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Abstract

Determining the foliar N: P ratio provides a tool funderstanding nutrient limitation on plant
production and consequently for the feeding padterhherbivores. In order to understand the
nutrient limitation at landscape scale, remote isgnsechniques offer that opportunity. The
objective of this study is to investigate the tytibf in Situ hyperspectral remote sensing to estimate
foliar N: P ratio. Field spectral measurements weréertaken, and grass samples were collected
for foliar N and P extraction. The foliar N: P mprediction models were developed using partial
least square regression (PLSR) with original speand transformed spectra. Spectral
transformations included the continuum removal (CRater removal (WR), first difference
derivative (FD) and log transformation (Log(1/R))he results showed that CR and WR spectra in
combination with PLSR predicted foliar N: P ratidiwhigher accuracy as compared to FD and R
spectra. The performance of CR and WR spectra atgibuted to their ability to minimize sensor
and water effects on the fresh leaf spectra, réispbc The study demonstrated a potential to
predict foliar N: P ratio using field and HyMap silated spectra and shortwave infrared (SWIR)
found to be highly sensitive to foliar N: P ratithe study recommends the prediction of foliar N:
P ratio at landscape level using airborne hypetsgedata and could be used by the resource
managers, park managers, farmers and ecologistaderstand the feeding patterns, resource
selection and distribution of herbivores (i.e. valad livestock).
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1. Introduction

Estimation of foliar biochemical concentrations\pde information for assessing ecosystem
functioning, for example, nutrient cycling, gas leaisge and plant productivity (Martin and Aber,
1997; Ollinger et al., 2002). Foliar biochemicalncentrations such as nitrogen (N) and
phosphorus (P) are primary indicators of physia@aliprocesses such as photosynthesis, leaf
respiration and growth rates (Evans, 1989; FiettiMooney, 1986; Gusewell, 2004). Foliar N and
P concentrations can also be used as an indi@atgrdss quality (McNaughton, 1988, 1990). The
foliar N concentration is known to relate to thetpm (Clifton et al., 1994) which is one of the
main nutrient requirement for the herbivores (Pand Beekman, 1989; Prins and van Langevelde,
2008). Prins and Beekman, (1987) reported thatemitrequirement of BuffaloSyncerus caffer)
is about 6.2% protein (i.e. 1 % of N), while Duncéi992) found out that lactating equids requires
about 0.24% of P in their food for maintenance. Tinportance of N supply on dry matter
production as well as protein content is well doented in agricultural literature (Marschner,
1995) while foliar P is one of the main nutrierqugements for lactating mammals (McNaughton,
1990). Therefore, grass quality information canused to understand feeding patterns and
distribution of wildlife and livestock (Drent andiRs, 1987; Duncan, 1992; McNaughton, 1990;
Prins and Beekman, 1989).

To understand nutrient limitation in vegetatiorjgioN: P ratio is a key indicator (Cech et al.,
2008; Gusewell, 2004; Koerselman and Meuleman, 199 foliar N: P ratio reflects the balance
of N and P supply which influence plants at allelsy i.e. the growth and reproduction of
individual plants, plant species interactions, cosifion and diversity (Cech et al., 2008;
Gusewell, 2004). Differences in foliar biochemicaincentrations as captured by N: P ratio in
plants provide information on which nutrient is iimg and could determine the plant production
or biomass which could eventually affect the fegdactivity of herbivores in a particular
ecosystem (Daufresne and Loreau, 2001; Glsewd;2Brins and van Langevelde, 2008).
Smaller herbivores are highly N limited as comparethrger ones and not vice versa (Prins and
van Langevelde, 2008), because they require mdreemis and energy for growth and to achieve
their daily activities. This tool has been widelged in the limnetic related studies (Gusewell,
2004; Gusewell et al., 2003; Koerselman and Meuteni®96). A review of 40 fertilization
studies reported the critical values to determinerNP limitation on plant production (Table 1)
(Koerselman and Meuleman, 1996). Table 1 outlihesctitical values for foliar N: P to determine
nutrient limitation on plant production for varioecosystems. Koerselman and Meuleman’s
(1996) critical values cannot be applied in theasana ecosystems, because wetland vegetation are
mainly C3-type, while the savanna species are @d-(Cech et al., 2008; Craine et al., 2008;
Ludwig et al., 2001). Gusewell (2004) revealed titah vegetation level, the critical N: P ratio is
<10 (N-limiting) and >20 (P-limiting) based on shtarm fertilization, and argued that the values
might be different at individual species. Ludveigal. (2001) found that below the tree, N: P ratio
value of 12 indicates that P is limiting, while the open grassland the average of 6 indicates N
limiting in the savanna ecosystems. Cech et aD&R@lso concluded on the critical values of N: P
for determining the limitation of N and P for plgbduction in the savanna ecosystems (Table 1).
There is no general consensus on which criticajeaf N: P values could be used, because there
are limited experimental studies focusing on thspecially in the savanna ecosystems.

