Journal of Cluster Science

June 2012/ Volume 23(2), pp 437-448

Photocatalytic Degradation of 2-Propanol and Phenol Using Au Loaded MnWO₄Nanorod Under Visible Light Irradiation

Ashok Kumar Chakraborty¹, Sumon Ganguli², Mesfin Abayneh Kebede³

Abstract

Single crystalline $MnWO_4$ nanorod has been prepared by low temperature hydrothermal reaction at 180 °C. The prepared $MnWO_4$ possesses band gap of 2.63 eV. Photochemical decomposition method has been followed to disperse Au nanoparticles onto $MnWO_4$ nanorod. The prepared Au loaded $MnWO_4$ nanorod demonstrated greatly enhanced photocatalytic activity in decomposing 2-propanol and evolving CO_2 in gas phase and phenol in aqueous phase compared to bare $MnWO_4$ and commercial TiO_2 nanoparticles (Degussa P25) under visible light ($\lambda \ge 420$ nm) irradiation. The Au loading was optimized to 3.79 wt% for the highest efficiency. The enhanced photocatalytic activity originates from the absorption of visible light by $MnWO_4$ as well as the introduction of nanoparticulate Au on the surface of $MnWO_4$ as cocatalyst to impede the recombination of photogenerated charge-carriers.

¹Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia 7003, Bangladesh

²Department of Nutrition and Food Engineering, Daffodil International University, Dhanmondi, Dhaka 1207, Bangladesh

³CSIR. Materials Science and Manufacturing