
18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa 

 

Numerical Characterisation of Guided Wave Scattering Due to Welds in 

Rails 
 

Craig S. LONG, Philip W. LOVEDAY
 

CSIR Materials Science and Manufacturing; Pretoria, South Africa 
Phone: +27 12 841 2498, Fax +27 12 841 3895; e-mail: Clong@csir.co.za, PLoveday@csir.co.za 

 
Abstract 

The analysis of travelling waves in elastic waveguides with complex cross-sections, such as train rails, can only 

conveniently be performed numerically.  The semi-analytical finite element (SAFE) method has become a 

popular tool for performing such analyses.  This paper employs a hybrid SAFE-3D method to investigate the 

scattering of guided waves interacting with discontinuities, such as welds, in continuous welded train rails.  The 

aim of the analysis is to predict transmission and reflection coefficients for a given incident wave and known 

discontinuity parameters.  This characterisation is useful for predicting the long-range transmission 

characteristics of transducers in NDT and monitoring systems, such as the rail break alarm system developed by 

the Institute for Maritime Technology (IMT) and the Council for Scientific and Industrial Research (CSIR).  The 

numerical model can also be used to estimate welded sections properties from experimental measurements using 

a scanning laser vibrometer. 
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1.  Introduction 
 

Guided wave inspection and monitoring of structures is being researched for various 

industrial applications. One important application is that of rail condition monitoring where 

long lengths of rail can be monitored from permanently attached transducers [1]. 

  

Wave propagation in waveguides with arbitrary cross-section can be very complex, and 

numerical modelling is often required to predict this behaviour.  The authors have recently 

developed modelling techniques for combining traditional 3D finite element (FE) models of 

transducers with 2D semi-analytical finite element (SAFE) models of waveguides [2-4].  

These models are useful when designing transducers that effectively transmit a particular 

mode of propagation.  SAFE models have also been used in conjunction with laser vibrometer 

measurements taken over a length of rail to identify modes of propagation [4].  All of these 

efforts have been aimed at designing transducers which will produce guided waves that will 

travel long distances. 

 

In order to further investigate the effect of propagation over long distances, the effects of 

discontinuities, including welds in rails is required.  Figure 1(a) depicts an example of a poor 

weld, while a step change in rail profile resulting from the connection of a new rail to an older 

rail, which has been regularly ground as part of a maintenance routine, is depicted in Figure 

1(b).  Furthermore, for shorter distance investigations including lab and field measurements, 

the interaction of waves with free ends or anchors could be required.  Ideally, in future the 

ability to identify, characterise and locate damage to a rail is naturally also of interest (see 

Figure 2(b) for example).  A general tool to analyse these various conditions is therefore 

required.  This paper will detail the authors’ early attempts at developing this analysis 

competence. 

 

 



  

(a) Example of a poor quality weld. 
(b) Example of a step change in rail profile resulting 

from a connection between new and worn rail. 

Figure 1. Examples of possible sources of scattering for propagating waves in rails. 

 

 

Various authors have investigated the problem of analysing the interaction of propagating 

elastic waves with damage in infinite or semi-infinite waveguides.  One technique is to 

employ a standard 3D FE analysis [5,6].  The advantage of this method is that commercially 

available FE software can be used and therefore complex shapes of waveguide cross-section 

and damage can easily be handled.  Disadvantages include the fact that computational times 

and storage requirements may be extreme, especially for long waveguides at high frequencies, 

since wavelengths become small and fine meshes are therefore required.  Furthermore, 

significant post-processing could be required to identify modes of propagation. 

 

A second option is to use only semi-analytical finite elements in the analysis [7].  The 

advantage of this approach is that it is not usually very numerically expensive, and separation 

of modal information is usually quite straightforward.  This approach has the problem, 

however, that general defects (with complex geometry) are not easy to accommodate.   