(Table1)



Using remote sensing, there is a significant paaenh estimating foliar biochemical
concentration, especially using field spectroscdpgimple technique is to correlate vegetation
index and a biochemical concentration of intereg}, N (Abdel-Rahman et al., 2010; Ferwerda
et al., 2005; Rivero et al., 2009). Challengesufsing this approach include the influence of soill
exposure and atmosphereas well as saturation afipatiiring the peak productivity (Jackson
and Huete, 1991; Mutanga and Skidmore, 2004; Tud&f7). Several attempts were made to
address these challenges using the red edge regiorMutanga and Skidmore (2004). The
second approach is to use the specific regiont@fspectra which are known to relate to the
electron transition or physical bond vibrationstleé specific foliar biochemical concentrations
referred to as absorption features (Darvishzadedl.e2008; Knox et al., 2011). For example,
bands centred at 430 nm, 640 nm, 910 nm, 1020 480 dm, 1690 nm, 1940 nm, 2060, 2240
nm, 2300 nm, are the absorption features relateélg¢otron transition and physical bond
vibrations of foliar N and protein (Curran, 198Md« et al., 2010; Kumar et al., 2001). The list
of absorption features are well documented in Qur(d989) and Kumar et al. (2001).
Absorption features were successfully used formegtng N, P and chlorophyll (Darvishzadeh et
al., 2008; Knox et al., 2011). Thirdly, the usewdfole or full spectrum became prominent
following the application of multivariate technicgisuch as stepwise multiple linear regression
(SMLR) and partial least square regression (PLSRJe use of full spectrum was mainly
coupled with several spectral transformation teghes such as continuum removal, log
transformed (Log(1/R)), derivatives as well as water removal (Dawson and Curran, 1998;
Kokaly and Clark, 1999; Ramoelo et al., 2011).

The spectral transformation techniques are usefldnhance absorption features of foliar
biochemical concentrations, while minimizing atmiospce, soil background, and water
absorption effects, as well as data redundancy @itibSkidmore, 2006; Dawson and Curran,
1998; Yoder and Pettigrew-Crosby, 1995). Ramoelal.e2011) demonstrated that using WR
and PLSR improves the estimation of foliar N anich Ehe controlled environment, because WR
minimizes water absorption effect on fresh leafcspe(Gao and Goetz, 1994, 1995). Continuum
removal has also been applied to enhance absorggatures for foliar biochemical
concentrations (Curran et al., 2001; Kokaly andriZ1a999; Mutanga et al., 2005). The Log
(1/R) transformation is preferred to reflectancecduse it is linearly related to absorbing
components (Hruschka, 1987; Yoder and Pettigrevsi®yr,01995). Yoder and Pettigrew-Crosby
(1995) showed a strong relationship between LoR)(1as well as the first derivative of Log
(1/R)’, and foliar N concentration. Fourty and BafE998) argued that transforming reflectance
into their corresponding absorbance values imprayedaccuracy of biochemical estimates.
Continuum removal has also been applied to enhabserption features for foliar biochemical
estimations (Curran et al., 2001; Kokaly and Cl4899; Mutanga et al., 2005).

Foliar N concentrations has been estimated and eshpre often than P, especially using
field and airborne hyperspectral data. This tremald be attributed to the following reasons;
0] Low concentration of P in plants, normally 10 titoeer than N (Knox et al., 2010;
Meissner et al., 1999; Stark, 1970).
(i) P has limited identified absorption features.

