil moisture and nutrients. The soil 19 

fertility of gabbro areas are higher than the granitic ones (Ben-Shahar and Coe, 1992; 20 

Venter et al., 2003). The main vegetation communities include the “granitic lowveld” 21 

and the “gabbro grassy bushveld” (Mucina and Rutherford, 2006). In the gabbro 22 

patches, grass species such as Setaria sphacelata dominates the crest while species 23 

such as Urochloa mosambicensis dominates the valleys. Gabbro patches are 24 

dominated by grass species with high productive potential (e.g. Urochloa 25 

mosambicensis) compared to granite-derived soils (e.g. Eragrostis rigidior and 26 

Pogonathria squarrosa; cf. Mutanga et al., (2004). The gabbro sites are dominated by 27 

fine leaves tree species such as Acacia ssp while the granite sites are dominated by 28 

broadleaves tree species such as Combretum spp and Terminalia spp (Ferwerda et al., 29 

2006; Venter et al., 2003). Rangelands in the protected areas are grazed by wild 30 

herbivore such as impala (Aepyceros melampus), zebra (Equus burchelli), wildebeest 31 

(Connochaetes taurinus), buffalo (Syncerus caffer), etc., while the communal 32 
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rangelands support grazing of cattle (Bos primigenius) and goats (Capra hircus) as 1 

well as sheep (Ovis aries), which determine various grazing intensities. 2 

 3 

(Figure 1) 4 

 5 

The study area consisted of eight experimental sites which were placed along the 6 

land use gradient: two sites in KNP (L1 gabbro, L2 granite), two sites in SGR (L3 7 

granite, L4 gabbro), and four sites in the communal areas (L5-6 gabbro, L7-8 granite) 8 

(Fig. 1). The sites (totalling ca. 35000ha) were demarcated using 1:250, 000 geology 9 

maps and refined using 2008 SPOT 5 images (Wessels et al., 2011). The site selection 10 

process sought to capture the nutrient gradient from low to high in granitic-derived 11 

soils to gabbro-derived soils, respectively and along the rainfall gradient. A line 12 

transect sampling design was used to collect field data (Fewster et al., 2005) in each 13 

site except L3 (because of access limitations). To better capture the grass biomass 14 

variability, transects were laid out to sample both valley and crest land units. The 15 

topography influences the grass biomass in the savanna ecosystems with valley areas 16 

generally having higher grass biomass than crest areas. Along transects, a 17 

combination of purposive and systematic placement of sampling plot was done. The 18 

distance between the plots was between 500m and 1000m depending on the 19 

accessibility and homogeneity of the area. The plot size was 30 m x 30 m. A total of 20 

49 plots were surveyed and in each plot three to four subplots (0.5 m x 0.5m) were 21 

randomly selected to capture the plot variability. In each subplot, data on the sample 22 

location using the Leica®’s GS20 differential geographic positioning system (DGPS), 23 

dominant grass species, grass cover (%) and grass samples were collected. Grass 24 

samples were dried at 800C for 24 hours and the measurements were later averaged at 25 

plot level. The DGPS points were post-processed using Leica’s GeoPro software and 26 

reference GPS data from Nelspruit station to produce less than 1 m positional 27 

accuracy. The fieldwork was undertaken from 31 March to 17th April 2009 towards 28 

the end of the wet season, when the grass biomass was at full maximum growth or 29 

peak productivity to minimize the N/P and biomass interaction effects (Ramoelo et 30 

al., 2012; Skidmore et al., 2010).  31 

 32 

 33 
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2.2.  Chemical analysis 1 

 2 

The dried grass samples were taken to the South African’s Agricultural Research 3 

Council-Institute for Tropical and Subtropical Crops (ARC-ITSC)-Nelspruit for 4 

chemical analysis. Firstly, the acid digestion technique was used, where perchloric 5 

and nitric acids were used for foliar P concentration retrieval and sulphuric acid was 6 

used for retrieving foliar N concentrations (Giron, 1973; Grasshoff et al., 1983; 7 

Mutanga et al., 2004a). Secondly, the colorimetric method by auto analyser was used 8 

to measure foliar N (Technicon Industrial Method 329-74 W; Technicon Industrial 9 

Systems, Farrytown, New York). For foliar N measurements an emerald-green colour 10 

was formed by the reaction of ammonia, sodium salicylate, sodium nitroprusside, and 11 

sodium hypochlorite. The ammonia-salicylate complex was read at 640 nm. For foliar 12 

P measurements, a colorimetric in which a blue colour was formed by the reaction of 13 

ortho-phosphate and the molybdate ion. The phosphomolybdenum complex was then 14 

read at 660 nm. These extraction methods were successfully used for grass foliar N 15 

and P by Mutanga et al., (2004) and Ramoelo et al., (2011). 16 

 17 

2.3.  Canopy Spectral measurements 18 

 19 

The reflectance spectra were measured using an Analytical Spectral Device 20 

(ASD) spectroradiometer, Fieldspec 3®. The full-width-half-maximum (FWHM) 21 

spectral resolution of the ASD is 3 nm for the region 350 -1000 nm and 10 nm for the 22 

region 1000 - 2500 nm. Within each plot, spectral measurements were made for each 23 

of the 3 to 4 randomly selected subplots.  In each subplot, five spectral measurements 24 

were taken and later averaged to account for illumination and grass canopy structural 25 

differences as well as bidirectional effects (Mutanga et al., 2003; Wang et al., 2009). 26 

The measurements were taken between 10h30 and 15h00 on clear sunny days to 27 

minimize cloud effects and maximize illumination (Abdel-Rahman et al., 2010). A 28 

25° field-of-view fibre optic was used. The fibre optic pistol was held at 1m above the 29 

ground and at nadir to cover the entire subplot. A Spectralon reference panel was 30 

utilized before each measurement to calibrate the sensor and convert spectral radiance 31 

to reflectance.  32 

 33 
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2.4.  Spectral indices and selection of absorption features 1 

 2 

Red-edge position (REP), narrow band indices such as narrow normalized 3 

difference vegetation index, simple ratio (SR), and known absorption features of N 4 

and protein were used for N estimation and several spectral features of leaf and 5 

canopy biochemistry were selected for P estimation. 6 

 7 

2.4.1. Spectral indices 8 

 9 

The red-edge is highly correlated with N and is less sensitive to soil background 10 

reflection (Cho and Skidmore, 2006). For this study REP was calculated using the 11 

linear extrapolation technique (Cho and Skidmore, 2006). Cho and Skidmore (2006) 12 

found out that the linear extrapolation technique achieved higher accuracy in 13 

retrieving N and chlorophyll as compared to other red-edge detection techniques. The 14 

NDVI is the most widely known vegetation index used as a surrogate for vegetation 15 

condition and health in many studies (Zhao et al., 2007). It has been reported to 16 

minimize the atmospheric effects on remote sensing data (Zarco-Tejada et al., 2004). 17 

The narrow-band NDVI has been proposed to minimize problems of asymptotic 18 

saturation of biomass assessment particularly during the peak productivity (Mutanga 19 

and Skidmore, 2004b). A narrow band simple ratio (SR) was also computed using the 20 

red edge spectral bands. The advantages above-mentioned for narrow-band NDVI 21 

also apply for SR derived from the red-edge region. Narrow-band SR and NDVI have 22 

been successfully used for estimating vegetation parameters, e.g. chlorophyll and 23 

nitrogen concentrations, biomass, and leaf area index (Darvishzadeh et al., 2008; 24 

Mutanga and Skidmore, 2004b). 25 

 26 

2.4.2. Selection of absorption features 27 

 28 

Chlorophyll, protein, and N absorption features were selected for estimating 29 

foliar N concentrations (Curran, 1989; Kumar et al., 2001) (Table 1). Since foliar P 30 

does not have specific known absorption features, chlorophyll, protein, sugar, and 31 

starch absorption features were used instead (Curran, 1989; Kumar et al., 2001). The 32 

listed absorption features for N, and protein have been successfully used for foliar N 33 
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(Knox et al., 2010; Schlerf et al., 2010; Skidmore et al., 2010), while Ramoelo et al., 1 

(2011), Mutanga and Kumar, (2007), Bogrekci and Lee, (2005), and Cho et al., 2010 2 

found that foliar P concentration is sensitive to the bands located in the shortwave 3 

infrared. Therefore, most the selected absorption features dominates the SWIR region. 4 

 5 

(Table 1) 6 

 7 

2.5.  Environmental data 8 

 9 

Environmental variables used in this study include precipitation, temperature, 10 

land use, geology, soils, distance to rivers, altitude, slope, and aspect (Table 2). 11 

Climate, topography and geologic substrate influence the distribution of the primary 12 

environmental regimes such as moisture and nutrients in soils or plants, see Skidmore 13 

et al., (2011), Pickett et al., (2003), Venter et al., (2003), and Mutanga et al., (2004). 14 