 

Recently several authors have developed “hybrid” techniques, combining 2D SAFE models of 

the semi-infinite waveguide and a 3D solid FE model of the defect only [8-10].  These 

methods combine the salient features of the two methods mentioned above, a full 3D model of 

the area around the defect is required (allowing for complex geometries, but reducing 

computational effort) while modelling the semi-infinite waveguides using a SAFE model.  In 

this paper, we use the implementation suggested by Benmeddour et al. [9] to study the effects 

discrete changes in waveguide geometry or material.  The problem considered is 

schematically depicted in Figure 2. 

 

2.  Finite element formulation 
 

In this section, a brief description of the numerical modelling techniques employed will be 

presented.  The implementation is based closely on the hybrid method proposed by 

Benmeddour et al. [9], and will therefore not be presented in detail here.  We will however, 

present only the salient points of their development and the same notation as in their paper 

will be used.  The technique calls for both a semi-analytical finite element (SAFE) and a solid 

3-D finite element (FE) implementation. 

 

The SAFE element formulation used in this study is relatively well known, and is based on 

the implementation of Hayashi et al. [11]; their formulation will therefore not be presented at 

Poor quality weld 

Discrete change in profile 



all herein.  The solid 3-D finite elements are standard displacement based elements, and more 

detail about their formulation can be found in, for example, Cook et al. [12]. 

 

 

 

 
(a) Schematic of arbitrary problem under investigation.  

Reproduction of image from Benmeddour et al. [9]. 
(b) Illustration of typical rail-specific applications. 

Figure 2. Illustration of semi-infinite waveguides connected to a damaged volume. 

 

 

A partitioned variational statement is developed by Benmeddour et al. [9] in which the 

displacements of the arbitrary volume depicted in Figure 2(a) are divided into degrees of 

freedom in contact with the left waveguide, denoted L, with the right waveguide, R, and the 

remaining degrees of freedom in the interior of the volume, I 
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where U denotes the vector of nodal displacements, and Dij=Kij – ω
2
Mij represents the 

dynamic stiffness matrix with K and M being the stiffness and mass matrices, respectively.  

The forces associated with the left and right boundaries, denoted fL and fR, as well as the 

displacements in the left and right boundaries, UL and UR, are expanded as: 
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In these equations, B and T represents the set of displacement and force modes respectively, 

and α represents the vector of modal amplitudes calculated from a SAFE eigenvalue analysis 

and some post-processing to compute T.  As before the subscripts L and R denote the left and 

right waveguides and the + and – superscripts denote forward and backward propagating 

modes.  The direction of propagation is identified based on the sign of the group velocity for 

real wavenumbers, and the sign of the imaginary part of the wavenumber for evanescent 

modes.  After substitution of (2) into (1), the following linear system results: 
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which can be solved for the unknown modal amplitudes of the reflection from the left face, 

αL
–
, the transmitted modal amplitudes through the right surface, αR

+
, and the displacements of 

the interior volume UI, in terms of known incident modal amplitudes αL
+
. 

 

This full system of equations will be referred to as a SAFE-3D analysis since both SAFE and 

3D FE components exist.  As pointed out by Benmeddour, if the waveguide on the right 

(carrying the transmitted energy) does not exist, a simplified SAFE-3D analysis can be 

obtained by simply removing the third row and column from matrices and the third term from 

vectors in (3).  Furthermore, if only the left waveguide is present, a further simplification is 

possible containing only SAFE terms: 
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This simplified system will be referred to as a SAFE-only analysis, and is similar to the 

method proposed in Taweel et al. [13].  The results of numerical studies are often presented in 

terms of power and not modal amplitude.  Power flow through a surface is defined as 
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where Pi = –σij (duj/dt) and the overbar denotes time averaging.  It is shown by Benmeddour 

[9] that this reduces to 
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where Im(∙) extracts only the imaginary part of the term in parentheses, and (∙)
*T

 indicates the 

complex transpose.  The reflection and transmission coefficients are, respectively, computed 

by dividing the transmitted or reflected power by the power of the incident wave: 
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3.  Numerical results 
 

In this section, we present results from our numerical experiments.  In all, four problems are 

considered, the first being the reflection from the free end of a circular waveguide.  Since this 

problem is symmetric, only a quarter of the waveguide needs to be modelled (as shown in 