Nevertheless, foliar P in combination with N araatalvariables for understanding the nutrient
limitation (N: P ratio) for both plant and herbiest Computation of N: P ratio depends on the



accurate estimation of foliar N and P, but P ediimnais having challenges as noted above.
Asner and Martin (2008) also argued that the resiti®f foliar P using hyperspectral remote
sensing could be associated with the stoichiométe. indirect estimation based on the
relationship between P and other foliar biochersicéDaufresne and Loreau, 2001; Elser et al.,
1996). Predicting foliar N and P separately usielifspectroscopy and later compute foliar N: P
ratio could be faced by error propagation (combieedrs from N and P prediction), because the
retrieval accuracy of N and P is not consistentiyilar. To minimize these errors, direct
estimation foliar N: P ratio using field spectroggas necessary. Nutrient limitation studies
using foliar N: P ratios in the savanna ecosystemrare, especially at landscape level using
remote sensing. Using remote sensing has an adeaatdahe synoptic landscape view, which is
impossible with conventional field measurementthiis study the field spectroscopy data will be
tested, to demonstrate the possibility of usingatensensing to predict foliar N: P ratio. The
objective of the study are twofold (1) to investgahe utility of field spectroscopy in
combination with partial least square regressioprealict foliar N: P ratio in the grass layer of
the savanna ecosystem and (2).to evaluate a pteftpredicting foliar N:P using airborne
hyperspectral mapper (HyMap), through convolvingldi spectra into HyMap wavelength
characteristics.

2. Data collection

2.1. Study area and sampling design

The study area is located (i.e. two corner co-ardis; 2440'0” S, 37°10°0” E and 250’ S,
32°0"E) in the Lowveld savanna at the north-easterrt p& South Africa (Figure 1). The
Lowveld landscape corresponds to the low lying argending from the foot slopes of the
Drakensberg Great Escarpment to the west and tleamloique coastal plain to the east (Venter
et al., 2003). The topography is gently undulativith flat patches in localized areas, and with
an average height of 450m a.s.l. The study arears@vland use transect ranging from protected
areas such as the private-owned Sabi Sands GaneevBdSGR) and the state-owned Kruger
National Park (KNP) to communal lands in the Busiibaige region. The western part of the
transect (communal areas) receives higher meanahnainfalls (800mm yt.) as compared to
the eastern side of the transect (580 mit) YWenter et al., 2003). The annual mean tempegatur
is about 22C. The dominant geology includes granite and gneiislocal intrusions of gabbro
(Venter et al., 2003). Consequently, these areaslaaracterized by gradients of soil moisture
and nutrients. The soll fertility of gabbro areas higher than the granitic ones (Ben-Shahar and
Coe, 1992; Venter et al., 2003). The main vegatatmmmunities include the “granitic lowveld”
and the “gabbro grassy bushveld” (Mucina and Rédingy 2006). In the gabbro patches, grass
species such asSetaria sphacelata dominates the crest while species suchUaschloa
mosambicensis dominates the valleys. Gabbro patches are dondrategyrass species with high
productive potential (e.gUrochloa mosambicensis) compared to granite-derived soils (e.g.
Eragrostis rigidior and Pogonarthria squarrosa; cf. Mutanga et al. (2004). The gabbro sites are
dominated by fine leaves tree species sudhcasia ssp while the granite sites are dominated by
broadleaves tree species suchCasnbretum spp and Terminalia spp (Ferwerda et al., 2006;
Venter et al., 2003). Rangelands in the protectedsaare grazed by wild herbivore such as
impala @Aepyceros melampus), zebra Equus burcheli), wildebeest Connochaetes taurinus),
buffalo (Syncerus caffer), etc., while the communal rangelands supportiggaef cattle Bos



taurus) and goats@apra hircus) as well as sheefyis aries), which determine various grazing
intensities.
(Figurel)

The study area comprised of eight experimentas sitleich were placed along the land use
gradient: two sites in KNP (L1 gabbro, L2 graniteyp sites in SGR (L3 granite, L4 gabbro),
and four sites in the communal areas (L5-6 galdbfeB granite) (Fig. 1). The sites (totalling ca.
35000ha) were demarcated using 1:250, 000 geolagysnand refined using 2008 SPOT 5
images (Wessels et al., 2011). The site selectioness was designed to capture the nutrient
contrast from low to high in granitic-derived soits gabbro-derived soils, respectively. A line
transect sampling design was used to collect fielch (Fewster et al., 2005) in each site except
L3 (because of access limitations). The topograpfiyences the grass biomass in the savanna
ecosystems with valley areas generally having higjtass biomass than crest areas. Along
transects, a combination of purposive and systemplacement of sampling plot was
undertaken. The distance between the plots wasebetw00m and 1000m depending on the
accessibility and homogeneity of the area. The gimé was 30 m x 30 m. A total of 4%ots
were surveyed and in each plot three to four subg@5 m x 0.5m) were randomly selected to
capture the plot variability. In each subplot, datathe sample location using the Leica®’s GS20
differential geographic positioning system (DGP&minant grass species and grass samples
were collected. Grass samples were dried &€ 86r 24 hours and the measurements were later
averaged at plot level. The DGPS points were paostgssed using Leica’s GeoPro software and
reference GPS data from Nelspruit station to predigss than 1 m positional accuracy. The
fieldwork was undertaken in March/April 2009 towsrthe end of the wet season, when the
grass biomass had achieved a maximum productiatymtnimize the N/P and biomass
interaction effects (Plummer, 1988; Skidmore et2010).