Details for each environmental variable are mentioned below; 15 

 Annual average precipitation and temperatures were acquired from the 16 

World Climate database (WorldClim) (www.WorldClim.com).  17 

 The Digital Elevation Model (DEM) was produced at 50 m spatial 18 

resolution using contours and spot height data from 1:50 000 19 

topographical maps acquired from South Africa’s Department of Rural 20 

Development: Surveys and Mapping.  21 

 Slope and aspect were derived from the DEM using ArcGIS 10x. The 22 

river layer was sourced from the South African National Botanical 23 

institute (SANBI)’s Beta version of vegetation data sets (Mucina and 24 

Rutherford, 2006).  25 

 The distance to river variable was computed using the Spatial Analyst 26 

Tool embedded in ArcGIS 10x, where the river layer and the sample plot 27 

locations were used as an input. The unit for the distance were measured 28 

in kilometres (km). 29 

 Geology data was acquired from the council for Geoscience in South 30 

Africa. Major classes used in this study are granite and gabbro. Granite is 31 

associated with high soil fertility, while gabbro is associated with 32 

relatively high soil fertility.  33 
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 A soil layer was acquired from the soil and terrain database of Southern 1 

Africa (SOTERSAF) (Dijkshoorn, 2003; Dijkshoorn et al., 2008; FAO et 2 

al., 2003). Three major classes of soils such as albic arenosols, calvic 3 

vertisol and eutric regosols occurs in the study area. More details about 4 

these types of can be found in FAO et al., (2003) and Dijkshoorn, (2003). 5 

 The land use types (3  classes; public conservation lands, private 6 

conversation lands, and communal rangelands) were derived from the 7 

boundary layers of KNP, Sabi Sands, and communal areas acquired from 8 

KNP’s Geographic Information System (GIS) and remote sensing 9 

laboratory. 10 

For all the data layers, ArcGIS spatial analyst tool was used to extract the values and 11 

classes corresponding to the sampling points, performing “Extract values to points” 12 

for rasters and “Overlay” for vectors. The extracted values and classes were used to 13 

create a database for statistical analysis. 14 

 15 

(Table 2) 16 

 17 

2.6.  Statistical analysis and modelling 18 

 19 

 Both non-linear and conventional linear partial least square regressions (PLSR) 20 

were used for data analysis. Any PLSR technique aims at decomposing a list of 21 

independent variables into latent and uncorrelated variables to minimize the 22 

dimensionality problems associated with the raw data sets (Geladi and Kowalski, 23 

1986; Martens and Naes, 2001; Naes et al., 1986; Viscarra Rossel, 2008). The 24 

conventional linear PLSR used in this study refers to the technique developed or used 25 

by Geladi and Kowalski (1986), Naes et al., (1986), Ehsani et al., (1999), and 26 

Viscarra Rossel, (2008). The non-linear PLSR with radial basis function neural 27 

network (RBF-PLSR) is proposed for estimating foliar N and P concentrations as it is 28 

a flexible technique which can predict both non- and normally distributed response 29 

variables (Daszykowski et al., 2007; Walczak and Massart, 1996). RBF-PLSR has the 30 

mutual advantages of the non-linear nature of RBF and of the power of PLSR to 31 

maximize covariance between data sets (Walczak and Massart, 1996). The detailed 32 

theory behind RBF-PLSR can be found in Walczak and Massart, (1996). The input 33 
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variables were standardized or scaled to a range of [0-1] (Knox et al., 2011; Mutanga 1 

and Kumar, 2007; Skidmore et al., 2010) prior to implementing the non-linear PLSR. 2 

The implementation of the radial basis function was done by constructing a model or 3 

an activation matrix using Gaussian functions with different widths defined by their 4 

sigma values (from 0.1 to 1 with a step of 0.1). The PLSR is then applied to the 5 

activation matrix to estimate biochemical. The scores in the activation matrix are the 6 

linear combinations of the Gaussian functions maximizing the covariance between 7 

N/P and the activation values. 8 

  9 

The Monte-Carlo leave-one-out cross-validation technique was used to determine 10 

the optimum number of latent factors based on the lowest RMSE (Daszykowski et al., 11 

2007), which also correspond to a particular sigma value. The Monte Carlo leave-one-12 

out cross validation was used for validation because the available dataset (49 samples) 13 

was too small to be effectively divided into a training and test dataset. The advantage 14 

of the leave-one-out cross-validation is that is not biased, since it uses 48 samples for 15 

data calibration to predict the remaining 1 iteratively (Darvishzadeh et al., 2008). The 16 

non-linear RBF-PLSR was implemented in the Matlab tool box for multivariate 17 

calibration techniques (TOMCAT). The software description details can be found in 18 

Daszykowski et al., (2007). The conventional PLSR weights were further analyzed 19 

and interpreted to determine whether there was a positive or negative contribution of 20 

each variable in the foliar N and P models, non-linear PLSR technique does not 21 

provide this information. Correlation matrices were computed to assess the 22 

relationships between environmental variables and grass nutrient concentrations, and 23 

to help the interpretation of the integrated modelling outputs. Non-parametric 24 

spearman correlation was used because this method handles both continuous and 25 

categorical data sets irrespective of their statistical distribution, and was implemented 26 

in R programming language (Hollander and Wolfe, 1973; Lehman, 1998). 27 

 28 

 29 

 30 

 31 

 32 

 33 
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3. Results 1 

 2 

       3.1. Integrated modelling using non-linear PLSR for foliar N estimation 3 

 4 

The results showed that non-linear PLSR with integrated in situ remote sensing 5 

and environmental variables yielded a higher foliar N estimation accuracy (R2=0.81, 6 

RMSE=0.08, 11.4% of the mean) as compared to the use of remote sensing variables 7 

only (R2 =0.66, RMSE=0.11: 15.7% of the mean) (Fig. 2, Table 3). Integrating in situ 8 

hyperspectral remote sensing and environmental variables with the non-linear PLSR 9 

yielded higher estimation accuracy than with the conventional PLSR. The 10 

conventional PLSR explained 64% and 58% of the variance of grass N concentration 11 

with integrated in situ hyperspectral and environmental variables, and with remote 12 

sensing variables only, respectively (Fig. 2, Table 3). Generally, the non-linear PLSR 13 

achieved higher estimation accuracy of grass N than the conventional PLSR, both 14 

considering remote sensing and environmental variables and remote sensing variables 15 

only (Table 3). The predictive capability of foliar N concentrations using 16 

environmental variables alone is low, as compared to using remote sensing variables 17 

as well as integrated modelling approach (Table 3). 18 

 19 

(Table 3) 20 

(Figure 2) 21 

 22 

Remote sensing variables such as narrow-band SR and REP positively 23 

contributed to the N model while protein absorption features at 910 nm and 1020 nm 24 

yielded the negative contribution as shown by the PLSR weights in Fig. 4. Geology, 25 

soil types, land use, distance to rivers and temperature resulted to a positive 26 

contribution to the N prediction model, while slope and grass cover contributed 27 

negatively as shown by PLSR weights in Fig. 4. Table 4 reports the non-parametric 28 

spearman correlation matrix of foliar N and environmental variables. Correlations 29 

between foliar N and environmental variables were generally not significant (p<0.05), 30 

with only weak relationships with slope and aspect, while a high correlation was 31 

found between precipitation and land use types or temperature, respectively (Table 4). 32 

Table 6 shows that REP is the only variable achieved high correlation with foliar N. 33 

The measured foliar N has a mean value of 0.7% and a coefficient of variation value 34 
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of 26 %, which shows that the variability of N in grass leaves across the study area is 1 

not very high (Table 8). 2 

 3 

 (Table 4) 4 

 (Figure 3) 5 

(Figure 4) 6 

 7 

3.2. Integrated modelling using non-linear PLSR for foliar P 8 

estimation 9 

 10 

For the foliar P estimation, the non-linear RBF-PLSR with integrated remote 11 

sensing and environmental variables yielded a higher foliar P estimation accuracy 12 

(R2=0.80, RMSE=0.02: 18.2% of the mean) than the non-linear RBF-PLSR model 13 

with remote sensing variables only (R2=0.44, RMSE=0.04: 45.4% of the mean) (Fig. 14 

3, Table 3). Integrating in situ hyperspectral remote sensing and environmental 15 

variables with the non-linear PLSR also yielded higher P estimation accuracy than 16 

with the conventional PLSR. The conventional PLSR explained 36% and 38% of the 17 

variance of grass P concentration with integrated in situ hyperspectral and 18 

environmental variables, and with remote sensing variables only, respectively (Fig. 3, 19 

Table 3). The predictive capability of foliar P concentrations using environmental 20 

variables alone is low, as compared to using remote sensing variables as well as 21 

integrated modelling approach (Table 3). 22 

 23 

Considering the conventional PLSR integrated model, the narrow-band NDVI, 24 

SR, REP and several bands in the shortwave infrared showed a positive contribution 25 

to the model, while the 910, 970, 990, and 1020 nm wavebands showed a negative 26 

relationship with foliar P concentration (Fig. 5). Geology, land use types, and soils 27 

showed positive PLSR weights, while slope, grass cover, and temperature had 28 

negative PLSR weight or contribution to the model (Fig. 5). The results show that the 29 

contribution of the environmental variables to P estimation is similar to that of N 30 