Figure 3(a).  The second problem relates to the transmission of guided waves through a layer 



with dissimilar material properties, using the same mesh as the first problem.  These two 

problems are largely used to verify the correctness of our implementation.  The third problem 

considers the reflection of a single propagating mode from the free end of a UIC-60 rail.  This 

problem will be analysed over a wider range of frequencies.  The FE mesh used for this study 

is depicted in Figure 3(b).  Finally, the propagation of a single mode across a weld will be 

considered, with FE mesh shown in Figure 3(c).  The solid FE meshes depicted in Figure 3 

are generated by extruding the corresponding SAFE mesh associated with the various 

geometries under consideration.  We use 4-noded quadrilateral SAFE elements and 8-noded 

solid brick elements throughout. 

 

   
(a)  Circular waveguide mesh 

(quarter mode). 

(b)  Rail mesh used to study the 

reflection from a free end. 

(c)  Rail mesh used to model 

propagation across a weld. 

Figure 3. Solid finite element meshes used in the numerical study generated by extruding SAFE mesh in the 

direction of the waveguide. 

 

 

  
(a) Cylinder. (b) UIC-60 rail. 

Figure 4.  Dispersion curves generated using a SAFE analysis  

 

 

3.1  Reflection from the free end of a circular waveguide 

 

This benchmark problem is considered in order to verify our numerical implementation.  It 

has previously been studied by, for example Benmeddour et al. [9] as well as Taweel et al. 

[13].  In order to compare our results with those of previous authors, the following geometry 

and material properties are used.  The solid waveguide radius is R=0.5 m, the length of the FE 

mesh depicted in Figure 3(a) is 0.5 m, the elastic modulus is E=210 GPa, while Poisson’s 

ratio is set to ν=0.25 and mass density ρ=7800 kg/m
3
. 

 

Figure 4(a) shows our computed dispersion curves compared to those presented by Taweel et 

al. [13].  The normalised wavenumber, k, and frequency are computed as: 
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where λ and μ represent the Lamé constants, κ in rad/m is the wavenumber and ω is the 

circular frequency in rad/s.  A good comparison is observed.  The slight variation could be 

attributed to difference in SAFE discretization. 

 

  
(a) Comparison with literature. (b) Comparison between SAFE-only and SAFE-3D. 

Figure 5. Proportion of energy reflected from the free end of the cylinder. 

 

 

Figure 5(a) presents the computed proportion of energy reflected from a traction free end with 

the incident mode being the first longitudinal mode (see Figure 4(a)).  Results computed using 

a combination of SAFE and the 3D solid model are used to compare with the implementation 

of Benmeddour et al. [9], even though a SAFE-only model would suffice since the free end is 

normal to the waveguide longitudinal axis.  Good agreement is achieved.  The slight 

difference could be attributed to the fact that Benmeddour et al. use higher-order elements in 

their analysis. 

 

Figure 5(b) illustrates the correspondence between the SAFE-only analysis explained in 

Section 2, and represented by (4) and the combination of SAFE-3D analysis represented by 

(3).  Very good agreement is achieved at these relatively low frequencies, with a relatively 

fine mesh. 

 

 

3.2 Transmission through a layer with dissimilar material properties 

 

The same geometry and mesh as that used in Section 3.1 are used here.  A 50% reduction in 

the elastic modulus is simulated (without a change in Poisson’s ratio).  The analytical solution 

for the proportion of power transmitted through the layer (T) at low frequency is given in 

Kinsler et al. (1982) [14] as: 
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c1 and c2 are longitudinal velocities in the SAFE and the 3D solid sections respectively, and L 

is the layer thickness (0.5 m in this case).  

 



Figure 6 depicts the predicted proportion of energy transmitted compared to the analytical 

solution over two different frequency ranges.  It is clear that at low frequencies a good 

correspondence is achieved.  Note that the minimum of the analytical solution corresponds to 

a frequency where a quarter of the wavelength of the longitudinal mode is equal to the layer 

thickness L.  At higher frequencies, especially at the cut-on frequency of the next symmetric 

mode, the analytical solution is not valid.  We also verified the trivial case where the layer has 

the same material, which results in 100% transmission and zero reflection, which was 

achieved to machine precision. 

