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Abstract—The problem of aligning scans from a range sensor
is central to 3D mapping for robots. In previous work we
demonstrated a light-weight descriptor-based registration method
that is suitable for creating maps from range images produced
by devices such as the XBOX Kinect. For computational reasons,
simple descriptors were used based only on the distribution of
distances between points. In this paper, we present an alternative
approach using 3D Shape Contexts that also retains angular
information thereby producing descriptors that are more unique.
Although this increases the computational load, intrinsic prop-
erties of the descriptor facilitate keypoint selection, leading to a
more robust registration framework. This also provides greater
flexibility when applying the method to sparse point clouds such
as those produced by laser range scanners. Results are shown
for registering new data acquired from an underground mine
environment.

I. INTRODUCTION

A customised 3D thermal mapping sensor [1] is currently
being developed as part of the CSIR’s mine safety platform
[2]. This involves generating a robo-centric map of the mine
ceiling and texturing the model with thermal imagery acquired
from an infrared camera. The resulting map can then be used
in conjunction with other sensors to assess risk. Since the
thermal mapping sensor is self-contained and independent of
the robot’s navigation sensors, the problem of generating a
registered map from sequential scans must be tackled. Having
a non-integrated sensor is beneficial as it also allows the unit to
be used as a hand-held scanner for data gathering and research.

In previous work [3] we presented a scan registration
algorithm based on light-weight descriptors dubbed Distance
Signatures (dSig). This was selected over competing methods
such as 3D Shape Contexts [4] and Spin Images [5] due to
processing requirements, and matching inefficiencies. How-
ever, since the latter methods incorporate angular information
their descriptors can be more uniquely identified, which leads
to greater robustness during registration.

Recent development focusing on improving mapping for
longer sequences has led to an alternative scan registration
algorithm based on 3D Shape Contexts (SC3). In this paper,
we discuss how some of the previously identified issues have
been addressed and show how the new descriptors offer greater
flexibility.

II. SENSORS

The mapping sensor is equipped with off-the-shelf hard-
ware, and in particular 3D points are acquired from an XBOX

Kinect. This makes it cost-effective to construct multiple
setups and reduces the mechanical complexity required to
manipulate line-based laser scanners. The Kinect comprises
a colour camera and an infrared camera-projector pair, and
produces calibrated range data.

More recently, we have also used the Asus Xtion that is
based on the same technology, but is more compact (both are
derived from PrimeSense’s PrimeSensor). Since these devices
(shown in Figure 1) produce 2D range images, standard
camera calibration techniques can be applied to determine
relative poses with respect to other sensors, which is very
convenient. For instance we register a 3D sensor with a thermal
imaging camera to provide temperature-textured 3D maps.

Fig. 1. Top: Microsoft XBOX Kinect; Bottom: Asus Xtion Pro Live.

Although the Xtion and Kinect have much lower operating
ranges than conventional laser scanners, our application only
calls for generation of localised ceiling maps which does
not require ranges above several metres. (The Kinect can
measure up to 8m in unlit environments.) Another factor is
that the subtle thermal readings that are of interest are more
reliable when measured at close proximity. Extended maps are
generated by stitching multiple sets of locally registered scans.
We have gathered data from several underground mine stopes
and found that the sensors are well suited to the unlit dusty
environment.

III. REGISTRATION WITH DESCRIPTORS

Computing a registered 3D surface with descriptors is
closely related to the method used to create panoramas from
2D photos, often called image stitching [6]. Interesting points
(keypoints) are detected in each image; local descriptors are



computed around each keypoint, and subsequently used to
find corresponding matches in other images. Robust parameter
estimation is then used to estimate the relative pose between
image pairs, and by choosing a common reference frame a
stitched image is created. This methodology has shown to be
very effective for 2D data since: it provides once-off detection
for individual images (which is efficient); robust estimators
can be used (e.g. RANSAC) for removing outliers; and it
can be applied to sparsely captured and partially matching
data. (i.e. no assumptions are made about the motion of
the sensor). The aforementioned methods are also invariant
to image intensity, rotation and scale which are desirable
properties for descriptors.

A. 3D Descriptors

Several 3D descriptor methods have been proposed for
stitching 3D data in a similar way [7], [8], [4], [9]. A
primary requirement of an interest-point detector is that similar
keypoints are chosen for each image. Furthermore, the set
of keypoints should be efficiently selected so as to produce
a compact yet ample supply of unique descriptors allowing
efficient matching.