(Figs. 4 and 5). As for N, correlations between foliar P and environmental variables 31 

were generally not significant (p<0.05), with only weak relationships with slope, 32 

precipitation, and land use (Table 5). Table 7 shows low correlation between remote 33 

sensing variables and foliar P. The measured foliar P concentration of the grass 34 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

17 
 

sample has a mean value of 0.11% and a coefficient of variation value of 49%, which 1 

shows that the variability of P in grass leaves across the study area is high (Table 8). 2 

 3 

(Table 5) 4 

(Table 6) 5 

(Table 7) 6 

(Table 8) 7 

 (Figure 5) 8 

 9 

4. Discussion 10 

 11 

The study was undertaken to address two main objectives; 1) to assess and 12 

compare the retrieval accuracy of foliar N and P concentrations when using 13 

conventional vs. non-linear PLSR, and 2) to test the performance of non-linear PLSR 14 

for integrating in situ hyperspectral remote sensing and environmental variables 15 

(climatic, edaphic and topographic) for predicting grass N and P concentrations. 16 

 17 

      4.1. Comparing conventional and non-linear PLSR in N and P estimation 18 

 19 

For both foliar N and P estimation, the non-linear PLSR performed with a higher 20 

accuracy than conventional PLSR. The non-linear PLSR has the mutual advantages of 21 

the linear nature of RBF (which is a neural network) and of the power of PLSR to 22 

maximize covariance between data sets, while minimizing the variance of the 23 

prediction (Walczak and Massart, 1996). Maximizing co-variance between data sets is 24 

done through decomposition of the independent variables into uncorrelated latent 25 

variables which is important for; (1) reducing the dimensionality of the data (Ehsani 26 

et al., 1999; Geladi et al., 1999; Geladi and Kowalski, 1986) and (2) minimizing the 27 

over-fitting and multicolinearity (Huang et al., 2004; Walczak and Massart, 1996), to 28 

enhance the transferability of models (Crawley, 2006). The inclusion of the RBF 29 

model which is neural network in nature makes the non-linear PLSR to be 30 

nonparametric and can be applied without being constrained by the statistical 31 

distribution (Atkinson and Tatanall, 1997). This study demonstrated the power of the 32 
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non-linear RBF-PLSR for estimating foliar N and P coupled with the integrated in situ 1 

remote sensing and environmental variables.  2 

 3 

4.2.  Integrated modelling for Foliar N estimation: contribution of remote 4 

sensing variables 5 

 6 

The results showed that integrating in situ hyperspectral remote sensing and 7 

environmental variables increases the estimation accuracy of foliar N concentrations, 8 

compared to using remote sensing variables alone. Narrow-band SR, REP, and protein 9 

absorption features at 910 nm and 1020 nm significantly contributed to the prediction 10 

of foliar N concentrations. The red edge has been widely utilized because it is highly 11 

correlated to chlorophyll (Cho and Skidmore, 2006; Darvishzadeh et al., 2008) and it 12 

minimizes soil background effects (Zarco-Tejada et al., 2004). Positive correlation 13 

between chlorophyll and N has been reported by Yoder and Pettigrew-Crosby, (1995). 14 

The results are consistent with other studies focusing on foliar N concentration using 15 

in-situ hyperspectral remote sensing (Gong et al., 2002; Knox et al., 2010; Mutanga et 16 

al., 2004c). Gong et al., (2002) demonstrated the utility of blue and red edge regions 17 

for estimating foliar N estimation.  18 

 19 

The protein absorption features at 910 nm and 1020 nm contributed to foliar N 20 

estimation model as they are influenced through various vibration mechanisms such 21 

as C-H stretch, 3rd overtone and N-H stretch (Curran, 1989; Kumar et al., 2001). The 22 

visible region of the spectra is characterized by the electron transition while the near 23 

and shortwave infrared are characterized by the various bond vibration (Curran, 1989; 24 

Kumar et al., 2001). Several studies used these absorption features not only for foliar 25 

estimation, but also for biomass and LAI estimations (Cho et al., 2007; Darvishzadeh 26 

et al., 2008).  27 

 28 

This study is in consistent with the initial attempts to use remote sensing and 29 

environmental or ancillary variables for vegetation mapping to improve accuracy, 30 

with variables such as slope, aspect, and elevation used as a proxy for temperature and 31 

moisture conditions (Hoffer, 1975; Strahler et al., 1978). Such techniques were 32 

successfully applied for vegetation mapping in the forest environments (Franklin et 33 

al., 1986; Skidmore, 1989; Strahler, 1981).   34 
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 1 

 2 

 3 

 4 

4.3. Integrated modelling for foliar P estimation: contribution of remote 5 

sensing variables 6 

 7 

Integrating in situ hyperspectral and environmental variables improved the 8 

estimation accuracy for foliar P estimation, as compared to the use of the remote 9 

sensing variables alone. The contribution of remote sensing variables in estimating 10 

foliar P concentrations was based on several biochemical absorption features, red 11 

edge position, narrow-band NDVI, and SR. Unlike the foliar N concentration with 12 

defined absorption features, the estimation of foliar P using hyperspectral remote 13 

sensing does not have specific absorption features defined. Few studies on prediction 14 

of foliar P concentrations from spectral data found that most sensitive bands are 15 

located in the SWIR (Bogrekci and Lee, 2005; Cho et al., 2010; Mutanga and Kumar, 16 

2007; Ramoelo et al., 2011). As shown above, these regions are characterized by the 17 

various vibration mechanisms imposed by several biochemicals, e.g. O-H, C-C and 18 

N-H associated with protein, N, sugar, and starch. The limited contribution of the red 19 

edge position, narrow-band NDVI and SR was expected since the bands used to 20 

calculate these indices are all located in the visible region of the spectrum. This is in 21 

consistent with the results of Gong et al., (2002) who attempted to use vegetation 22 

indices derived from visible bands for estimating foliar phosphorus and generally 23 

reported low correlations. 24 

 25 

4.4. Integrated modelling for  foliar N and P: contribution of environmental 26 

variables 27 

 28 

The positive PLSR weights for environmental variables such as geology, soils, 29 

distance  to rivers and temperature showed that the distribution of grass nutrients are 30 

directly or indirectly linked to climatic, topographic, and geologic variables (Ben-31 

Shahar and Coe, 1992; Grant and Scholes, 2006; Heitkönig and Owen-Smith, 1998; 32 

Pickett et al., 2003; Skidmore et al., 2011). Geology (which is closely reflected into 33 

the soil layer) is a key determinant of grass nutrient concentrations in these savanna 34 
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ecosystems, i.e. grass nutrient concentrations is linked to soil nutrient contents (Ben-1 

Shahar and Coe, 1992; Pickett et al., 2003; Skidmore et al., 2010; Venter et al., 2003). 2 

In our study area, two main geological substrates contribute to the variation of grass 3 

nutrients; gabbro support highly nutritious grass (Setaria sphacelata, Digitaria 4 

eriantha, Urochloa mosambicensis), while granite support low-nutrient content grass 5 

species (e.g. Erogrostis rigidior, Sporobolus spp.) because of the clay content in the 6 

soil, which is higher in the gabbro than the granite. The granitic substrate has low in 7 

situ clay formation potential because it is weather resistant, while gabbro is easily 8 

weathered with high in situ clay formation as basalt (Venter et al., 2003). Land use is 9 

also highlighted to contribute highly in the foliar N prediction model. Table 5 reports 10 

a high correlation between land use types and mean annual precipitation due to the 11 

rainfall gradient i.e., more precipitations fall in the communal areas than Sabi Sands 12 

and the KNP areas. Precipitation is the main source of water and acts as a vector of 13 

particulate and dissolved materials which make it a primary agent of soil 14 

heterogeneity and consequence of vegetation or grass responses (Venter et al., 2003). 15 

There is also a significant contribution of mean annual temperature in the foliar N 16 

concentration prediction which is further associated with the water availability in the 17 

soils or plants (Venter et al., 2003). Drier grasses have less photosynthetic activity due 18 

to low water content leading to lower foliar biochemical concentrations or grass 19 

quality (Prins and van Langevelde, 2008). Slope had a negative contribution to the 20 

model which generally implies that steeper slopes have lower grass nutrient contents 21 

as result of thinner and coarser-textured soil layers than the lower slopes (e.g. valleys) 22 

with relatively higher grass nutrient concentrations (Figs. 4; 5, Tables 4; 5).  Minerals 23 

and clay particles from the crest and midslope are removed through run-off and 24 

deposited in the valley or close to the drainage line areas (Grant et al., 2000). 25 

Increased nutrient supply and water availability (through higher water retention 26 

capacity) favours highly nutritious grass species in the valley or drainage line areas 27 

