
 Southern hemisphere climate variability as represented 

by an ocean-atmosphere coupled model 
 

 

Asmerom Beraki
1,2

, Willem A. Landman
2,3 

and David DeWitt
4
 

 

 
1South African Weather Service Pretoria, South Africa, asmerom.beraki@weahtersa.co.za  

2Departement of Geography, Geoinformatics and Meteorology, University of Pretoria  
3Council for Scientific and Industrial Research, Natural Resources and Environment Pretoria, South Africa 
4International Research Institute for Climate Prediction, Lamont-Doherty Earth Observatory of Columbia 

University, Palisades, New York, USA 

 

 

1. INTRODUCTION  

 

Southern Hemisphere (SH) climate variability has been 

the focus of several researchers (e.g., Wallace and Hsu, 

1983). According to these early studies, the SH is 

characterized by quasistationary oscillations and 

zonally propagating waves in the atmospheric 

circulation. The ability of predicting these modes of 

climate variability on longer timescales is vital. 

Potential predictability is usually measured as a signal-

to-noise contrast between the slowly evolving and 

chaotic components of the climate system. Such 

measures are certainly sensitive to how the variance 

decomposition is performed. One way of separating the 

variance is using a temporal filtering technique which 

assumes that weather noise dominates much shorter 

timescales (e.g., Basher and Thomosph, 1996). 

Notwithstanding, weather noise includes not only high-

frequency, day to day fluctuations but also low-

frequency intraseasonal fluctuations that give rise to 

chaotic, unpredictable variability through temporal 

fluctuation. The aim of this study is, therefore, to assess 

the ability of a coupled global climate model in 

reproducing observed SH climate variability using a 

variance decomposition procedure recently suggested 

by Zheng and Frederiksen (2004) and Zheng et al. 

(2009).   

 

2. DATA AND METHOD 

 

Model 500 hPa Geopotential height (GH) produced by 

an Ocean-Atmosphere Coupled Climate Model 

(OAGCM; Beraki et al., 2011) hindcast integrations for 

the period spanning 1982 to 2009 (28yrs) are 

considered here. The National Centers for 

Environmental Prediction Reanalysis II (NCEP-R2) 

dataset (Kanamitsu et al., 2002) is used as a proxy data 

for observations.  

 

We adopted here the variance decomposition technique 

(Zheng and Frederiksen, 2004) that uses mean monthly 

fields as input. The procedure is suitable for isolating 

the interannual (BSy) and intraseasonal covariability 

(Esyo) matrices. To overcome the pitfall in estimating 

the covariance matrix when the number of grid points 

considered in the computation exceeds the temporal 

sample size (which is the case here), we applied a 

variant of the Empirical Orthogonal Function (EOF) 

truncation approach of Zheng and Frederiksen (2004) in 

conjunction with the “sample space” formalism 

postulated by Preisendorfer (1988). The covariance 

matrix of the interannual component is further 

decomposed into a boundary-forced (Bsy) and a slow 

varying internal source component (Ssy; Zheng et al., 

2009). The latter gives an important insight in the 

understanding of the source of variation within the 

GCM ensemble prediction system. Following the 

estimation of covariance matrices for the different 

components, an EOF analysis is conducted to derive 

patterns related to the various intraseasonal and 

interannual components. 

 

3. RESULTS AND DISCUSSIONS 

 

The OAGCM ability to reproduce observed modes of 

climate variability is assessed here using a basic 

covariance decomposition statistical model. The 

analysis has been conducted for the austral summer 

season (DJF) 500hPa GH using 10 ensemble 

realizations of the OAGCM (lead-1) and NCEP. Fig. 1 

shows the intraseasonal and interannual components for 

the first two leading EOF modes (see caption). 

Generally the NCEP EOF patterns (fig. 1(a)) share a 

great deal of similarities with the results of Grainger et 

al. (2011; see their fig. 1 and 2) despite that there are 

also some differences in terms of patterns apparently 

attributed to the source of data and sample size 

differences; Grainger et al. (2011), for example, used 

49yrs of NCEP-R1 500hPa GH. Comparing the 

OAGCM with NCEP, it adequately captures some of 

the dominant SH modes of variability. Notwithstanding, 

the model is seemingly underestimating the amplitude 
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of the spatial loadings relatively. It is worth noting that 

differences in sign signature are presumably caused by 

the sample space formalism treatment adopted here and 

should not be considered as a weakness of the 

OAGCM.  

   

 

 
 

Figure 1: First two dominant EOF modes for weather 

noise (left panel) and slow more predictable interannual 

component (right panel). (a) NCEP Reanalysis and (b) 

OAGCM 500hPa GH for the austral summer 

respectively. Light (dark) shades highlight –ve (+ve) 

signature of the spatial loadings. 

 

Table1: Variance explained by the first 6 leading EOFs 

for the intraseasonal and interannual variability. 

Included also is contribution of the slow internal 

dynamics (Sy) and boundary forcing (By; highlighted). 

 

NCEP OAGCM 

Esy BSy Esyo BSy By Sy 

22.78 36.60 21.65 50.38 31.63 43.39 

18.59 19.63 15.59 22.76 26.95 16.04 

10.72 10.79 9.58 8.96 11.44 10.80 

8.51 6.15 6.80 4.24 7.26 7.62 

7.69 5.46 5.01 2.79 6.11 5.40 

4.42 4.36 4.66 2.13 3.07 3.97 

 

The variance explained by the first 6 leading EOF 

modes for the NCEP and OAGCM is given in Table1. 

It implies that the major portion of the predictable 

component of the model is coming from the slow 

internal dynamics. One point correlation (not included) 

between Optimum Interpolation Sea Surface 

Temperature (OI SST) and the leading NCEP and 

AOGCM (Principal Component) PC-1 yield consistent 

results. Both of them show strong correlation with the 

El Niño Southern Oscillation (ENSO), Southern 

Annular Mode (SAM) and equatorial Indian Ocean 

Dipole (IOD) where the latter is stronger in the model. 
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