 

  
(a) Wide frequency range. (b)  Narrow frequency range. 

Figure 6. Proportion of energy transmitted through a layer with different material. 

 

 

3.3  Reflection from the free end of a UIC-60 rail 

 

In this section the reflection from the free end of a UIC-60 rail profile is studied.  The material 

properties used are E=215 GPa and ν=0.3, with ρ=7800 kg/m3.  The extent of the 3-D solid 

mesh is 100 mm.  Dispersion curves with incident mode are shown in Figure 4(b). 

 

Figures 7(a) and 7(b) show the real and imaginary parts of the incident mode shape at 4.5 kHz 

(see Figure 4(b) for corresponding point on the dispersion curve).  Figure 7(c) shows the 

interior displacement (UI in equation (3)) at the same frequency.  Figure 7(d) presents the 

proportion of energy reflected by this mode over a relatively large frequency range, computed 

using the SAFE-only method (4), as well as the SAFE-3D solid procedure (3), presented in 

Section 2.  The figure shows that at high frequencies, a significant difference between the 

SAFE-only and the SAFE-3D analysis are noted.  This is presumably a result of a somewhat 

coarse mesh used when compared to the problem considered in Sections 3.1 and 3.2 which 

took advantage of the double symmetry of the geometry. 

 

 

3.4  Simulation of transmission through a rail weld of dissimilar material 

 

In this final problem, the transmission of the same incident mode considered in Section 3.3, 

over the same frequency range, is studied.  The weld in this case extends 15 mm and has 

material properties arbitrarily chosen as having a 10% reduction in both elastic modulus and 

Poisson's ratio.  In future, we will attempt to better approximate the material properties.   

 

 

 

 



 

 

   
(a) Incident mode at 4.5kHz. (b) Incident mode at 4.5kHz. (c) Incident mode at 4.5kHz. 

 
(d) Proportion of energy reflected from the free end of a rail for SAFE-only and SAFE-3D analysis. 

Figure 7. Reflection from the free end of a UIC-60 rail. 

 

Figure 8 depicts the proportion of energy which is transmitted and/or reflected.  Figure 8(a) 

indicates a very sharp reduction in transmitted power at the cut-on frequency of the symmetric 

mode around 6 kHz.  Figure 8(b) shows that several modes are reflected, but that their 

proportion of the incident power is relatively low except in the immediate vicinity of 6kHz 

(note that the maximum proportion of energy in Figure 8(b) is 1e-3). 

 

Although the energy reflected at a single weld may seem fairly insignificant, the fact that 

transmission in the rail break alarm system needs to cover up to 1.5 km, and welds are found 

at approximately 20 m intervals, means that the repeated effect could be significant. 

 

 

  
(a) (b) 

Figure 8.  Transmission and reflection of energy over a weld. 

 



4.  Conclusions 
 

We have implemented a hybrid SAFE-3D finite element method [9] which, in its general 

form, may be used to investigate the interaction of guided waves with discrete changes in 

waveguide geometry and/or material properties.  Benchmark examples were used to verify the 

correctness of our implementation, and good agreement between our computed results and 

previously published results were achieved.  The double symmetry of the benchmark 

geometry was exploited, and as a result a fairly fine discretisation was employed. 

 

We also studied the reflection of propagating waves from the free end of a rail. In this case, 

since symmetry was not exploited, the resulting mesh was fairly coarse.  A noticeable 

difference between the results computed using the SAFE-only and the SAFE-3D analyses was 

observed, which could possibly be attributed to discretisation error.  As part of a future study, 

a convergence study will be carried out in order to determine a suitable discretisation to solve 

these types of problems accurately.  We also plan to implement higher-order 8-noded SAFE 

and 20-noded 3D solid brick elements. 

 

Finally, the interaction of a single propagating mode with a weld in a rail was investigated.  

We found that although the proportion of energy which is reflected is not significant, that the 

additive effects over long distance could be of significance.  In order to study this problem in 

detail, we would like to better approximate the weld material properties using scanning laser 

vibrometer measurements. 
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