(Grant et al., 2000). This trend is also confirmed by the positive contribution of 28 

distance to rivers variable, i.e. grass species found close to the rivers have high 29 

nutrients concentration than areas further away. A negative correlation between slope 30 

and grass cover also shows that high vegetation cover with high nutrient 31 

concentrations is along the drainage lines or valleys than the crest (Fig. 6). Fig. 6 32 

shows various selected subplots where the grass samples were collected, with 33 

different grass cover. 34 
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 1 

(Figure 6) 2 

 3 

The significant correlations between geology, slope, distance to rivers, altitude, 4 

and temperature highlight the complexity and web of the inter-relationships between 5 

geology, topography and grass nutrient concentrations determined by the availability 6 

and diversity of minerals as well as moisture in the soil (Table 4, 5) (Ben-Shahar and 7 

Coe, 1992). In systems like savannas, the gradient of soil nutrients and moisture is 8 

influenced by an interaction of local parent material, topography, climate, and living 9 

organisms which occur in a complex way (Venter et al., 2003). A main disadvantage 10 

of using environmental parameters in this type of study is that they are not often 11 

available in relatively high resolutions and scales, but integrated with remote sensing 12 

variables the effects of this challenge are minimized. In addition, Table 3 shows that 13 

predictive capability of foliar N and P concentrations using environmental variables is 14 

low, as compared to using remote sensing variables as well as integrated modelling 15 

approach. This might be due to the resolutions and scales of environmental variables, 16 

which are coarse in most cases. 17 

 18 

5. Conclusions 19 

 20 

The study demonstrates the importance of integrated modelling for estimating 21 

grass quality which is an imperative effort towards effective management and 22 

planning of protected and communal savanna ecosystems. Integrating environmental 23 

and remote sensing variables does increase accuracy of foliar N and P concentrations 24 

estimated, using non-linear PLSR. This integrated modelling approach is an 25 

endeavour towards mapping regional estimates of grass N and P concentrations using 26 

satellite remote sensing. This ultimately will provide large scale information which 27 

farmers, park or land-use managers and planners could utilize for sustainable use of 28 

protected and communal savanna ecosystems. 29 

 30 

6. Acknowledgement 31 

 32 

We would like to acknowledge the Council for Scientific and Industrial Research, 33 

the South African Department of Science and Technology and National Research 34 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

22 
 

Foundation (Professional Development Programme), the Wageningen University and 1 

the University of Twente for the funding. We also want to thank Dr. Izak Smith, Mrs. 2 

Patricia Khosa and Mrs. Thembi Khoza as well as the field guards (Mr Veli Ndlovu, 3 

Godfrey and Onica Sithole) from the South African National Parks (SANPARKS) 4 

and Mr Mike Glover as well as Dr. Jonathan Swart from the private game reserve 5 

Sabi Sands. We also would like to thank Mr (s) Laven Naidoo, Thulani Selaule and 6 

Russell Main for their field work assistance. Special thanks to the anonymous 7 

reviewers for their valuable comments. 8 

 9 

7. Reference 10 

 11 

Abdel-Rahman, E.M., Ahmed, F.B., Van den Berg, M., 2010. Estimation of 12 

sugercane leaf nitrogen concentration using in situ spectroscopy. International Journal 13 

of Applied Earth Observation and Geoinformation 12(Suplement 1), S52-S57. 14 

Abel, N.O.J., Blaikie, P.M., 1989. Land degradation, stocking rates and conservation 15 

policies in the communal rangelands of Botswana and Zimbabwe. Land Degradation 16 

and Rehabilitation 1(2), 101-123. 17 

Asner, G.P., Martin, R.E., 2008. Spectral and chemical analysis of tropical forests: 18 

Scaling from leaf to canopy levels. Remote Sensing of Environment 112(10), 3958-19 

3970. 20 

Atkinson, P.M., Tatanall, A.R.L., 1997. Neural networks in remote sensing-21 

Introduction. International Journal of Remote Sensing 18, 699-709. 22 

Baret, F., Guyot, G., 1991. Potentials and limits of vegetation indices for LAI and 23 

APAR assessment. Remote Sensing of Environment 35(2-3), 161-173. 24 

Ben-Shahar, R., Coe, M.J., 1992. The relationships between soil factors, grass 25 

nutrients and the foraging behaviour of wildebeest and zebra. Oecologia 90(3), 422-26 

428. 27 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

23 
 

Bogrekci, I., Lee, W.S., 2005. Spectral phosphorus mapping using diffuse reflectance 1 

of soils and grass. Biosystems Engineering 91(3), 305-312. 2 

Cho, M., Skidmore, A.K., Corsi, F., van Wieren, S., Sobhan, I., 2007. Estimation of 3 

green grass/herb biomass from airborne hyperspectral imagery using spectral indices 4 

and partial least square regressions. International Journal of Applied Earth 5 

Observation and Geoinformation 9(4), 414-424. 6 

Cho, M.A., Skidmore, A.K., 2006. A new technique for extracting the red edge 7 

position from hyperspectral data: The linear extrapolation method. Remote Sensing of 8 

Environment 101(2), 181-193. 9 

Cho, M.A., Van Aardt, J., Main, R., Majeke, B., Ramoelo, A., Mathieu, R., Norris-10 

Rogers, M., Du Plessis, R., 2009. Integrating remote sensing and ancillary data for 11 

regional ecosystem assessment: Eucalyptus grandis agrosystem in Kwazulu Natal, 12 

South Africa, IEEE International Geoscience and Remote Sensing Symposium 13 

(IGARSS), Cape Town, South Africa, pp. 264-267. 14 

Cho, M.A., Van Aardt, J.A.N., Main, R., Majeke, B., 2010. Evaluating variations of 15 

physiology-based hyperspectral features along a soil water gradient in a Eucalyptus 16 

grandis plantation. International Journal of Remote Sensing 31(16), 4507 - 4507. 17 

Clevers, J.G.P.W., De Jong, S.M., Epema, G.F., Van Der Meer, F.D., Bakker, W.H., 18 

Skidmore, A.K., Scholte, K.H., 2002. Derivation of the red edge index using the 19 

MERIS standard band setting. International Journal of Remote Sensing 23(16), 3169 - 20 

3184. 21 

Crawley, N., 2006. Statistical Computing: An introduction to Data Analysis using S-22 

Plus. John Wiley & Sons, London. 23 

Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote Sensing of 24 

Environment 30(3), 271-278. 25 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

24 
 

Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., Cho, M., 2008. 1 

LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral 2 

measurements. ISPRS Journal of Photogrammetry and Remote Sensing 63(4), 409-3 

426. 4 

Daszykowski, M., Serneels, S., Kaczmarek, K., Van Espen, P., Croux, C., Walczak, 5 

B., 2007. TOMCAT: A MATLAB toolbox for multivariate calibration techniques. 6 

Chemometrics and Intelligent Laboratory Systems 85(2), 269-277. 7 

Dijkshoorn, K., 2003. SOTER database for Southern Africa (SOTERSAF): Technical 8 

Report. Internatioal Institute for Soil Reference and Information Centre, Wageningen. 9 

Dijkshoorn, K., van Engelen, V., Huting, J., 2008. Global Assessment of Land 10 

Degradation: Soil and Landform propertes for Land Degradation Assessment in 11 

Drylands (LADA) partner countries (Argentina, China, Cuba, Senegal and the 12 

Gambia, South Africa and Tunisia), ISRIC Report 2008/06 and GLADA Report 13 

2008/03. ISRIC-Word Soil Information ; FAO-Food and Agriculture Organization of 14 

the United Nations, Wageningen. 15 

Drent, R.H., Prins, H.H.T., 1987. The herbivore as prisoner of its food supply, In: 16 

Andel, J.V., Bakker, J. (Eds.), Disturbance in Grasslands: Species and Population 17 

Responses. Dr. W. Junk Publishing Company, Dordrecht, pp. 133-149. 18 

Du Toit, J.T., Cumming, D.H.M., 1999. Functional significance of ungulate diversity 19 

in African savannas and the ecological implications of the spread of pastoralism. 20 

Biodiversity and Conservation 8, 1643-1661. 21 

Ehsani, M.R., Upadhyaya, S.K., Slaughter, D., Shafii, S., Pelletier, M., 1999. A NIR 22 

technique for rapid determination of soil mineral nitrogen. Precision Agriculture 1, 23 

217-234. 24 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

25 
 

Elvidge, C.D., 1990. Visible and near infrared reflectance characteristics of dry plant 1 

materials. International Journal of Remote Sensing 11(10), 1775-1795. 2 

FAO, ISRIC, UNEP, 2003. Soil and Terrain Database for Southern Africa, In: (FAO), 3 

F.a.A.O. (Ed.). Http://www.fao.org/ag/agl/lwdms.stm ; 4 

Http://isric.org/checkregistration.aspx?dataset=27, Rome. 5 

Ferwerda, J.G., Siderius, W., Van Wieren, S.E., Grant, C.C., Peel, M., Skidmore, 6 