2.2. Chemical analysis

The dried grass samples were taken to the SoutilcaffrAgricultural Research Council-
Institute for Tropical and Subtropical Crops (ARTCSIC)-Nelspruit for chemical analysis.
Firstly, the acid digestion technique was used, revlperchloric and nitric acids were used for
foliar P concentration retrieval and sulphuric amals used for retrieving foliar N concentrations
(Giron, 1973; Grasshoff et al., 1983; Mutanga et2004a). Secondly, the colorimetric method
by auto analyser was used to measure foliar N afiteBhnicon Industrial Method 329-74 W,
Technicon Industrial Systems, Farrytown, New YorKhese extraction methods were
successfully used for grass foliar N and P by Mgéaet al. (2004) and Ramoelo et al. (2011).

2.3. Canopy Spectral measurements

The reflectance spectra were measured using anyiozl Spectral Device (ASD)
spectroradiometer, Fieldspec 3®. The ASD spedtraiain ranges from 350 to 2500 nm, with 1
nm band width. Within each plot, spectral measurémevere made for each of the 3 to 4
randomly selected subplots. In each subplot, $pectral measurements were taken and later
averaged to account for illumination and grass pgnetructural differences as well as
bidirectional effects (Mutanga et al., 2003; Wangle, 2009). The measurements were taken
between 10h30 and 15h00 on clear sunny days tomizai cloud effects and maximize
illumination (Abdel-Rahman et al., 2010). A 2feld-of-view fibre optic was used. The fibre



optic pistol was held at 1m above the ground ancheatir to cover the entire subplot. A
Spectralon reference panel was utilized before eaehsurement to calibrate the sensor and
convert spectral radiance to reflectance.

3. Dataanalyss

3.1. Spectral pre-processing and transformation techniques

Spectral data were smoothed with using Savisky¥sbleer (Savitzky and Golay, 1964),
adding a second order polynomial least square ifom@nd 3-band window to remove signal
noise. Field spectral data were convolved to Hypeasal Mapper (HyMap) wavelength
characteristics to test the potential or appliggbibf airborne or imaging spectrometer in
estimating foliar N:P. HyMap offers 128 spectrahtis covering 400 to 2500 nm spectral regions,
with a bandwith ranging from 15 to 20nm_(http://Ammwista.com/?page_id=410HyMap is a
commonly used data for mapping foliar biochemidavarious ecosystems (Huang et al 2004,
Skidmore et al. 2010).

Spectral transformation techniques such as logsfmamed spectra (Log (1/R)), first
derivative, water removal and continuum removal evesed. Log (1/R) transformation was
determined by calculating a log function of recgaoof the spectral reflectance (Fourty and Baret,
1998; Hruschka, 1987; Yoder and Pettigrew-Crosi®g5). The first derivative of the spectral
reflectance was derived using a first-differencpraach. A first-difference transformation of the
reflectance spectrum calculates differences irecedhce between adjacent wavebands (Dawson
and Curran, 1998). The continuum removed spectra derived by applying a convex hull or a
continuum line to the reflectance spectra conngdtinal spectral maxima (Kokaly, 2001; Kokaly
and Clark, 1999; Mutanga et al., 2004b). The weteroval spectra (WR) were derived from a
non-linear least-squares spectral matching tecknagiculating a fresh leaf spectrum as a non-
linear combination of a leaf water spectrum andnardatter spectrum (Gao and Goetz, 1994,
1995), modified by Schlerf et al. (2010) and Rarooet al. (2011). The WR technique was
implemented as per Ramoelo et al. (2011).

