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Abstract—The paper presents work aimed at optimising acous-
tic models for the AutoSecretary call routing system. To develop
the optimised acoustic models: (1) an appropriate phone set
was selected and used to create a pronunciation dictionary,
(2) various cepstral normalization techniques were investigated,
(3) three South African corpora and multiple training data
combinations were used to train the acoustic models, and, (4)
model-space transformations were applied. Using an independent
testing corpus, which contained proper names and South African
language names, a named-language recognition accuracy of 95.11
% and proper name recognition accuracy of 93.31% were
obtained.

I. INTRODUCTION

Interactive voice response (IVR) systems are widely used by
companies to automatically assist their clients. The automation
of services can greatly reduce company costs and in certain
instances can be used by company staff to improve their
productivity. Through Dual Tone Multi-Frequency (DTMF)
keypads and Automatic Speech Recognition (ASR), IVR sys-
tems can capture digit information (such as account numbers)
and more sophisticated information via a person’s speech (e.g.
person’s name and surname). Unfortunately, DTMF input has
an innately low information carrying capacity which is largely
limited to digit-centric information. To overcome DTMF short-
comings, adding a natural spoken input and ASR information
extraction capability can greatly increase the versatility of an
IVR system.

A typical IVR application that makes use of speech pro-
cessing capabilities is a call routing service, i.e. a system
that routes incoming calls automatically to appropriate services
or individuals. One such system is the AutoSecretary system
introduced by Modipa et. al. [1], which routes incoming calls
to a person based on a spoken name.

In this paper we describe the development of acoustic
models for the AutoSecretary IVR application. Specifically,
we focused on acoustic model optimisations which would:
• enable the system to route calls to an operator based on

the callers language preference, and,
• allow new names to be added to the system relatively

easily.
The next Section II describes the AutoSecretary system and

provides background on some application-specific ASR issues.
Section III details the ASR development effort as well as
corpus selection and design. Our experiments are described

Fig. 1. High level AutoSecretary call flow.

in Section IV and results and a discussion are presented in
Section V. Lastly, the conclusion and possible future work
appear in Section VI.

II. BACKGROUND

A. AutoSecretary IVR System

Figure 1 shows the high level call flow of the AutoSecretary
call routing system. At the beginning of a session the system
prompts the caller to say the name of person they are looking
for or the word “enquiries”. Following a valid name request
the system will route the caller to the registered land line
number. In addition, the system has the ability to route to a
mobile number if it could not make a connection via the land
line. If the word “enquiries” was spoken instead of a name,
the system prompts the user for a language option - any of
the eleven official South African languages - which allows
the system to route the call to an operator who speaks the
requested language.

The simple confidence scoring method implemented by
ATK [2], is used to make a decision to either accept the
recognition output if the confidence score is high or re-prompt
the user to repeat their request if the confidence score is too
low. Following two successive re-prompts, the system will
automatically route the caller to a default operator. Figure 2



Fig. 2. AutoSecretary confidence scoring mechanism.

shows the AutoSecretary confidence scoring mechanism and
how its application to the call flow.

On all successful recognitions, the system will parrot back
the name to verify the selection. The caller may interrupt
the transfer if the system selection is incorrect by saying
“stop”. The AutoSecretary system previously described by
Modipa et. al. [1] had a similar call flow but did not include
the functionality to route a user to an operator that spoke a
particular language.

B. AutoSecretary ASR

The main issue in developing robust acoustic models for
the AutoSecretary system is accurate proper name recognition.
This type of problem has been encountered previously in
directory assistance systems [3] and voice-navigation systems
[4].