A.K., Prins, H.H.T., 2006. Parent material and fire as principle drivers of foliage 7 

quality in woody plants. Forest Ecology and Management 231(1-3), 178-183. 8 

Ferwerda, J.G., Skidmore, A.K., Mutanga, O., 2005. Nitrogen detection with 9 

hyperspectral normalized ratio indices across multiple plant species. International 10 

Journal of Remote Sensing 26(18), 4083 - 4095. 11 

Fewster, R.M., Laake, J.L., Buckland, S.T., 2005. Line transect in small and large 12 

regions. Biometrics 61, 856-859. 13 

Fidêncio, P.H., Poppi, R.J., de Andrade, J.C., 2002. Determination of organic matter 14 

in soils using radial basis function networks and near infrared spectroscopy. Analytica 15 

Chimica Acta 453(1), 125-134. 16 

Franklin, J., Logan, T.L., Woodcock, C.E., 1986. Coniferous forest classification and 17 

inventory using Landsat and digital terrain data. IEEE Transactions on Geoscience 18 

and Remote Sensing GE-24(1), 139-149. 19 

Garg, S., Patra, K., Khetrapal, V., Pal, S.K., Chakraborty, D., 2010. Genetically 20 

evolved radial basis function network based prediction of drill flank wear. 21 

Engineering Applications of Artificial Intelligence 23(7), 1112-1120. 22 

Geladi, P., Hadjiiski, L., Hopke, P., 1999. Multiple regression for environmental data: 23 

nonlinearities and prediction bias. Chemometrics and Intelligent Laboratory Systems 24 

47(2), 165-173. 25 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

26 
 

Geladi, P., Kowalski, B.R., 1986. Partial least-squares regression: a tutorial. Analytica 1 

Chimica Acta 185, 1-17. 2 

Giering, R., Kaminski, T., Slawig, T., 2005. Generating efficient derivative code with 3 

TAF: adjoint and tangent linear euler flow around an airfoil. Future Generation 4 

Computer System 21(8), 1345. 5 

Giron, H.C., 1973. Comparison between dry ashing and wet digestion in preparation 6 

of plant material for atomic absorption analysis. Atomic Absorption Newsletter 12(1), 7 

28-29. 8 

Gong, P., Pu, R., Heald, R.C., 2002. Analysis of in situ hyperspectral data for nutrient 9 

estimation of giant sequoia. International Journal of Remote Sensing 23(9), 1827 - 10 

1850. 11 

Grant, C.C., Peel, M., Zambatis, N., van Ryssen, J.B.J., 2000. Nitrogen and 12 

phosphorus concentration in faeces: an indicator of range quality as a practical adjunct 13 

to existing range evaluation methods. African Journal of Range and Forage Science 14 

17, 81-92. 15 

Grant, C.C., Scholes, M.C., 2006. The importance of nutrient hot-spots in the 16 

conservation and management of large wild mammalian herbivores in semi-arid 17 

savannas. Biological Conservation 130(3), 426-437. 18 

Grasshoff, K., Erhardt, M., Kremling, K., 1983. Methods of Seawater Analysis. 19 

Verlag Cheime, Weinhein, Germany. 20 

Grossman, Y.L., Ustin, S.L., Jacquemoud, S., Sanderson, E.W., Schmuck, G., 21 

Verdebout, J., 1996. Critique of stepwise multiple linear regression for the extraction 22 

of leaf biochemistry information from leaf reflectance data. Remote Sensing of 23 

Environment 56(3), 182-193. 24 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

27 
 

Hansen, P.M., Schjoerring, J.K., 2003. Reflectance measurement of canopy biomass 1 

and nitrogen status in wheat crops using normalized difference vegetation indices and 2 

partial least squares regression. Remote Sensing of Environment 86(4), 542-553. 3 

He, Y., Mui, A., 2010. Scaling up Semi-Arid Grassland Biochemical Content from 4 

the Leaf to the Canopy Level: Challenges and Opportunities. Sensors 10(12), 11072-5 

11087. 6 

Heitkönig, I.M.A., Owen-Smith, N., 1998. Seasonal selection of soil types and grass 7 

sward by roan antelope in a South African savanna. African Journal of Ecology 36(1), 8 

57-70. 9 

Hoffer, R.M., 1975. Natural resource mapping in mountanious terrain by computer 10 

analysis of ERTS-1 satellite data. LARS Research Bulletin 919, Perdue University. 11 

Hollander, M., Wolfe, D.A., 1973. Nonparametric Statistical Methods. John Wiley & 12 

Sons, New York. 13 

Huang, Z., Turner, B.J., Dury, S.J., Wallis, I.R., Foley, W.J., 2004. Estimating foliage 14 

nitrogen concentration from HYMAP data using continuum removal analysis. Remote 15 

Sensing of Environment 93(1-2), 18-29. 16 

Huete, A.R., 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of 17 

Environment 25(3), 295-309. 18 

Knox, N.M., Skidmore, A.K., Prins, H.H.T., Asner, G.P., van der Werff, H.M.A., de 19 

Boer, W.F., van der Waal, C., de Knegt, H.J., Kohi, E.M., Slotow, R., Grant, R.C., 20 

2011. Dry season mapping of savanna forage quality, using the hyperspectral 21 

Carnegie Airborne Observatory sensor. Remote Sensing of Environment 115(6), 22 

1478-1488. 23 

Knox, N.M., Skidmore, A.K., Schlerf, M., de Boer, W.F., van Wieren, S.E., van der 24 

Waal, C., Prins, H.H.T., Slotow, R., 2010. Nitrogen prediction in grasses: effect of 25 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

28 
 

bandwidth and plant material state on absorption feature selection. International 1 

Journal of Remote Sensing 31(3), 691-704. 2 

Koerselman, W., Meuleman, A.F.M., 1996. The Vegetation N:P ratio: a new tool to 3 

detect the nature of nutrient limitation. Journal of Applied Ecology 33(6), 1441-1450. 4 

Kokaly, R.F., Clark, R.N., 1999. Spectroscopic determination of leaf biochemistry 5 

using band-depth analysis of absorption features and stepwise multiple linear 6 

regression. Remote Sensing of Environment 67(3), 267-287. 7 

Kumar, L., Schmidt, K.S., Dury, S., Skidmore, A.K., 2001. Imaging Spectroscopy and 8 

Vegetation Science, In: Van Der Meer, F.D., De Jong, S.M. (Eds.), Image 9 

Spectroscopy. Kluver Academc Publishers, Dordrecht, pp. 111-154. 10 

LaCapra, V.C., Melack, J.M., Gastil, M., Valeriano, D., 1996. Remote sensing of 11 

foliar chemistry of inundated rice with imaging spectrometry. Remote Sensing of 12 

Environment 55(1), 50-58. 13 

Lehman, E., 1998. Non-parametrics: Statistical Methods Based on Ranks. Prentice-14 

Hall, Upper Saddle River. 15 

Ludwig, F., De Kroon, H., Prins, H.H.T., 2008. Impacts of savanna trees on forage 16 

quality for large African herbivore. Oecologia 155, 487-496. 17 

Ludwig, F., de Kroon, H., Prins, H.H.T., Berendse, F., 2001. Effects of nutrients and 18 

shade on tree-grass interactions in an east African savanna. Journal of Vegetation 19 

Science 12(4), 579-588. 20 

Majeke, B., van Aardt, J.A.N., Cho, M.A., 2008. Imaging spectroscopy of foliar 21 

biochemistry in forestry environments. Southern Forests 70(3), 275-285. 22 

Martens, H., Naes, T., 2001. Multivariate calibration by data compression, In: 23 

Williams, P., Norris, K. (Eds.), Near Infrared Technology in the Agricultural and 24 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

29 
 

Food Industries, 2nd ed. American Association of Cereal Chemists, Minessota, USA, 1 

pp. 59-100. 2 

Martin, M.E., Aber, J.D., 1997. High spectral resolution remote sensing of forest 3 

canopy lignin, nitrogen, and ecosystem processes. Ecol. Appl. 7(2), 431-443. 4 

McNaughton, S.J., 1988. Mineral nutrition and spatial concentrations of African 5 

ungulates. Nature 334, 343-345. 6 

McNaughton, S.J., 1990. Mineral nutrition and seasonal movements of African 7 

migratory ungulates. Nature 345, 613-615. 8 

Mucina, L., Rutherford, M.C., 2006. The Vegetation of South Africa, Lesotho and 9 

Swaziland. Strelitzia, Cape Town. 10 

Mumby, P.J., Green, E.P., Edwards, A.J., Clark, C.D., 1999. The cost-effectiveness of 11 

remote sensing for tropical coastal resources assessment and management. Journal of 12 

Environmental Management 55(3), 157-166. 13 

Mutanga, O., Kumar, L., 2007. Estimating and mapping grass phosphorus 14 

concentration in an African savanna using hyperspectral image data. International 15 

Journal of Remote Sensing 28(21), 4897 - 4911. 16 

Mutanga, O., Prins, H.H.T., Skidmore, A.K., van Wieren, S., Huizing, H., Grant, R., 17 