3.2. Regression analysis and bootstrapping

PLSR (Ehsani et al., 1999; Geladi and Kowalski,&t98scarra Rossel, 2008) was used to
predict the foliar N:P. PLSR was sought to be ausbbmultivariate technique, and proved to
reduce the problem of over-fitting (Viscarra Ros2€l08). PLSR has been successfully used for
foliar biochemical estimations (Asner and Marti08; Huang et al., 2004; Ramoelo et al.,
2011). The performance of the transformed spectrd BLSR was measured using a
bootstrapping approach (Efron, 1983). The advant#geootstrapping is that it can be used
efficiently when there is a limited sample size oBstrapping techniques iteratively resample the
data set to be used for model development, makirag iappropriate technique for assessing
model accuracy (Verbyla and Litvaitis, 1989). Teegrate PLSR and bootstrapping, bagging-
PLSR was implemented using the ParLes 3.1 softydigcarra Rossel, 2007, 2008). The
bagging PLSR has advantage of improved predicaod, derives robust models insensitive to



over-fitting and provides uncertainty measure foediction by computing the confidence
interval (Viscarra Rossel, 2008).

Using bagging-PLSR, independent or predictor véemlwere mean-centred to normalize
them prior to further statistical analysis. Thevie@ne-out cross validation, as defined by the
lowest root mean square error (RMSE), was usectteriehine the optimal number of factors or
latent variables to be used for model developm€hb(et al., 2007; Darvishzadeh et al., 2008;
Viscarra Rossel, 2008). This Optimal number ofdestwas then used for model development
and validation with 1000 bootstraps.

The retrieval accuracy of the PLSR model was ddfibg the bootstrapped mean of the
coefficient of determination @R and the RMSE. The confidence interval at a 95%fidence
level was calculated for RMSE. The scores or theakke of importance for prediction (VIP)
(equation 1l)was computed to determine which bands contributedemn the foliar N:P
prediction model developme(¥iscarra Rossel, 2008yhe VIP is calculated by:

VIPi (8) = K T a Woa(SSYa/SSY) ettt 1)

where VIR(a) is the importance of th&" predictor variable based on a model with
factors,wax corresponds to the loading weight of #fevariable in thea” PLSR factor, SSYis
the explained sum of squaresyby a PLSR model witla factors, SSYis the total sum of
squares ofy, andK is the total number of predictor variables (Visc&ossel 2008). The
wavebands or predictors with high scores were @ssacwith the known absorption features by
Curran (1989) and Kumar et al. (2001) respectivBgcause ASD has a 1 nm band width, the
maximum difference of 20 nm between the bands witih scores and known absorption
features were chosen for the consistent comparison.

4. Results
The full spectrum analysis results showed thaafd\l: P could be successfully estimated using
field spectra and partial least square regres$itid.and CR spectra in combination with PLSR
which produced higher estimation accuracy of fdNaiP compared to the log (1/R), R and FD
spectra (Figure 2, Table 2). WR and CR spectrdteskto the similar root mean square error
(RMSE) of 1.12, which equals to 14% of the mearb{@&). CR spectra accounted for 85% of
the variation whilst WR accounted for 81% (FiguyeThe Log (1/R), FD and R spectra
achieved a foliar N: P estimation accuracy randpetyveen 16-19% of the mean and the foliar
N: P variation explained range between 69-76%, wiiaelatively lower than the ones for WR
and CR (Table 2). For the HyMap analysis, speda# showed a potential to estimate foliar N:
P accounting for about 50-64 % of the variatiorthwiD, CR and WR showing high
performance (accounting for 61-64% of the varigtidime accuracy of FD, CR and WR ranges
between 1.40-1.47%, which is about 17-19% of tharm@&he highest accuracy was attained by
WR with the lowest RMSE (Table 2).

(Table?2)
(Figure?2)
The results from the VIP (i.e. variable of impoxtarfor prediction) analysis derived for each
spectral data and PLSR showed the importance ¢f leaicds for predicting foliar N: P (Figure

7



3). Figure 3 shows the top 20 bands most impoffianpredicting foliar N: P, using various
spectral data. In Figure 3, the dark bars indiceteds associated with the known absorption
features (e.g. N, protein) (Kumar et al. 2001; @aret al 1989) and grey is classified as one of
the top 20 bands not associated with known absorpiatures. For example, 90% of the
selected bands from WR are associated with knovaorpbon features, with 40% related to
protein and N. Sixty percent (60%) of the selettadd from the R spectra is associated with the
known absorption features, while FD, CR as wellLag (1/R) yielded the percentage between
70-85%. For HyMap spectral analysis, WR and CR csete bands associated with known
absorption features by 45 and 70%, respectivelyilaAthe remaining spectral transformation
technigques based on HyMap spectra were associatedkmown absorption features by < 30%
(Figure 3).

