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ABSTRACT

In this paper, the internal operations of an Extended
Kalman Filter is investigated to see if any useful informa-
tion can be derived to detect land cover change in a MODIS
time series. The Extended Kalman Filter expands its inter-
nal covariance if a significant change in reflectance value
is observed, followed by adapting the state parameters to
compensate for this change. The analysis shows a change de-
tection accuracy above 90% can be attained when evaluating
the elements within the internal covariance matrix to detect
new human settlements, with a corresponding false alarm rate
below 11%.

Index Terms— Change detection algorithms, Covariance
matrix, Kalman Filter, Spatial information, Time series anal-
ysis

1. INTRODUCTION

Remote sensing satellite data provide researchers with an ef-
fective way to monitor and evaluate land cover changes. An
operator making an image-to-image comparison is still a com-
mon method in most organizations when mapping land cover
change, which is time consuming and resource intensive. Au-
tomated change detection reduces human interaction and en-
ables large data sets to be potentially processed in a fraction of
the time. Change detection methods have been used as alerts
to an operator to highlight potential areas where change has
occurred. Many change detection methods that have been de-
veloped, only operate on the differences between two images.
The limitation with only using two images is that similar land
cover types can appear significantly different at various times
of the year [1]. The temporal frequency of the remote sensing
data acquisitions should be high enough to ensure the ability
to distinguish between change events and phenological cy-
cles. The high temporal frequency of coarse spatial resolution
imagery makes it very attractive for change detection [2].

The Extended Kalman Filter (EKF) has previously been
shown as a feature extraction method to model a NDVI time
series for a given pixel as a triply modulated cosine function
to improve land cover separation [3]. The objective of this

paper is to evaluate the internal covariance matrix within the
EKF, and observe if changes in land cover induces a signifi-
cant deviations within the filter.

The paper is organized as follows. Section 2 discusses the
study area and data set. In section 3 we present the method,
and section 4 present the experimental results. Section 5
presents the conclusions.

2. STUDY AREA AND DATA DESCRIPTION

The study area is located in the Gauteng province, South
Africa. The province is the most urbanized in the country.
Large areas of natural vegetation exist within the province,
but is converted to human settlements due to active migration
to the province. The study area corresponds to a total area of
approximately 285.5 km2, which comprises 240.5 km2 (962
pixels) no change areas and 45 km2 (180 pixels) change ar-
eas. The time series were validated with visual inspection of
SPOT images to map areas of change, and no change during
the study period.

The MODIS (MCD43A4, Collection V005) 500 meter,
Nadir and Bidirectional Reflectance Distribution Function
(BRDF) adjusted spectral reflectance product was used, as
it significantly reduces the anisotropic scattering effects of
surfaces under different illumination and observation condi-
tions [4, 5]. The data set provides an image every 8 days
derived from a 16 day MODIS surface reflectance composite
period. For each pixel a time series was extracted for the
first two spectral bands from the data set (tile H20V11) (year
2000–2009).

3. METHODOLOGY

Kleynhans et al. proposed a method of using an EKF to model
a NDVI time series using a triply modulated cosine function
[3]. Salmon et al. extended on this method by modelling each
spectral band independently [6], which is expressed as

yk,b = µk,b + αk,b cos(ωk + φk,b) + vk,b. (1)

The variable yk,b denotes the observed value of the b-th spec-
tral band’s time series, b ∈ {1, 2} at time k. The additive



noise sample is denoted by vk,b and is assumed to be nor-
mally distributed. The cosine function model was separately
fitted on each of the spectral bands and is based on several
different parameters; the frequency ω, which is the same over
both spectral bands, the nonzero mean µk,b, the amplitude
αk,b and the phase φk,b. The frequency was set to 8/365. A
state vector is estimated by the EKF at each time increment
k, and is denoted by

xk,b = [µk,b αk,b φk,b ]
T . (2)

For the present case, it was assumed that the state vector xk,b
does not change significantly through time; hence, the pro-
cess model f is linear. The measurement model h, however,
contains the cosine term and, as such, is evaluated via the
standard Jacobian formulation, thereby linearizing the non-
linear measurement model around the current state vector.
Both these models are possibly non-perfect, so the addition
of process noise wk,b and measurement noise vk,b is required
[7]. The process noise covariance matrix Qk,b and observa-
tion noise covariance matrix Rk,b was set using the criterion
described in [6]. The linear dynamic model for the EKF is
thus expressed as

xk,b = f(x(k−1),b) +wk,b, (3)

and
ŷk,b = h(xk,b) + vk,b. (4)

State vectors are estimated over time k based on the observa-
tion data yk,b up to time k [7]. The EKF recursively adapts the
state vector for each incoming observation vector by predict-
ing and updating the vector. In the prediction step, the state
vector x(k|k−1),b and internal covariance matrix B(k|k−1),b is
predicted. The predicted state vector’s estimate is computed
as

x̂(k|k−1),b = f
(
x̂(k−1|k−1),b

)
, (5)

and the predicted internal covariance matrix B(k|k−1),b is
computed as

B(k|k−1),b = Q(k−1),b + FB(k−1|k−1),kF
T. (6)

The matrix F is the local linearization of the non-linear tran-
sition function f . In the updating step the posterior estimate
of the state vector x̂(k|k),b is computed as

x̂(k|k),b = x̂(k|k−1),b + Kk,b

(
xk,b − h

(
xk,b

))
, (7)

using the optimal Kalman gain denoted by Kk,b which is com-
puted as

Kk,b = B(k|k−1),bH
TS−1k,b . (8)

The matrix H is the local linearization of the non-linear mea-
surement function h. The matrix Sk,b denotes the innovation
term which is computed as

Sk,b = HB(k|k−1),bH
T +Rk,b. (9)