In 2D, methods such as SIFT [10] and SURF [11] achieve
this by generating a multi-resolution image pyramid and
selecting keypoints that are consistent over a range of scales.
So far, this has been difficult to apply directly for 3D range
images because pixels represent distances measured to the
center of the camera instead of visual properties of objects.
(i.e. descriptors change with camera motion). In [12] local
curvature estimates are used to construct a normalised image
pyramid. Unfortunately, 3D range images from the Kinect are
prone to variations that cause curvature to be an unreliable
measure. In addition, constant variation of the projector’s
pattern causes spurious missing data patches that alter the local
image. Therefore, we focus on the raw point data for features
rather than range-image extensions of 2D methods.

B. Keypoint Selection

Currently, there is no widely adopted method for selecting
repeatable keypoints for 3D descriptors. Therefore, the fall-
back of random or uniform sampling is often used, which
relies on the uniqueness of the descriptors. In object recog-
nition applications, this is acceptable since the exact location
of matching keypoints in candidate pairs can be relaxed. For
instance, descriptors for two candidate keypoints (one from the
reference scan and one from the query scan) that are close to
one another will be similar resulting in a match. However, with
registration the positions are also used to compute the relative
alignment, so locations are critical for high accuracy. In [3] we
exploited the sequential nature of the data where only small
motions were detected between successive frames. Using a
uniform keypoint selection process circumvented the problem
at the cost of extra processing, which was addressed by using
light-weight descriptors. However, no measure of uniqueness
was available for filtering similar descriptors, and this resulted
in confusion in scenes with insufficient 3D variation (e.g.

walls, pipes, etc.). In fact, because the Kinect has relatively
low 3D resolution for finer surfaces, even mine tunnels appear
to be problematic when viewed head-on. For this reason,
we explored the more computationally intensive option of
using 3D Shape Contexts that more accurately describe the
local neighbourhood. Although we still retain the uniform
sampling technique, the addition of orientation sensitivity to
the descriptor reduces mismatches as a result of the nearby-
keypoint issue discussed.

IV. 3D SHAPE CONTEXTS

Shape Contexts [13] were originally proposed for describing
2D point sets for recognising handwritten characters and
embedding such objects for image-based retrieval. Essentially,
they are 2D histograms (shown in Figure 2) formed by binning
points surrounding a keypoint according to angle and loga-
rithmic radius. The use of logarithmic radius provides good

Fig. 2. (a) Shape 1 showing keypoint u. (b) Shape 2 showing keypoint u
and v. (c) Shape Context grid shown for Shape 1 u. (d) Shape Context for
Shape 1 u . (e) Shape Context for Shape 2 u. (f) Shape Context for Shape 2
v. (e) and (f) are dissimilar due to their different positions.

contextual information while reducing sensitivity to distant
objects.

For 3D points, the method can be extended by binning
points according to azimuth, elevation and logarithmic radius
within a sphere of influence. In order to match descriptors
shape contexts must be computed using the same reference
frame. For 2D polygons this can be achieved using the edge
normal and choosing a tangent consistent with the vertex order
(clockwise or counter clockwise). However, in 3D defining a
reference frame using the local surface normal still leaves an
unknown rotation about the azimuth direction which cannot
be uniquely determined. The conventional approach involves
either using a 1D search over the unknown angle during
matching (and selecting the best match), or precomputing
multiple descriptors for each keypoint at different azimuth
intervals. Both of these options are not efficient and reduce
descriptive power; in fact this was what motivated us to
propose Distance Signatures in the first place.

A. Unique Shape Contexts

Recently, Tombari et al. [9] showed that a simple yet
intuitive solution proposed by Bro et al. [14] held the key
to solving the problem of selecting reference frames for 3D



descriptors. This lead to their definition of the Unique Shape
Context [15]. The method builds on the idea of using least
squares to estimate the local surface normal [16], and uses
Principal Component Analysis (PCA) within a fixed radius
of a keypoint to specify an orthogonal reference frame. This
presents two problems: (1) sign ambiguity of the three axes
and (2) angular ambiguity of the tangent plane about the
normal in cases where the eigenvectors are not unique. We
do not perceive the latter to be an issue since the extent to
which the eigenvectors are not unique is the extent to which
the points are distributed symmetrically, in which case the
descriptor would not be unique. For instance, keypoints on a
flat wall are a poor choice for registration since they cannot be
described uniquely. The USC proposal consists of two steps:
First, contributions pi to the covariance matrix M are weighted
according to distance in order to improve repeatability in the
presence of background clutter and noise:

k =
∑

i:di≤R

(R− di) (1)