Table 3 shows that most of the transformed spectcaPLSR models for estimating foliar N: P

consistently select bands from the SWIR, for exanfB50-1360 nm, 1400-1450 nm, 1980-

2000 nm, 2000-2060 nm and 2300-2360 nm. Similaultesvere achieved when spectral data
were covolved to HyMap wavelength characteristicab(e 3). These substantiate the evidence
in Figure 3, that most of the bands for estimafolgar N: P are located in the SWIR, and are
mostly related to the known absorption features.

(Table 3)
(Figure3)

The foliar N:P data values are normally distribuéscconfirmed by Shapiro-Wilk normality test
(W=0.983,p=0.69) (Royston, 1982). The variance of foliar NsFelatively high as indicated by
30% of the coefficient of variance (CV) and an agerof 7.86 (Table 4). The descriptive
statistics of N and P are also presented in Tablkhére N has an average of 0.71% and 0.10%
for P. Figure 4 shows examples of the measureéatefice with their corresponding foliar N: P
values. Reflectances of the contaminated regia@peaally by water were removed. The
relationship between N and P is not very high<m®.25), a corresponding scatterplot in Figure
5.

(Table4)
(Figure4)
(Figureb)

5. Discussion

The study demonstrated that foliar N: P ratio carestimated using transformed spectra derived
from field spectroscopy and HyMap simulated spédeatacombined with PLSR. WR and CR
spectral data achieved higher foliar N: P rationestion accuracy for field spectroscopy, while
for HyMap spectra, FD, CR and WR achived highemesion accuracy. The performance of
WR is because it minimizes the water absorptioact$f on the sensitive weak or subtle regions
of the foliar biochemical concentrations (Gao anoetz, 1994, 1995; Ramoelo et al., 2011,
Schlerf et al., 2010). Coincidentally, the regianfsthe reflectance most affected by water
absorption are very important for foliar biochenhiestimation. The WR technique was
developed by Gao and Goetz (1994, 1995) to addhessproblem, especially on fresh leaf



spectra. Gao and Goetz, (1994; 1995) tested thaabtimique successfully for estimating foliar
cellulose and lignin. Ramoelo et al. (2011) dematst that WR could be used to as one of the
techniques for estimating foliar biochemical, a®pvwh from the experimental study in the
controlled environments. WR spectra are appliee Hier the first time to estimate foliar N: P
and yielded the promising results.

CR spectra improve the absorption features of rfobachemical concentrations through
enhancing the differences in the absorption stkerfbiuang et al., 2004; Kokaly and Clark,
1999; Mutanga et al., 2005). CR spectra have beed for estimating foliar N and P, not N: P
ratio but showed a good performance. Several stude@nonstrated the applicability of CR
spectra for foliar biochemicals, especially foridIN and P (Huang et al., 2004; Ramoelo et al.,
2011). Mutangat al. (2004) estimated both foliar N and P with theffioent of determination
between 43 to 80% using continuum removal derivethfthe field spectrocopy data. Huagtg

al. (2004) achieved a coefficient of determinatior0Od@5 for estimating foliar N using airborne
hyperspectral data. The latter studies showed stamdi performance of CR on foliar
biochemical estimations, similar trend observethia study. The reflectance, Log (1/R) and FD
spectra showed a potential to estimate foliar Nat®. In most cases, Log(1/R) and FD have
higher foliar biochemical retrieval accuracy thasing the reflectance spectra (Johnson, 2001;
Yoder and Pettigrew-Crosby, 1995), and this diffeith our results. It is possible that foliar N:
P ratio interacts differently with spectra as compato N or P, especially in terms of physical
vibration bonds. Yoder and Pettigrew-Cosby (199khnson (2001) and Fourty and Baret
(1996) found that Log (1/R) improves estimatiorfadfar N than the reflectance, because there is
a linear relationship between the foliar biochernaad its contribution to the Log(1/R) at the
absorbed wavelength (Hruschka, 1987; Kumar e2@0y).