The first challenge in achieving accurate proper name recog-
nition is robust pronunciation modelling. Initially, a phone set
that can effectively represent the speech acoustic space must be
chosen. This becomes an important aspect when dealing with
multilingual environments which, in general, contain many
sound classes and require careful phone set selection. Another
major problem is that the phonemic representation of a word
and the way it is pronounced vary greatly [4]. A possible
cause of this mismatch is that people are altering the way in
which they are pronouncing the proper name [5] based on what
they think the word should sound like. This generally happens
when an unknown or foreign word has to be spoken and the
speaker has no prior knowledge. In multilingual environments
this problem increases and becomes more difficult to solve as
more languages are added. A way in which to partly overcome
this problem, is to add multiple pronunciation variants to the
pronunciation dictionary [1]. Adding pronunciation variants
is a manually intensive task but affords greater accuracy
compared to automatic methods. Automatic methods, such as
G2P, have been shown to work well for common words but
extracting rules for proper names still proves to be difficult

Corpus Name # utterances duration in hours
Lwazi English 5843 5.03

Lwazi English plus Lwazi language prompts 7770 5.57
NCHLT English 106018 76.97

AST English (5 dialects) 51745 29.80

TABLE I
THE NUMBER OF TRAINING UTTERANCES AND DURATION FOR EACH

DEVELOPMENT CORPUS.

[6]. Accurate proper name prediction is made difficult because
proper names do not have set ways of pronouncing them [4],
which makes robust rule extraction hard to accomplish. Also,
predicting foreign words adds to incorrect pronunciations [5].

The second challenge is to develop robust acoustic models.
In the standard HMM paradigm, creating word-based Hidden
Markov Models is infeasible. As reported in [7], in the United
States alone there were an estimated 1.5 million surnames
with a third of these being unique. In multilingual environ-
ments, such as South Africa, these numbers would increase
drastically. Another point of failure for word-based HMMs is
the effort required to add new names to the system. Thus, a
better approach would be to follow a large vocabulary ASR
system development cycle. Here, development corpus selection
is important as one would require large amounts of data to
train robust acoustic models. A benefit of large vocabulary
ASR systems is that they allow easier modification of the
recognition grammar - for instance adding language name
recognition - which adds flexibility to the system. Collecting
a corpus of names per application [1] would be impractical as
this would not in general produce robust acoustic models. In
addition, if one would require the system to be re-deployed, a
time consuming audio data collection process would have to
be run before the system can be reliably operated in a new
environment.

III. ASR DEVELOPMENT

In this section we describe the speech corpora used for
acoustic model development, the phone set selection and
pronunciation dictionary creation, the feature extraction pro-
cess, acoustic model development as well as the recognition
grammar and concept mapping that were used during system
evaluation.

A. Training Corpora

To enable robust acoustic model development in a multilin-
gual South African context we focused on three South African
corpora. Table I shows the number of training utterances per
corpus and indicates the duration in hours.

1) Lwazi: The Lwazi corpus contains annotated telephony
speech data covering eleven South African languages [8], [9].
Each language-specific corpus was produced by collecting
read and elicited speech data from approximately 200 speak-
ers; with each speaker contributing roughly 30 utterances [9].
A portion of the utterances were randomly selected from a
phonetically balanced corpus and the remainder are words
or short phrases. Importantly, each corpus contains utterances



which captured the response of the speakers when queried
about their first language.

2) NCHLT: The NCHLT ASR corpus contains annotated
high-bandwidth speech data collected for eleven South African
languages [10]. The individual corpora contain a minimum of
50 hours of speech data collected from 200 speakers (gender-
balanced) with each speaker contributing in the order of 500
utterances. The volume of collected data improves triphone
coverage and should make it easier to add new names or short
phrases to the recognition grammar.

3) AST: The African Speech Technology (AST) corpus
contains annotated telephony speech data for five South
African languages [11]. The speech data was collected from
300 - 400 speakers and the prompts were chosen to support
information retrieval, transactional teleservices and hotel book-
ing applications. Given the prompt design, the corpus contains
a large proportion of proper names and a good coverage of lan-
guage prompts. Additionally, the English corpus contains data
collected from five common South African English accents
which should add to the robustness of the acoustic models. In
the current investigation the same train, development and test
sets were used as those described in Kamper et. al. [12].

B. Testing Corpus

A testing corpus was developed by, firstly, expanding the
recognition grammar to create text prompts and then collecting
speech data from a variety of speakers. The testing corpus
contained speech data from approximately 20 unique speakers
with each speaker contributing 22 names- and 46 language-
specific utterances. The data was collected from both land line
and mobile handsets which represents a close approximation
to the proper testing environment. After manual validation,
the final utterance count was 555 names-related and 1003
language-related utterances. The duration of the testing audio
at this point was 1.42 hours. To increase the testing data
size further, we included a previously collected name-surname
corpus which contained 31 unique name-surname pairs. The
final testing corpus contained 2.13 hours of audio data, 1480
names-related and 1003 language-related utterances.