M =
1

k

∑
i:di≤R

(R− di)(pi − pk)(pi − pk)
T (2)

(Keypoint pk is used in place of the centroid, di represents
the distance between pk and pi, and R is a maximum fixed
radius of interest.) Second, the sign ambiguities are resolved
by selecting directions that agree with the majority of the
data [14]. Let the principal axes be denoted x+,y+, z+ or
x−,y−, z− depending on the sign. Their signs are disam-
biguated as follows:

S+
x =

{
i : di ≤ R ∧ (pi − pk) · x+ ≥ 0

}
(3)

S−
x =

{
i : di ≤ R ∧ (pi − pk) · x− ≥ 0

}
(4)

x =

{
x+, |S+

x | ≥ |S−
x |

x−, otherwise.
(5)

z =

{
z+, |S+

z | ≥ |S−
z |

z−, otherwise.
(6)

y = z x x. (7)

For each keypoint, we can therefore obtain a repeatable ref-
erence frame by computing the eigenvectors of M and applying
the sign disambiguation method. Sorting the eigenvalues in
descending magnitude specifies the x,y, z axes from their
respective eigenvectors where the z axis corresponds to the
surface normal. (This is the direction of least variance.)

We now have the means to compute 3D Shape Context
descriptors relative to a repeatable reference frame. Given two
matching shape contexts (measured by the similarity of their
descriptors) from different scans, the relative pose between
the scans can be determined directly from the relative pose
between the reference frames used to compute each shape
context. Let Tn be a transform that translates the origin to
the position of a keypoint pkn , and Rn the 3D rotation that

aligns the world to the local reference frame. Then relative
pose P is:

P = T1R−1
1 R2T−1

2 (8)

This is a significant advantage since only one matching pair of
shape contexts is required in order to completely specify the
alignment between two scans. (Previously, we required three
pairs of matching points since the Distance Signature does
not require a canonical reference frame.) Naturally, incorrect
alignment can occur as a result of incorrect correspondences
produced by descriptor matching. Therefore, we use RANSAC
to robustly estimate the relative pose.

V. IMPLEMENTATION

Registering a sequence follows a simple procedure:
1) Compute 3D Shape Contexts for current frame (or scan

if using unstructured point-clouds)
2) Find matches with previous set of features (or initialise

the set if this is the first scan)
3) Estimate alignment using RANSAC on candidates
4) Refine alignment with ICP (Iterative Closest Point).
Keypoints are selected by random sampling, but those with

low spatial variance (determined by the eigenvalue correspond-
ing to the z-axis) are removed. The most time-consuming task
is determining which points lie within the radius of interest of
each keypoint and computing the unique reference frame. We
achieve this through approximate nearest neighbour searching
using KD-Trees [17]. Since our ICP implementation already
uses KD-Trees for similar queries, construction of the KD-Tree
for each scan does not contribute additional overhead, and it
can be reused. Once the neighbourhood has been defined, the
canonical reference frame is constructed, and the shape context
is generated.

Matching is based on pairwise comparison of descriptors
using Euclidean distance. Once again, we leverage the fast
query facility of the approximate nearest neighbour search
and construct a KD-Tree for each set of shape contexts. This
does not contribute much additional processing, because the
number of shape contexts is much smaller than the size of the
individual point-clouds for which KD-Trees are already com-
puted. Small misalignments, that are produced by matching
keypoints that are close but not in identical relative positions,
are resolved with ICP [18] refinement.

For efficiency, we operate on downsampled versions of the
range images as before [3]. However, unlike our previous
implementation we do not automatically generate keyframes
here. Instead we simply choose an adequate frame step. This
was done to allow greater user flexibility for processing new
data sets that may vary in quality, but does not preclude its
reintegration in future work.

A. Normalisation

Since each bin is a sector of a sphere divided into logarith-
mic radial sections, they vary in size, as illustrated in Figure 3.
Therefore, we follow the approach of [4] and normalise each



Fig. 3. Illustration of points binned using a 3D Shape Context. Only the
outer shell can be seen.

bin by the cube root of its volume V :

V =
2π

3Na

[
cos
(
wπ

Nw

)
− cos

(
π(w + 1)

Nw

)]
(9)[(

rR

Nr

)3

−
(
R(r + 1)

Nr

)3
]
,

where w, r and R are the zero-based indices for elevation,
and radius and radius-of-interest respectively; and similarly
Na, Nw and Nr are the user-specified number of divisions for
azimuth, elevation and logarithmic radius. According to [4],
using the cube root of the volume retains sufficient discrimina-
tive power while adding robustness against quantisation noise.