Selected bands in (Figure 3) were associated wilknown absorption features which are listed
in Curran (1989), Knox et al. (2010) and Kumarle{2001), which dominate the SWIR region
(Table 2). This indicates that foliar N: P raticiestion involves the bands associated with
known absorption features with various vibrationchenisms for several foliar biochemicals. N,
protein and starch or sugar were the main or dambialsorption features selected for predicting
foliar N: P. For examples, N and protein featuresencentered around 910nm, 1420nm, 2060,
2180 and 2300nm, while for starch were centerediretrd®70nm, 990nm, 1960nm, 2000nm,
2250nm and 2280nm. The bond vibration mechanisrescaged with N and proteins were
mainly C-H, N-H and C-O, while for starch ones weédeH, C-O and C-H. Despite the
unavailability of P specific absorption featuresyreh absorption features are seen as promising
in estimation of foliar N: P using field spectropgpand potentially using HyMap. Knox et al.
(2012) used starch and sugar absorption featurestiimate foliar P, because P is linked to the
metabolic processes leading to starch developmeheiplant. The use of this approach is not as
well established as the one for estimating foliauding N and protein absorption features.
Notwithstanding, other spectral data such as CR EDdboth field and HyMap) depict the
importance of the chlorophyll absorption regionfeTabsorption process in the visible or
chlorophyll absorption region is electron (e.ghar physical bond vibrations. Generally, the
bands which are not associated with known absorgBatures are associated with vegetation
vigor, which can either influenced by chlorophyfidaother pigments or nutrients such as lignin
and cellulose. Selection of specific or known apson features is not consistent over seasons
(Knox et al., 2012). The developmental stages gqflaat are coupled with changes in cell



structure, water content and functions, which im tafluence the reflectance which then impact
on the selection of absorption features over aogeoif plant development (Knox et al. 2012).

During the wet season (similar period to this sjudpsorption features especially for N are
located in visible/ near infrared and SWIR (Ustirak, 2009), while in dry season N features are
active around SWIR region (Asner et al., 1998).

Using WR based on field spectra, 40% of the 90%nofivn absorption features were associated
with N and protein. According to the range of valfier nutrient limitation by Cech et al. (2008),
our study area is limited by N and P because aifdN: P ratio values are between 3 and 14. In
this study, nutrient limitation could be associateith the contrast between low fertile soils
derived from granite and high fertile soils deriviedm gabbro geological types (Grant and
Scholes, 2006; Scholes, 1990; Venter et al., 2@®)ilarly, Ludwig et al. (2001) reported that
under the tree of the savanna ecosystems, 12dadglrindicating P limitation, which means
according to the range of values of foliar N: Rarat the study, N or P could be limiting in some
areas than the other. The low relationship betviéand P (Figure 5) indicates that either N or P
could be limiting and it is difficult to concludédt the accuracy of N: P ratio is dependent to N
or P. In addition, Ludwig et al. (2001) mentionédttopen grassland have an average foliar N: P
ratio of 6 indicating that N is limiting, which silar results observed by this study (mean foliar
N: P of 7.86). Craine et al. (2008) also revealed tinfertilized vegetation had a mean N: P ratio
of 5.8, during their experiments in KNP, which isigar to the N: P values in the open grassland
found by Ludwig et al. (2001), and by Cech et 2008) in the tropical savanna. The difference
between Koerselman and Meuleman’s (1996) in thegaan freshwater wetlands, as well as
Ludwig et al. (2001) and Cech et al. (2008) in shganna grasses (C4 type) could be attributed
to the fact that savanna grasses have relativelgridN requirement as compared to wetlands
plants (C3-type). Plants with C4 photosynthetichpatys have high nutrient efficiency than C3
plants (Craine et al., 2008; Wolfson and Taintd0®.

Phenology plays a crucial role in foliar biocherhiasstimation using spectroscopy. A
combination of visible and SWIR is important toiestte foliar N: P during wet or peak
productivity season, with minimum biochemical antniass or leaf area index (LAl)
interactions. During this period, a relationshigween biomass or LAl with the visible region
(even through vegetation indices) saturates orsysnatotic. Therefore, it is during this time
when foliar biochemicals can be estimated withaeihp compromised by the biomass or LAI
effects (Skidmore et al. 2010; Plummer 1988).

6. Conclusions

The study demonstrated that foliar N: P ratio carestimated usingn situ hyperspectral remote

sensing. Because this is first study to do thierehs a need to test the applicability of using
airborne hyperspectral remote sensing data sucldyddap, to understand the landscape
variability of foliar N: P. The challenge for estiting foliar N: P ratio at regional scale (up-
scaling) is that satellite or multispectral remetmsing data have limited bands in the SWIR
region, and this study indicated that most of thads sensitive to foliar N:P are located in the
SWIR. There is a need for several experimentalissutbr understanding how foliar N: P
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influence grass productivity, and hence the feedwadterns of herbivores in the savanna
ecosystems. Such experimental studies could ptay@al role in determining critical values of

foliar N: P ratio for ascertaining nutrient limiiiah on grass productivity. The foliar N: P ratio as
an indicator for nutrient limitation could be uskfuformation to the ecologists, resource
managers, farmers and park managers to understaiod tbetween N and P is limiting and how
the limitation influence the resource selection (iaet al., 1993), distribution, densities and
population dynamics of herbivores (wild and livestp at landscape level.
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Tables

Table 1: Critical values for determining nutrieimitation (N: P) for various ecosystems.