C. Phone Set and Pronunciation Dictionary

The initial phone set was a union of all the phones found
in the Lwazi corpus [8] and consisted of 87 unique phones.
These were then mapped to a simplified set of 62 phones
where affricates were split (e.g. [tS] →→→ [t] [S], [d 0Z] →→→ [d]
[Z]) and clicks and subtle phone distinctions merged (e.g [h\]
became [h], etc.). The motivation for simplifying the phone
set is that multilingual speakers will probably not pronounce
the distinctions correctly, thus removing them from the start
would be better.

The corpora-specific pronunciation dictionaries were
mapped to the simplified 62 phone set. As the majority of
the training corpora used in our investigation were South
African English (SAE) the final phone set only contained 41
South African English phones. The reduction in the number
of phones, is due to English not containing phones which

occur in other languages. As a final phase, foreign words had
phonemic representation generated manually using the closest
English phones.

The recognition pronunciation dictionary or AutoSecre-
tary dictionary contained 158 unique entries which included
multilingual person and South African language names as
well as a few English honorifics (ms, mr, mrs, dr). With
pronunciation variants this count increased to 415. The 41
phones in the English set were used to manually create all the
pronunciations.

D. Feature Extraction

39 (13 static, 13 delta and 13 delta-delta) dimensional
Mel Frequency Cepstral Coefficient (MFCC) features were
generated using the Application Toolkit (ATK) [2] and the
Hidden Markov Model Toolkit (HTK) [13]. These MFCCs
were extracted every 10 ms from a 25 ms speech frame.
The frequency bandwidth was limited to 150-3600 Hz and
is applied by HTK independent of sampling rate.

Channel normalisation was performed by means of cep-
stral mean normalization (CMN). Four different options were
considered, i.e. no CMN, HTK CMN, Global CMN, and ATK
CMN.

HTK CMN is implemented by estimating a cepstral mean
vector on a per utterance basis and removing the cepstral
vectors’ offset [13]. The Global CMN method estimates a
cepstral mean vector from the entire training data set and
then uses the vector to normalize the training and testing
cepstral vectors. ATK CMN is implemented by first loading an
initial mean vector which, for our experiments, was a global
mean cepstral vector estimated on the training data [2]. This
cepstral mean is updated on every speech frame according to
the formula:

µ′µ′µ′ = α(µµµ− xxx)xxx, (1)

where µ′µ′µ′ is the updated cepstral mean, α is the time constant
set to 0.995, and xxx the input cepstral vector. For each utterance,
ATK resets the mean cepstral vector to the initial mean vector
µ0µ0µ0. To determine whether a frame is speech, ATK uses the
first 40 frames of each utterance to train a silence detector
and performs a speech / non-speech analysis on each frame.
The first 10 frames of an utterance are not used to update the
mean cepstral vector.

When experimenting with a specific CMN approach both
the training and testing data were normalized using the same
CMN technique.

E. Acoustic modelling

A standard acoustic model development strategy was used
as detailed in HTK book [13]. The acoustic models were tied-
state context-dependent (triphone) Hidden Markov Models
(HMMs), using a three state left-to-right topology. Question-
based tying was used to create the tied-state models. Eight
Gaussian mixtures per HMM state were used to model the
cepstral densities. Different sets of acoustic models were



Fig. 3. The AutoSecretary name and language recognition networks.

created using the corpora described in Section III-A as well
as using combinations of some of the corpora.

F. Recognition Grammar and Concept Mapping

The test set vocabulary contained 40 unique name-surname
pairs and 11 unique language options. The recognition net-
works for names and languages are shown in Figure 3.

Expanding the recognition network provides 156 name and
46 language possibilities. The name network also contained
the following words: “enquiries”, “switchboard”, “reception”,
and “stop”.