VI. RESULTS

Through experiments with real data captured in underground
gold and platinum mines, we have generated several 3D maps
of areas-of-interest. Since we are interested in generating
camera-centred models (like Google street-view) most of our
scans do not comprise much camera translation. However, the
proposed method is applicable for any type of camera motion.

A. Distance Signatures vs 3D Shape Contexts

In Figure 4 we show a comparison between models gener-
ated using our previous method based on Distance Signatures
(dSig) and the new proposed method based on 3D Shape
Contexts (SC3). Figure 5 shows the same comparison, but

Fig. 4. Registered 3D map inside an active mine stope. Top: Using Distance
Signatures. Bottom: Using 3D Shape Contexts. Points are coloured by range
to the first camera where blue is 0m and red is 2m.

with mesh visualisations. Colours in the figures correspond
to distance to the first camera with blue representing nearby
points and red representing distant points.

Fig. 5. Mesh visualisation of 3D map inside an active mine stope. Top: Using
Distance Signatures. Bottom: Using 3D Shape Contexts. Points are coloured
by range to the first camera where blue is 0.5m and red is 3m.

In terms of alignment accuracy both methods have similar
performance, but dSig offers a 2x computational speedup.
(In this example, 28s compared with 74s for SC3 on an i5
processor). However, SC3 is much more robust in general.
When local variation falls below a threshold, SC3 is able
to prioritise unique features and ignore non-informative key-
points; in the worst case failure is reported, whereas dSig gives
no preference to uniqueness resulting in accumulated errors.
An example of this can be seen in the figures where repetitive
scanning of the central pillar produces poor definition and
causes subsequent scans to be misaligned. However, SC3 is
able to produce correct alignment.

B. Modelling a Mine Ceiling

Figure 6 shows a model of a mine ceiling generated using
SC3 from a recent data set. The camera is angled upwards
towards the ceiling and is rotated about its y-axis. The images
show the model viewed from below.

This data was a motivating factor in developing SC3 reg-
istration since the dSig method was unable to consistently
register the scans due to descriptor confusion. All the surfaces
are relatively flat and descriptors taken along the pipe as the
camera rotates are difficult to identify uniquely. Because SC3
incorporates angular information and can operate with very
few features (recall that only one inlier match is required to
propose a candidate alignment), it produces superior results.

C. Discussion

It should be noted that we have previously experimented
with adding a similar variance thresholding technique to
dSig, but results were still suboptimal compared with SC3.
The fact that dSig offers significant computational advantage
means that we have not discounted the possibility of further



Fig. 6. 180 degree scan of a mine ceiling registered using 3D Shape Contexts.
The top row shows the aligned point-cloud from different views, while the
bottom row shows a mesh visualisation. Colour represents distance to the
origin in the range 0.5m to 4m.

development, though optimisation of the SC3 implementation
is also a possibility.

Noisy point-clouds are a problem in extreme cases due to
the reliance surface normals. (A fact we highlighted in our
previous paper.) Fortunately, the PCA-based reference frame is
fairly robust, especially using the distance-weighting approach.
As a secondary measure, we use very few SC3 divisions (3
to 5 bins per parameter); a high number of divisions increases
sensitivity to noise and processing time.

VII. CONCLUSIONS

We have presented an alternative registration method for
aligning point-cloud data obtained from 3D sensors, such
as the XBOX Kinect, Asus Xtion, and laser-based scanning
devices. In previous work, we proposed a novel simplified
descriptor that takes advantage of slow-moving sequential
range images. Here we describe a more generic method based
on 3D Shape Contexts, which incorporates a new technique for
obtaining repeatable reference frames that improves efficiency
and robustness.

Shape Contexts have previously been proposed for gener-
ating efficient shape features for 2D object recognition. More
recently, they have been extended to 3D data, but suffered
from ambiguities that increase processing and reduce descrip-
tive power. By incorporating an intuitive idea that has been
leveraged in data analysis problems, 3D object recognition
researchers have shown how these ambiguities can be resolved
in practical situations. While the concept of using 3D Shape
Contexts for point-cloud registration is not novel, combining
the aforementioned results to produce a generic 3D registration
framework is a relatively new idea.

Comparing models generated using both descriptor systems
shows that while Distance Signatures appear to be much faster
to compute, 3D Shape Contexts are more reliable for automatic
registration. Future work will seek to optimise the current
implementation towards building a fast mapping framework.
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