The posterior estimate of the covariance matrix B(k|k),b is
computed as

B(k|k),b = B(k|k−1),b − Kk,bSk,bKT
k,b. (10)

The internal covariance matrix B(k|k),b is evaluated to ob-
serve any significant deviations when the EKF is subjected
to a form of land cover change. It should be noted that the
phase parameter φk,b provided negligible information to im-
prove land seperability and was not evaluated further. The
internal covariance matrix B(k|k),b is thus formally defined
as

B(k|k),b =

(
Bµµ,k,b Bµα,k,b

Bαµ,k,b Bαα,k,b

)
, (11)

with

Bµµ,k,b = E(µk,b −E(µk,b))
2

Bµα,k,b = E((µk,b −E(µk,b))(αk,b −E(αk,b))
Bαµ,k,b = E((αk,b −E(αk,b))(µk,b −E(µk,b))
Bαα,k,b = E(αk,b −E(αk,b))

2.
(12)

A labelled data set was used to evaluate the internal covari-
ance matrix, with the no change time series presented with
superscript nc and change time series with superscript c.
The evaluation of the internal covariance matrix in this paper
was only done 1-dimensionally on the elements Bµµ,k,b and
Bαα,k,b. The change metric termed the Covariance Change
Metric (CCM) δµ,k,b is defined for the mean parameter as

δµ,k,b = Bµµ,k,b −E(Bnc
µµ,k,b), (13)

Fig. 1. A illustration of δµ,k,1 for an arbitrary pixel is given
over the study period for the first MODIS spectral band.



(a) Probability density functions computed for δcµ,k,1 and δncµ,k,1 for
the first MODIS spectral band.

(b) Probability density functions computed for δcµ,k,2 and δncµ,k,2 for
the second MODIS spectral band.

(c) Probability density functions computed for δcα,k,1 and δncα,k,1 for
the first MODIS spectral band.

(d) Probability density functions computed for δcα,k,2 and δncα,k,2 for
the second MODIS spectral band.

Fig. 2. Comparisons on the separability between the change and no change probability density functions by evaluating different
elements in the internal covariance matrix.

where Bµµ,k,b can be the element of an internal covariance
matrix derived for a time series experiencing change or no
change in land cover.

If the CCM δµ,k,b of the mean parameter, exceeds a cer-
tain predefined threshold δ∗µ,k,b, then the time series is flagged
as an area that experienced land cover change. A similar
CCM can be derived for the amplitude parameter and is de-
noted by δα,k,b.

4. RESULTS

4.1. Example of CCM

In this section an illustration is given on how the CCM
changes over time when land cover change is present in the
time series. In figure 1, the CCM is depicted for a single
time series that has experienced land cover change within the
study period. The CCM was computed using the changed
time series as

δµ,k,b = Bc
µµ,k,b −E(Bnc

µµ,k,b). (14)

A significant change in the CCM δµ,k,1 in figure 1 started
to emerge after January 2004. This signifies a change in land
cover as the filter is adapting to a new stable state.

4.2. Change detection accuracies

In this section a Bayes’ approach is used to investigate the
change detection accuracies obtained in the study area. The
land cover change of interest was the transformation of nat-
ural vegetation to newly formed human settlements. The
behaviour of the diagonals in the internal covariance matrix
were evaluated for the first two MODIS spectral bands. These
probability distributions are shown in figure 2, where a clear
separation between the change and no change time series is
observed. The corresponding change detection accuracies
(true positives) for the distributions shown in figure 2 are



reported in table 1, along with the correponding false alarms
(false positive) in parentheses.

Table 1. Change detection accuracy measured on the labelled
data set. Each entry gives the true positive accuracy with the
corresponding false positive accuracy in parentheses.

Metric
Mean parameter Amplitude parameter

Spectral band 1 90.6% (10.5%) 90.0% (15.2%)
Spectral band 2 97.6% (39.8%) 82.1% (49.9%)

It is observed in table 1 that evaluating the internal covari-
ance matrix to detect land cover change produces acceptable
results when using the first MODIS spectral band. The second
spectral band offered good change detection accuracies at the
cost of high false alarms. The element Bµµ,k,1 in the internal
covariance matrix offers the best change detection accuracy.

Two well known methods have been implemented for
comparison to the CCM. The first method is the annual NDVI
differencing method by Lunetta et al. [1], which calculates
the difference between consecutive summation of the annual
NDVI time series. The pixel is flagged as change if a cer-
tain predefined threshold is exceeded in this difference. The
threshold is usually determined using normal distribution
statistics. The method reported change detection accuracy of
57% and a false alarm rate of 14% on the same data set.

The second method is the EKF change detection method
by Kleynhans et al. [8], which evaluates the Euclidean dis-
tance between parameters derived with an EKF within a
spatio-temporal window. The EKF fits a triply modulated
cosine function to a time series to model the seasonal varia-
tions. The pixel is flagged as change if the Euclidean distance
exceeds a predefined threshold. The method reported change
detection accuracy of 75% and a false alarm rate of 13% on
the same data set. In this case the CCM algorithm performed
better than both these alternative change detection methods.

5. CONCLUSIONS

Previous research has shown that land cover change could
be detected using the state parameters, which were estimated
with an EKF [3, 6]. Good separation was obtained between
the two classes when evaluating the mean and amplitude pa-
rameter that were estimated using the EKF. The EKF first al-
ters the internal covariance matrix if a significant change in
observation is observed, follow by adapting the state parame-
ters. In this paper it was shown that information in the change
of the internal covariance matrix can be used as change detec-
tion metric. The analysis showed change detection accuracies
of +90% when using the first spectral band of MODIS with
false alarms as low as 10.5%.
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