Ecosystems N-limitation Co-limitation P-limitation Reference

Savanna (Tanzania) <9 9-10 > 10 Cech et al., (2008)
I(:éifgl\;vea;ter Wetlands <14 14- 16 > 16 (ch;egg)elman and Meuleman
Savanna (Tanzania) <6 6-12 >12 Ludwig et al., (2001)
Savanna (South Africa) <5.8 - Craine et al., (2008)
Wetlands (Europe) <10 > 20 Gusewell, (2004)

Table 2: The performance of each field and HyMagcs combined with partial least square

regression in estimating the foliar N: P and vdkdausing bootstrapping

R? RMSE 95% LCI 95% UCI RRMSE (%) No. of factors

Field Spectra

CR 0.85 1.12 0.95 1.44 14.19 8
WR 0.81 1.12 0.93 1.40 14.19 9
R 0.76 1.22 1.01 1.52 15.46 13
Log (1/R) 0.73 1.30 1.07 1.62 16.47 12
FD 0.69 1.50 1.22 1.83 19.01 15
HyMap Spectra

CR 0.61 1.47 1.22 1.84 18.62 9
WR 0.63 1.40 1.17 1.77 17.74 14
R 0.50 1.70 1.41 2.13 21.52 8
Log(1/R) 0.61 1.48 1.23 1.86 18.78 10
FD 0.64 1.43 1.19 1.80 18.16 10

CR=continuum removal, WR=water removal, R=origiredlectance, FD=first-difference derivative, LClaker
bound confidence interval at 95% confidence leM&l=Upper bound, RRMSE=relative root mean squarer €90

of mean)
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Table 3: The selected regions by each spectralashatgartial least square regression, and the
consistency of each spectral data (field and Hypectra) to estimate foliar N: P ratio.

Spectral Data A B C D E F G H I
WR X X X X XX XX
CR XX XX X X X XX
R X X XX X XX XX X
FD X X XX Xx XX X X XX X
Log (1/R) XX X X X XX X

WR=water removal, CR=continuum removal, R=reflec@ar-D=first derivative, WR=water removal,
CR=continuum removal, R=reflectance, FD=first dative, A=400-470nm, B=530-560nm, C=1000-1130nm,
D=1350-1360nm, E=1400-1450nm, F=1980-2000, G=20W#B2H=2200-2300nm, 1=2300-2360nKxField
Spectrax=HyMap Spectra

Table 4: Descriptive statistics for the foliar N: P

Biochemical Min Max Mean  STDEV Coefficient of Variation (CV)

N:P 2.63 14 7.80 235 0.30
N (%) 034 106 071 0.8 0.26
P (%) 004 029 010 0.05 0.49
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Figure 1: Study area map showing a location ohtbrgh-eastern part of South Africa.
GA=Gabbro, GR=Granite.

18



14 14
= =
£10 LEUR
2 3
H 6 = 6
2 2
2 T T 2 T T
2 6 10 14 2 6 10 14
Observed N:P ratio Observed N:P ratio
14 14
2
Log(1R) R2=10.73
= _E
£10- 210 -
E :
H 6 = 6 -
2 2
2 T T 2 T T
2 6 10 14 2 6 10 14
Observed N:P ratio Observed N:P ratio
14 ;
> +R2=10.61
=
210 -
e
3
£ 6 -
2
2 T T
2 6 10 14
Observed N:P ratio

Figure 2 Scatterplots indicating the performance of egucs: (Field basec and partial least

square regressidn estimating the foliar N: validated using the bootstrapp. CR=continuum
removal, WR=water removal, R=original reflecta, FD=first-difference derivative.
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Figure 3: The variable of importance for predict{®P) i.e. important wavebands for
predicting foliar N: P ratio derived from each sppalkcdata and partial least square regression
(PLSR). The displayed bars are the top 20 banésteel from the performance of each spectral
data. The dark dvold bars indicate that selected bands are associated watvik absorption
features listed by Curran, (1989) and Kumar et(2001) and grey bars are bands belonging to
the top 20, but not associated with the known giisor features.
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Figure 4:Spectra with the corresponding low and high foNal? values. Due to atmospheric
water contaminations of the spectra, regions arno-value areas abowveere regarded as noi
and removed.
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