Peel, M., Biggs, H., 2004a. Explaining grass-nutrient patterns in a savanna rangeland 18 

of southern Africa. Journal of Biogeography 31(5), 819-829. 19 

Mutanga, O., Skidmore, A.K., 2004a. Integrating imaging spectroscopy and neural 20 

networks to map grass quality in the Kruger National Park, South Africa. Remote 21 

Sensing of Environment 90(1), 104-115. 22 

Mutanga, O., Skidmore, A.K., 2004b. Narrow band vegetation indices overcome the 23 

saturation problem in biomass estimation. International Journal of Remote Sensing 24 

25(19), 3999 - 4014. 25 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

30 
 

Mutanga, O., Skidmore, A.K., 2007. Red edge shift and biochemical content in grass 1 

canopies. ISPRS Journal of Photogrammetry and Remote Sensing 62, 34-42. 2 

Mutanga, O., Skidmore, A.K., Kumar, L., Ferwerda, J., 2005. Estimating tropical 3 

pasture quality at canopy level using band depth analysis with continuum removal in 4 

the visible domain. International Journal of Remote Sensing 26(6), 1093 - 1108. 5 

Mutanga, O., Skidmore, A.K., Prins, H.H.T., 2004b. Discriminating sodium 6 

concentration in a mixed grass species environment of the Kruger National Park using 7 

field spectrometry. International Journal of Remote Sensing 25(20), 4191 - 4201. 8 

Mutanga, O., Skidmore, A.K., Prins, H.H.T., 2004c. Predicting in situ pasture quality 9 

in the Kruger National Park, South Africa, using continuum-removed absorption 10 

features. Remote Sensing of Environment 89(3), 393-408. 11 

Mutanga, O., Skidmore, A.K., Van Wieren, S.E., 2003. Descriminating tropical grass 12 

(Cenchrus ciliaris) canopies grown under different nitrogen treatments using 13 

spectroradiometry. ISPRS Journal of Photogrammetry and Remote Sensing 57(3), 14 

263-272. 15 

Naes, T., Irgens, C., Martens, H., 1986. Comparison of linear statistical methods for 16 

calibration of NIR instruments. Journal of the Royal Statistical Society. Series C 17 

(Applied Statistics) 35(2), 195-206. 18 

Numata, I., Roberts, D.A., Chadwick, O.A., Schimel, J.P., Galvao, L.S., Soares, J.V., 19 

2008. Evaluation of hyperspectral data for pasture estimate in the Brazilian Amazon 20 

using field and imaging spectrometers. Remote Sensing of Environment 112(4), 1569-21 

1583. 22 

Pickett, S.T.A., Gadenasso, M.L., Benning, T.L., 2003. Biotic and Abiotic Variability 23 

as Key Determinants of Savanna Heterogeneity at Spatiotemporal Scales, In: Du Toit, 24 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

31 
 

J.T., Rogers, K.H., Biggs, H.C. (Eds.), The Kruger Experience: Ecology and 1 

Management of Savanna Heterogeneity. Island Press, London, pp. 22-40. 2 

Prins, H.H.T., van Langevelde, F., 2008. Assembling diet from different places, In: 3 

Prins, H.H.T., van Langevelde, F. (Eds.), Resource Ecology: Spatial and Temporal 4 

Dynamics of Foraging. Springer, Netherlands, pp. 129-154. 5 

Ramoelo, A., Skidmore, A.K., Cho, M.A., Schlerf, M., Mathieu, R., Heitkönig, 6 

I.M.A., 2012. Regional estimation of savanna grass nitrogen using the red-edge band 7 

of the spaceborne RapidEye sensor. International Journal of Applied Earth 8 

Observation and Geoinformation 19, 151-162. 9 

Ramoelo, A., Skidmore, A.K., Schlerf, M., Mathieu, R., Heitkönig, I.M.A., 2011. 10 

Water-removed spectra increase the retrieval accuracy when estimating savanna grass 11 

nitrogen and phosphorus concentrations. ISPRS Journal of Photogrammetry and 12 

Remote Sensing 66(4), 408-417. 13 

Schlerf, M., Atzberger, C., Hill, J., Buddenbaum, H., Werner, W., Schüler, G., 2010. 14 

Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using 15 

imaging spectroscopy. International Journal of Applied Earth Observation and 16 

Geoinformation 12(1), 17-26. 17 

Seagle, S.W., McNaughton, S.J., 1992. Spatial variation in forage nutrient 18 

concentrations and the distribution of serengeti ungulates. Landscape Ecology 7(4), 19 

229-241. 20 

Shackleton, S.E., Shackleton, C.M., Netshiluvhi, P.R., Geach, B.S., Ballance, A., 21 

Fairbanks, D.H.K., 2002. Use patterns and value of savanna resources in three rural 22 

villages in South Africa. Economic Botany 56(2), 130-146. 23 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

32 
 

Skidmore, A.K., 1989. An expert system classifies Eucalupt forest types using 1 

thematic mapper data and a digital terrain model. Photogramm. Eng. Remote Sens. 2 

55(10), 1449-1464. 3 

Skidmore, A.K., Ferwerda, J.G., Mutanga, O., Van Wieren, S.E., Peel, M., Grant, 4 

R.C., Prins, H.H.T., Balcik, F.B., Venus, V., 2010. Forage quality of savannas -- 5 

Simultaneously mapping foliar protein and polyphenols for trees and grass using 6 

hyperspectral imagery. Remote Sensing of Environment 114(1), 64-72. 7 

Skidmore, A.K., Franklin, J., Dawson, T.P., Pilejso, P., 2011. Geospatial tools address 8 

emerging issues in spatial ecology: a review and commentary on the Special Issue. 9 

International Journal of Geographical Information Science 25(3), 337-365. 10 

Strahler, A.H., 1981. Stratification of natural vegetation for forest and rangeland 11 

inventory using landsat digital imagery and collateral data. International Journal of 12 

Remote Sensing 2(1), 15-41. 13 

Strahler, A.H., Logan, T.L., Bryant, N.A., 1978. Improving forest cover classification 14 

from Landsat by incoporating topographic information. In: Proceedings of the  12th 15 

International Symposium on Remote Sensing of Environment Ann Arbor, MI, 1541-16 

1557. 17 

Thenkabail, P.S., Smith, R.B., De Pauw, E., 2000. Hyperspectral vegetation indices 18 

and their relationships with agricultural crop characteristics. Remote Sensing of 19 

Environment 71(2), 158-182. 20 

Treydte, A.C., Heitkönig, I.M.A., Prins, H.H.T., Ludwig, F., 2007. Trees improve 21 

grass quality for herbivores in African savannas. Perspectives in Plant Ecology, 22 

Evolution and Systematics 8(4), 197-205. 23 

Tucker, C.J., 1977. Asymptotic nature of grass canopy spectral reflectance. Applied 24 

Optics 16(57-1151). 25 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

33 
 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 1 

vegetation. Remote Sensing of Environment 8, 50-127. 2 

Venter, F.J., Scholes, R.J., Eckhardt, H.C., 2003. Abiotic template and its associated 3 

vegetation pattern, In: Du Toit, J.T., Kevin, H.R., Biggs, H.C. (Eds.), The Kruger 4 

Experience: Ecology and Management of Savanna Heterogeneity. The Island Press, 5 

London. 6 

Viscarra Rossel, R.A., 2008. ParLeS: Software for chemometric analysis of 7 

spectroscopic data. Chemometrics and Intelligent Laboratory Systems 90(1), 72-83. 8 

Walczak, B., Massart, D.L., 1996. The Radial Basis Functions -- Partial Least Squares 9 

approach as a flexible non-linear regression technique. Analytica Chimica Acta 10 

331(3), 177-185. 11 

Wang, Y., Wang, F., Huang, J., Wang, X., Liu, Z., 2009. Validation of artificial 12 

neural network techniques in the estimation of nitrogen concentration in rape using 13 

canopy hyperspectral reflectance data. International Journal of Remote Sensing 14 

30(17), 4493 - 4505. 15 

Wessels, K.J., Mathieu, R., Erasmus, B.F.N., Asner, G.P., Smith, I.P.J., Van Aardt, J., 16 

Main, R., Fisher, J., Marais, W., Kennedy-Bowdoin, T., Knapp, D.E., Emerson, R., 17 

Jacobson, J., 2011. Impact of communal land use and conservation on woody 18 

vegetation structure in the lowveld savannas of South Africa. Forest Ecology and 19 

Management 261, 19-29. 20 

Zarco-Tejada, P.J., Miller, J.R., Morales, A., Berjon, A., Aguera, J., 2004. 21 

Hyperspectral indices and model simulation for chlorophyll estimation in open-22 

canopy tree crops. Remote Sensing of Environment 90(4), 463-476. 23 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

34 
 

Zemouri, R., Racoceanu, D., Zerhouni, N., 2003. Recurrent radial basis function 1 

network for time-series prediction. Engineering Applications of Artificial Intelligence 2 

16(5-6), 453-463. 3 

Zhao, D., Huang, L., Li, J., Qi, J., 2007. A comparative analysis of broadband and 4 

narrowband derived vegetation indices in predicting LAI and CCD of a cotton 5 

canopy. ISPRS Journal of Photogrammetry and Remote Sensing 62(1), 25-33. 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

35 
 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 



Fi
gu

re
(1

)
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
(2

)
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
(3

)
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
(4

)
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
(5

)
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
(s

)
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Figure Captions 

Figure 1: Study area map: L=Land use. 