During normal AutoSecretary operation the application is
only aware of the unique name and language options and maps
the expanded ASR text output. For example, the following
mappings would be performed:
• “Mr John Doe” or “John Doe” mapped to “John Doe”
• “Sesotho sa leboa” or “Northern Sotho” mapped to

“Sepedi”
For system performance evaluation we defined the vari-

ous unique names and language options as “concepts” and
performed “concept mapping” which reduced the expanded
ASR recognition output to their unique name and language
equivalents. When reporting the system results we report on
“concept” accuracies unless otherwise stated.

IV. EXPERIMENTS

A. Training data combinations and cepstral normalization

In addition to the English sub-corpora of the Lwazi, AST
and NCHLT corpora, different combinations of the various
corpora were used as training data. We defined the data
combinations as follows:

1) Lwazi English + Langs: Training data pooled from the
English sub-corpus of Lwazi and all language prompts
from the remaining 10 language-specific corpora.

2) Lwazi English + Langs + AST: Training data pooled
from (1) and the five AST English dialects.

3) Lwazi English + Langs + NCHLT: NCHLT English sub-
corpus added to (1).

4) Lwazi English + Langs then AST: (1) was used to train
single mixture tied-state HMMs. Then, the five AST
English dialects data was added to the training data and
used during mixture incrementing.

5) Lwazi English + Langs then NCHLT: Similar to (4)
except that the NCHLT English sub-corpus was used
instead of the AST data.

The four different options for channel normalization de-
scribed in Section III-D (“No CMN”, “Global CMN”, “HTK
CMN” and “ATK CMN”) were tested in combination with each
of these training sets.

B. Semi-tied versus Constrained MLLR

HMM-based large vocabulary ASR systems generally use
diagonal covariance matrices to reduce the number of model
parameters. Full covariances matrices, however, are able to
model the non-Gaussian nature of data which could potentially
provide an increase in accuracy. Semi-tied transformations
[14] transform diagonal matrices into full covariance matri-
ces but instead of estimating state-specific transformations,
estimate class-specific transforms. These classes are usually
defined by a regression class tree which groups similar HMM
states together [13]. In this way the parameter count may be
kept relatively low which prevents excessive recognition times.
The semi-tied transform is defined as:

ΣΣΣ(m) = HHH(r)ΣΣΣ
(m)
diagHHH

(r)T , (2)

where ΣΣΣ(m) is the component-specific diagonal covariance
matrix and HHH(r) is the class-specific semi-tied transform.
Unfortunately, ATK does not implement semi-tied transforms
but does support constrained maximum likelihood linear re-
gression (CMLLR) transforms [15], [13]. Constrained MLLR
is typically used for speaker and channel adaptation and per-
forms the adaptation by transforming the mean and covariance
components in the HMM set. If one compares the semi-tied
and the CMLLR transforms, the forms are quite similar. The
CMLLR transform is defined as:

µ̂µµ(m) = HHH(r)µµµ(m) + b(r)b(r)b(r), Σ̂ΣΣ
(m)

= HHH(r)ΣΣΣ
(m)
diagHHH

(r)T , (3)

where µ̂µµ(m) and Σ̂ΣΣ
(m)

are the transformed component-specific
mean and covariance matrices, µµµ(m) and ΣΣΣ(m) are the original
component-specific mean and covariance matrices and HHH(r)

and bbb(r) are the class-specific CMLLR transforms.
Both methods iteratively solve for the transform parameters

by optimising a modified Expectation-Maximization auxiliary
function. The auxiliary functions, found in [14] and [13],
highlight the differences in the equations which change the
iterative optimisation equations. As a final experiment we
wanted to determine whether CMLLR transforms could per-
form comparably to semi-tied transforms.



System B
# Correct # Incorrect

System A # Correct w x
# Incorrect y z

TABLE II
A 2X2 CONTINGENCY TABLE USED IN A MCNEMAR’S TEST.

C. McNemar’s Test

McNemar’s test can be used to establish whether the differ-
ences in error-rates, produced by two systems, are statistically
significant [16]. This test requires that the errors produced
by the system are independent events and in terms of speech
recongition, can be used to test isolated-word recognition
results [16]. The first step in performing a McNemar’s test
is to create a 2x2 contingency table as shown in Table II.