Figure 2: A comparison of a conventional and non-linear partial least square regression for foliar 

N estimation derived through Monte-Carlo leave-one-out cross validation: A= conventional 

PLSR vs. remote sensing variables only and B= non-linear PLSR vs. remote sensing variables 

only, C= conventional PLSR vs. remote sensing + environmental variables, D= non-linear PLSR 

vs. remote sensing + environmental variables. 

 

Figure 3: A comparison of a conventional and non-linear partial least square regression for foliar 

P estimation derived through Monte-Carlo leave-one-out cross validation; A= conventional 

PLSR vs. remote sensing variables only and B= non-linear PLSR vs. remote sensing variables 

only, C= conventional PLSR vs. remote sensing + environmental variables, D= non-linear PLSR 

vs. remote sensing + environmental variables. 

 

Figure 4: PLSR weights indicating contribution of each variable to the foliar N integrated 

model. Dist=Distance, NDVI=normalized difference vegetation index, REP=red edge position, 

SR=simple ratio, Gcover=grass cover. 

 

Figure 5: PLSR weights indicating contribution of each variable to the foliar P integrated model. 
Dist=Distance, NDVI=normalized difference vegetation index, REP=red edge position, 
SR=Simple ratio, Gcover=grass cover. 

 

Figure 6: Shows pictures of the selected subplots (50 cm x 50 cm quadrant) with various grass 
cover levels, for example; Top Left (green: 95% and 5% dry), Top Right (green: 90% and 10% 
dry), Bottom Left (green: 85%%, dry: 10% and 5% bare) and Bottom Right (green: 85%, 
dry:15%). 
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Tables 

 

Table 1: Absorption features used for foliar N and P estimation (Curran 1989; Kumar et al., 

2001) 

Nutrients Absorption features (wavelength) 

Nitrogen 430 nm, 460 nm, 640nm, 660nm, 910nm, 1510 nm, 1940 nm, 2060 nm, 

2180 nm, 2300 nm, 2350 nm 

Phosphorus 430 nm, 460 nm, 640nm, 660nm, 910nm, 1510 nm, 1940 nm, 2060 nm, 

2180 nm, 2300 nm, 2350 nm 970 nm, 990 nm, 1200 nm, 1450 nm, 

1530 nm, 1540 nm, 1580 nm, 1780 nm, 1940 nm, 2000 nm, 2080 nm, 

2100 nm, 2250 nm, 2280 nm and 2320 nm 

 

Table 2: Environmental data used for the study 

Environmental Data Type Source Resolution 

Precipitation Continuous http://www.worldclim.com/ 1 km 

Temperature Continuous http://www.worldclim.com/ 1 km 

Land use types Categorical KNP Vector layer 

Geology Categorical Council for Geoscience 1:1000000 

Altitude (DEM) Continuous DRDLR, South Africa 50 m 

Slope  Continuous Derived from DEM 50 m 

Aspect Continuous Derived from DEM 50 m 

Distance from rivers Continuous SANBI GIS data 1:1000000 

Soil  Categorical SOTERSAF database 1:1000000 

DEM= digital elevation model, CSIR=Council for Scientific and Industrial Research, SANBI=South African 

National Botanical Institute, SOTER=Soil and Terrain of Southern Africa database, DRD=Department of Rural 

Development and Land Reform, KNP=Kruger National Park GIS datasets 
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Table 3: Performance for foliar N and P prediction through integrating environmental and in situ 

hyperspectral remote sensing variables as compared to using in situ hyperspectral remote sensing 

only, utilizing conventional and non-linear partial least square regression. 

 Conventional PLSR Non-linear PLSR 

 R2 RMSECV RMSE 
No. of 

factors 
R2 RMSECV RMSE 

No. of 

factors 

N vs. RS  0.58 0.11 0.12 8 0.66 0.11 0.11 10* 

N vs. 

RS+Env. 
0.64 0.11 0.11 8 0.81 0.11 0.08 8 

N vs. Env 0.16 0.17 0.17 5 0.38 0.11 0.15 5 

P vs. RS 0.36 0.03 0.04 8 0.44 0.04 0.04 9 

P vs. 

RS+Env.  
0.38 0.04 0.04 12ª 0.80 0.03 0.02 13ψ 

P vs. Env 0.13 0.05 0.05 5 0.23 0.04 0.05 6 

N=nitrogen, P=phosphorus, RS=remote sensing variables (all as given in Table 1 and in the text), 

Env=environmental variables (all as given in Table 2), PLSR=partial least square regression, RMSE=root mean 

square error, RMSECV= root mean square error of cross validation. For the selected latent factors above 10, 

RMSECV of the first four factors are listed,*=0.1325, 0.1237, 0.1122, 0.1129, a =0.0443, 0.0443, 0.0438, 0.0442 

and ψ=0.0360, 0.0373, 0.0442, 0.0387. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4: correlation matrix between foliar N and all environmental variables 

N % Geo Land Soil DRivers Alt Slope Aspect Precip Temp Gcover 
N % 1.00           
Geo 0.03 1.00          
Land 0.06 0.09 1.00         
Soil 0.12 0.54 0.24 1.00        
DRivers 0.02 0.75 -0.47 0.43 1.00       
Alt -0.03 0.60 0.71 0.69 0.21 1.00      
Slope -0.21 0.53 0.32 0.31 0.26 0.48 1.00     
Aspect -0.20 0.16 -0.29 -0.10 0.30 -0.06 0.10 1.00    
Prep 0.05 0.44 0.75 0.36 0.04 0.81 0.51 -0.11 1.00   
Temp 0.11 -0.50 -0.55 -0.41 -0.16 -0.81 -0.40 -0.02 -0.74 1.00  
Gcover 0.22 -0.16 -0.09 -0.13 -0.12 -0.12 -0.27 -0.10 -0.06 0.02 1.00 

Geo=geology, Land=land use, Drivers=distance to rivers, Alt=altitude, Precip=precipitation, Temp=temperature, 

Gcover=grass cover, Bold values indicates the significance correlation at 95% significance level (p<0.05) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 5: correlation matrix between foliar P and all environmental variables 

P % Geo Land Soil DRivers Alt Slope Aspect Prep Temp Gcover 
P % 1.00           
Geo -0.01 1.00          
Land -0.21 0.09 1.00        
Soil 0.04 0.54 0.24 1.00        
DRivers 0.05 0.75 -0.47 0.43 1.00       
Altitude -0.18 0.60 0.71 0.69 0.21 1.00      
Slope -0.24 0.53 0.32 0.31 0.26 0.48 1.00     
Aspect 0.17 0.16 -0.29 -0.10 0.30 -0.06 0.10 1.00    
Prep -0.24 0.44 0.75 0.36 0.04 0.81 0.51 -0.11 1.00  
Temp 0.04 -0.50 -0.55 -0.41 -0.16 -0.81 -0.40 -0.02 -0.74 1.00  
Gcover 0.19 -0.16 -0.09 -0.13 -0.12 -0.12 -0.27 -0.10 -0.06 0.02 1.00 

Geo=geology, Land=land use, Drivers=distance to rivers, Alt=altitude, Precip=precipitation, 

Temp=temperature, Gcover=grass cover, Bold values indicates the significance correlation at 95% 

significance (p<0.05) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 6: correlation matrix between foliar N and remote sensing variables such as vegetation indices and 

absorption features in nanometers (nm) 