From this, we define the null and alternative hypotheses as,

H0 : px = py

H1 : px 6= py

The test statistic is a one degree of freedom chi-squared
distribution (χ2) with Yates’s correction for continuity [17]
and is given by,

χ2 =
(| x− y | −0.5)2

x+ y
. (4)

The null hypothesis can be rejected or accepted by calculat-
ing the two-sided P-value of the χ2 distribution and comparing
it to standard significance levels of 0.05, 0.01 or 0.001.

V. RESULTS AND DISCUSSION

In this section we present results on various training data
combinations and cepstral normalization techniques which
were used to perform acoustic model optimisations for the
AutoSecretary system. We also show results around our hy-
pothesis that CMLLR can be used as an approximate replace-
ment for semi-tied transforms. Throughout this section the
tables show concept accuracies (refer to Section III-F for a
description) unless otherwise stated. Training data combina-
tions and their labels are detailed in Section IV-A and cepstral
normalization techniques are described in Section III-D.

A. Training data combinations and cepstral normalization

Table III shows language and name concept accuracies for
different training data combinations, various training schemes
and cepstral normalization techniques. Focusing on the cep-
stral normalization techniques (compare results within rows)
we can see that some normalization methods produced sur-
prising results. The “HTK CMN” produced the worst results
which indicates that for this type of application utterance-
based normalization is not ideal. This may be due to the
short testing utterances which are often less than a second
in duration and long-term biases are not estimated properly.

The “No CMN” and “Global CMN” results are quite similar
which indicates that “Global CMN” did not perform effective
normalization. In the majority of cases (except for language

experiments using “Lwazi Eng + Langs” and “Lwazi Eng +
Langs then NCHLT” data combinations) the ATK normaliza-
tion proved to be the best cepstral normalization approach.
The “ATK CMN” normalization method begins with the same
initial mean cepstral vector as the “Global CMN” normal-
ization but adapts the mean cepstral vector as it progresses
through the utterance and only updates on speech frames. This
selective adaptation seems to provide a good normalization
mechanism. Previously it was observed by Modipa et. al. that
there was a large discrepancy between the off-line and online
ASR accuracies. A possible cause could be the differences in
HTK and ATK cepstral normalization procedures.

Turning to the language recognition results and considering
only our best normalization method (compare results within
the ATK CMN column), we see that adding the Lwazi language
prompts gave quite a large boost in performance, which
was to be expected. Surprisingly, the AST and NCHLT only
experiments produce rather poor results. In the case of NCHLT,
this may be put down to a channel mismatch as the NCHLT
corpus contains high-bandwidth audio data. More investigation
is needed to establish why the AST data performed so badly.
Combining data (“Lwazi Eng + Langs + AST”, “Lwazi Eng +
Langs + NCHLT”) resulted in a slight increase in performance
when adding the AST data but did not achieve any increase
in accuracy when adding the NCHLT data. Training a system
on the “Lwazi English + Langs” then adding AST for mixture
incrementing produced the best results. It is interesting that
state-tying on the smaller “Lwazi English + Langs” corpus
resulted in an increase in performance. Further investigation
is needed to determine why state-tying on a smaller corpus
produced such an increase and to establish whether such a
gain would be seen if the testing vocabulary was much larger.
The last experiment, where NCHLT was used for mixture
incrementing manage to achieve a slight increase in accuracy.

For name recognition (compare results within the ATK
CMN column), the AST data and combinations with the AST
data produced the top results with the “Lwazi Eng + Langs
then AST” producing the best names recognition performance.
The “Lwazi Eng + Langs then NCHLT” produced the best
result out of the non-AST experiments but other NCHLT
combinations performed marginally better or worse than the
“Lwazi Eng + Langs” data combination.

B. Semi-tied versus CMLLR

In Section IV-B we speculated if it were possible to use
CMLLR as a semi-tied replacement since ATK does not
support semi-tied transformations. Table IV shows name and
language concept recognition accuracies for various training
data combinations and using either no, semi-tied or CMLLR
transformation. ATK cepstral normalization was used for all
the experiments.

If one compares the semi-tied and CMLLR columns of
Table IV, for both language and name recognition results,
we can see that the semi-tied approach outperforms CMLLR
technique in the vast majority of the experiments (12 out of



No CMN HTK CMN Global CMN ATK CMN
Lwazi Eng 85.33 / 78.72 60.88 / 70.14 85.33 / 78.92 87.13 / 83.18

Lwazi Eng + Langs 93.11 / 80.27 68.66 / 75.88 93.01 / 80.27 92.81 / 84.19
AST 58.78 / 60.14 64.57 / 72.70 60.58 / 60.07 75.25 / 77.43

NCHLT 79.84 / 78.85 67.07 / 74.73 79.54 / 78.65 80.44 / 81.28
Lwazi Eng + Langs + AST 90.12 / 77.84 69.36 / 77.64 89.52 / 77.77 93.71 / 87.91

Lwazi Eng + Langs + NCHLT 89.92 / 82.36 73.35 / 78.85 90.82 / 82.16 92.81 / 84.46
Lwazi Eng + Langs then AST 86.53 / 90.27 75.85 / 84.80 85.83 / 89.93 95.11 / 93.31

Lwazi Eng + Langs then NCHLT 91.82 / 87.70 77.84 / 83.92 92.22 / 87.70 91.92 / 89.46

TABLE III
Language AND Name CONCEPT ACCURACIES (%) FOR VARIOUS TRAINING DATA COMBINATIONS AND CEPSTRAL NORMALISATION TECHNIQUES. THE

RESULTS ARE PRESENT IN PAIRS - LANGUAGE ACCURACY % / NAME ACCURACY %.

None Semi-tied CMLLR
Lwazi Eng 87.13 / 83.18 86.43 / 83.65 85.83 / 81.82

Lwazi Eng + Langs 92.81 / 84.19 93.21 / 84.26 92.81 / 83.72
AST 75.25 / 77.43 78.64 / 81.42 78.54 / 78.78

NCHLT 80.44 / 81.28 78.34 / 81.28 80.64 / 79.19
Lwazi Eng + Langs + AST 93.71 / 87.91 93.01 / 89.32 94.01 / 87.23

Lwazi Eng + Langs + NCHLT 92.81 / 84.46 93.71 / 84.32 93.51 / 83.31
Lwazi Eng + Langs then AST 95.11 / 93.31 93.71 / 94.32 94.91 / 93.65

Lwazi Eng + Langs then NCHLT 91.92 / 89.46 91.22 / 89.46 91.32 / 88.85

TABLE IV
Language AND Name CONCEPT ACCURACIES (%) FOR VARIOUS TRAINING DATA COMBINATIONS AND SEMI-TIED AND CMLLR TRANSFORMATION

TECHNIQUES. THE RESULTS ARE PRESENT IN PAIRS - LANGUAGE ACCURACY % / NAME ACCURACY %.

16), however, the differences in accuracies are relatively small.
To investigate whether there was any significant difference
between the semi-tied and CMLLR results, McNemar’s test
was used to analyse the recognition outputs. Refering to the
fourth column of Table V, we can see that only the “Lwazi
Eng”, “AST” and “Lwazi Eng + Langs + AST” experiments
produced a significant difference in the results, if one chooses
a significance level of 0.05. At a stricter significance level,
0.001, all the null hypothesis would be accepted, which
implies that the semi-tied and CMLLR are quite similar.

Comparing the McNemar’s test P-values, calculated be-
tween semi-tied and no transform (column two Table V) and
CMLLR and no-transform (column three Table V), we can see
that only a few experiments produced a significant difference
between the results. These are semi-tied and CMLLR “AST”
experiments, CMLLR “Lwazi Eng” experiment and CMLLR
“NCHLT” experiment. The remaining results (12 of 16) allow
us to accept the null hypothesis and conclude, for these
experiments, that using semi-tied or CMLLR transforms does
not produce a significant increase or decrease in accuracy, as
compared to a ASR system that does not implement these
transforms.

To investigate further we performed a few experiments with
the Timit and NTimit corpora. The results are presented in
Table VI and indicate word accuracies in percent. The standard
ASR system was developed (see Section III-E) and a flat
recognition grammar was used which only contained words
from the testing vocabulary. ATK cepstral normalization was
utilized.