 
N=Nitrogen, NDVI=normalized difference vegetation index, REP=red edge position, SR=simple ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N NDVI REP SR 430 460 640 660 910 1020 1510 1690 1730 1980 2060 2130 2180 2240 2300 2350
N 1.00
NDVI -0.05 1.00
REP 0.51 0.06 1.00
SR -0.13 -0.36 -0.73 1.00
430 0.00 -0.27 0.07 0.28 1.00
460 -0.04 -0.32 0.05 0.30 0.99 1.00
640 -0.21 -0.36 -0.19 0.45 0.85 0.91 1.00
660 -0.18 -0.39 -0.23 0.54 0.83 0.89 0.99 1.00
910 -0.13 -0.17 0.45 -0.42 0.49 0.54 0.51 0.40 1.00
1020 -0.14 -0.22 0.41 -0.36 0.54 0.59 0.57 0.47 0.99 1.00
1510 -0.06 -0.35 -0.16 0.54 0.79 0.84 0.93 0.95 0.35 0.42 1.00
1690 -0.07 -0.37 0.00 0.33 0.82 0.88 0.94 0.93 0.59 0.66 0.95 1.00
1730 -0.07 -0.35 -0.02 0.35 0.82 0.88 0.94 0.93 0.57 0.64 0.96 1.00 1.00
1980 -0.03 -0.23 -0.18 0.51 0.70 0.72 0.75 0.79 0.16 0.22 0.80 0.74 0.74 1.00
2060 -0.03 -0.26 -0.23 0.61 0.75 0.79 0.88 0.91 0.18 0.25 0.98 0.88 0.90 0.83 1.00
2130 0.00 -0.26 -0.17 0.56 0.77 0.82 0.89 0.92 0.26 0.32 0.99 0.91 0.92 0.81 0.99 1.00
2180 -0.03 -0.30 -0.15 0.52 0.80 0.85 0.92 0.94 0.34 0.41 0.99 0.95 0.96 0.82 0.98 0.99 1.00
2240 -0.02 -0.29 -0.15 0.53 0.80 0.84 0.91 0.94 0.32 0.39 0.99 0.94 0.95 0.83 0.99 0.99 1.00 1.00
2300 -0.01 -0.25 -0.17 0.55 0.77 0.82 0.89 0.92 0.27 0.33 0.98 0.91 0.92 0.81 0.99 1.00 0.99 0.99 1.00
2350 0.00 -0.21 -0.13 0.48 0.79 0.82 0.85 0.87 0.27 0.33 0.91 0.86 0.87 0.96 0.93 0.92 0.93 0.94 0.93 1.00



 

Table 7: correlation matrix between foliar P and remote sensing variables such as vegetation indices and 

absorption features in nanometers (nm) 

 
N=Nitrogen, NDVI=normalized difference vegetation index, REP=red edge position, SR=simple ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P NDVI REP SR 430 460 640 660 910 1020 1510 1690 1730 1980 2060 2130 2180 2240 2300 2350 970 990 1450 1490 1530 1540 1580 1780 2000 2080 2100 2250 2270 2280 2320
P 1.00
NDVI -0.18 1.00
REP 0.14 0.06 1.00
SR -0.02 -0.36 -0.73 1.00
430 0.22 -0.27 0.07 0.28 1.00
460 0.19 -0.32 0.05 0.30 0.99 1.00
640 0.09 -0.36 -0.19 0.45 0.85 0.91 1.00
660 0.08 -0.39 -0.23 0.54 0.83 0.89 0.99 1.00
910 0.05 -0.17 0.45 -0.42 0.49 0.54 0.51 0.40 1.00
1020 0.06 -0.22 0.41 -0.36 0.54 0.59 0.57 0.47 0.99 1.00
1510 0.08 -0.35 -0.16 0.54 0.79 0.84 0.93 0.95 0.35 0.42 1.00
1690 0.11 -0.37 0.00 0.33 0.82 0.88 0.94 0.93 0.59 0.66 0.95 1.00
1730 0.10 -0.35 -0.02 0.35 0.82 0.88 0.94 0.93 0.57 0.64 0.96 1.00 1.00
1980 0.04 -0.23 -0.18 0.51 0.70 0.72 0.75 0.79 0.16 0.22 0.80 0.74 0.74 1.00
2060 0.07 -0.26 -0.23 0.61 0.75 0.79 0.88 0.91 0.18 0.25 0.98 0.88 0.90 0.83 1.00
2130 0.07 -0.26 -0.17 0.56 0.77 0.82 0.89 0.92 0.26 0.32 0.99 0.91 0.92 0.81 0.99 1.00
2180 0.09 -0.30 -0.15 0.52 0.80 0.85 0.92 0.94 0.34 0.41 0.99 0.95 0.96 0.82 0.98 0.99 1.00
2240 0.09 -0.29 -0.15 0.53 0.80 0.84 0.91 0.94 0.32 0.39 0.99 0.94 0.95 0.83 0.99 0.99 1.00 1.00
2300 0.05 -0.25 -0.17 0.55 0.77 0.82 0.89 0.92 0.27 0.33 0.98 0.91 0.92 0.81 0.99 1.00 0.99 0.99 1.00
2350 0.07 -0.21 -0.13 0.48 0.79 0.82 0.85 0.87 0.27 0.33 0.91 0.86 0.87 0.96 0.93 0.92 0.93 0.94 0.93 1.00
970 0.04 -0.22 0.40 -0.35 0.52 0.58 0.56 0.46 0.99 0.99 0.41 0.64 0.62 0.21 0.24 0.31 0.39 0.38 0.32 0.32 1.00
990 0.05 -0.23 0.40 -0.35 0.53 0.58 0.56 0.46 0.99 0.99 0.41 0.65 0.63 0.21 0.24 0.31 0.39 0.38 0.32 0.32 1.00 1.00
1450 0.06 -0.31 -0.21 0.57 0.77 0.82 0.91 0.94 0.30 0.38 0.99 0.93 0.94 0.81 0.98 0.98 0.99 0.99 0.97 0.90 0.37 0.37 1.00
1490 0.05 -0.32 -0.20 0.57 0.77 0.82 0.91 0.94 0.31 0.38 0.99 0.93 0.94 0.81 0.98 0.99 0.99 0.99 0.98 0.91 0.37 0.38 1.00 1.00
1530 0.06 -0.35 -0.15 0.52 0.79 0.84 0.93 0.94 0.39 0.46 0.99 0.96 0.97 0.79 0.96 0.97 0.99 0.98 0.97 0.90 0.45 0.45 0.99 1.00 1.00
1540 0.06 -0.35 -0.14 0.50 0.80 0.85 0.93 0.94 0.41 0.48 0.99 0.97 0.97 0.78 0.96 0.97 0.99 0.98 0.97 0.89 0.48 0.48 0.99 0.99 1.00 1.00
1580 0.07 -0.35 -0.08 0.43 0.81 0.87 0.93 0.93 0.50 0.57 0.98 0.99 0.99 0.76 0.92 0.95 0.97 0.97 0.94 0.88 0.56 0.57 0.97 0.97 0.99 0.99 1.00
1780 0.08 -0.33 -0.08 0.42 0.81 0.87 0.94 0.94 0.51 0.57 0.97 0.99 0.99 0.77 0.92 0.94 0.97 0.97 0.94 0.88 0.57 0.57 0.97 0.97 0.99 0.99 1.00 1.00
2000 0.02 -0.23 -0.20 0.53 0.71 0.73 0.77 0.80 0.16 0.22 0.81 0.75 0.75 1.00 0.85 0.82 0.84 0.84 0.82 0.96 0.22 0.22 0.83 0.83 0.81 0.80 0.78 0.79 1.00
2080 0.04 -0.24 -0.25 0.62 0.73 0.77 0.85 0.89 0.17 0.24 0.97 0.86 0.88 0.81 0.99 0.99 0.98 0.98 0.99 0.91 0.23 0.23 0.98 0.98 0.96 0.96 0.92 0.92 0.83 1.00
2100 0.04 -0.24 -0.22 0.59 0.75 0.79 0.87 0.90 0.21 0.28 0.97 0.88 0.90 0.82 0.99 0.99 0.98 0.98 0.99 0.92 0.27 0.27 0.98 0.98 0.97 0.96 0.93 0.93 0.84 1.00 1.00
2250 0.05 -0.26 -0.17 0.54 0.79 0.83 0.90 0.92 0.30 0.37 0.98 0.92 0.94 0.83 0.98 0.99 0.99 0.99 0.99 0.93 0.36 0.36 0.99 0.99 0.99 0.98 0.96 0.96 0.84 0.99 0.99 1.00
2270 0.06 -0.24 -0.17 0.53 0.80 0.83 0.89 0.92 0.30 0.36 0.98 0.92 0.93 0.85 0.98 0.99 0.99 0.99 0.99 0.95 0.36 0.36 0.98 0.98 0.98 0.97 0.96 0.96 0.87 0.98 0.99 1.00 1.00
2280 0.04 -0.24 -0.17 0.53 0.80 0.84 0.90 0.92 0.30 0.36 0.97 0.92 0.93 0.86 0.98 0.98 0.99 0.99 0.98 0.95 0.36 0.36 0.98 0.98 0.98 0.97 0.95 0.96 0.88 0.98 0.99 1.00 1.00 1.00
2320 0.03 -0.23 -0.18 0.55 0.77 0.81 0.88 0.90 0.26 0.32 0.96 0.89 0.90 0.86 0.98 0.98 0.98 0.98 0.99 0.95 0.32 0.32 0.97 0.97 0.96 0.96 0.93 0.93 0.88 0.98 0.99 0.99 0.99 0.99 1.00



 

Table 8: Descriptive statistics of the measured foliar N and P concentrations 

Nutrients (%) Minimum Maximum Mean 
Standard 

deviation 

Coefficient 

of variation 

Nitrogen 0.34 1.06 0.70 0.19 0.26 

Phosphorus 0.04 0.29 0.11 0.05 0.49 

 

 