The results in Table VI show that semi-tied transforms pro-
vide an increase in accuracy for within corpus experiments but

Training Corpus Testing Corpus
Timit NTimit

Timit with semi-tied 60 10.11
Timit 56.60 19.44

NTimit with semi-tied 16.92 46.50
NTimit 23.38 43.46

TABLE VI
WORD ACCURACIES (%) WHEN BASELINE AND SEMI-TIED TRANSFORMS

SYSTEM ON THE Timit-NTimit CORPORA.

for cross-corpus experiments applying semi-tied transforms
reduced the ASR accuracy. The semi-tied transforms seem to
amplify the data mismatch and thus decrease performance.
This might explain why semi-tied transforms did not produce
an average gain in performance for the AutoSecretary ASR
models since there are slight mismatches between the training
and testing environments which were amplified by the trans-
form.

VI. CONCLUSION AND FUTURE WORK

The paper presented work aimed at optimising acoustic
models for the AutoSecretary call routing system. The op-
timised acoustic models were developed by:
• creating a modified South African English phone set and

an appropriate pronunciation dictionary,
• investigating various cepstral normalization techniques,
• experimenting with three South African corpora and

training data combinations, and,
• applying model-space transformations.
The pronunciation dictionary contained a simplified South

African English phone set which was used to robustly repre-
sent the acoustic sounds found in the South African multilin-



None & Semi-tied None & CMLLR Semit-tied & CMLLR
Lwazi Eng 1.00000 0.00626 0.01383

Lwazi Eng + Langs 0.71830 0.52480 0.28980
AST 1.2e-08 0.00017 0.00347

NCHLT 0.19390 0.02830 0.62410
Lwazi Eng + Langs + AST 0.21100 0.50500 0.04658

Lwazi Eng + Langs + NCHLT 0.60010 0.38650 0.16210
Lwazi Eng + Langs then AST 1.00000 0.82200 0.90350

Lwazi Eng + Langs then NCHLT 0.59440 0.15520 0.51570

TABLE V
P-values CALCULATED USING MCNEMAR’S TEST, FOR VARIOUS TRANSFORMATION COMBINATIONS (NONE, SEMI-TIED AND CMLLR).

gual acoustic space. Each name and language entry contained
multiple pronunciation variants to cope with the variability
found in proper name pronunciation. For future work an inves-
tigation into automatically generating proper name pronuncia-
tions and variants should be performed to reduce the amount of
manual intervention required during dictionary development.
An automatic pronunciation-prediction method will also help
to rapidly customize the AutoSecretary application.

The choice of cepstral normalization technique is important
since the approach used to normalize the training and testing
data does affect the results produced by the ASR system, as
was shown by the results captured in Section V-A. The ATK
normalization method proved to be the best approach while the
generally used utterance-based normalized performed poorly.

Our data combination experiments showed that the best
training corpus was a combination of “Lwazi English, Lwazi
language prompts and AST”. Specifically, by developing a
tied-state ASR system on the Lwazi English and Lwazi
language prompts, then adding the AST data for mixture
incrementing we managed to achieve a language recogni-
tion accuracy of 95.11% and a name recognition accuracy
of 93.31% on an independent test corpus. These optimised
acoustic models should:
• with high accuracy be able to detect a spoken South

African language name which the system can use to route
a caller based on language preference, and,

• accurately recognize new names provided that an ad-
equate number of accurate pronunciations and relevant
variants are included in the pronunciation dictionary.

Surprisingly, the larger NCHLT corpus did not provide
substantial gains in accuracy and in some cases no gains were
achieved. The most likely explanation is that the data mismatch
hindered its effectiveness due to the corpus containing high-
bandwidth recordings instead of telephony recordings which
make up the AST corpus.

In Section IV-B we postulated that CMLLR could be used
as an approximate replacement for semi-tied transforms. Our
results in Section V-B showed that overall the accuracies
produced by both methods are quite similar and only three
experiments showed statistical significant results. Furthermore,
when comparing the results between systems that did not
implement semi-tied or CMLLR trasforms, to those that did,
the vast majority of experiments failed to produce statistcally
significant improvements.

Our results indicated that although semi-tied transforms can
increase the ASR system performance when the training and
testing data are relatively matched, care should be taken when
applying the transform when there is a data mismatch as this
could degrade the system performance.
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