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Abstract—A circular loop antenna is often numerically 

modeled using a regular polygon. This approach is simple and 
robust, yet it alters the circumference of the loop and may thus 
shifts the resonance frequency in the numerical model. This paper 
introduces a simple analytical formula for predicting and relating 
the accuracy of resonance frequency determination to the number 
of segments used. The result of testing on commercial software 
WIPL-D showed excellent match between the prediction and 
numerically derived results. It is expected that the approach can 
be extended onto other structures with curvatures. 
 

Index Terms—Approximation error, electromagnetic 
modeling, helical antennas, loop antennas, mesh generation, 
numerical analysis, numerical models, piecewise linear 
approximation, resonance, thin wire approximation, wire 
modeling.  
 

I. INTRODUCTION 

ANY  antenna types are based on or include curved 
elements or structures, and much work has been 

dedicated to related modeling [1]-[7]. Examples of such 
antennas include loop and spiral antennas. Modeling of these 
two types of antennas can be done theoretically [7], as well as 
numerically [1]-[5], frequently using a piecewise linear (PWL) 
approximation of the actual geometry [8]. Solving more 
complex geometries normally relies on a purely numerical 
solution, also based on PWL approximation of the geometry, 
an approach used in the majority of commercial software for 
computational electromagnetic modeling. The density of the 
mesh and positioning of its nodes define the accuracy of 
representing the geometry. Usually, a higher density of mesh 
produces a higher accuracy and better conditioning of the 
numerical solution [8], [9]. The required density of the mesh is 
typically determined based on experience, or automatically, in 
an iterative manner, observing convergence of the solution. 
The position of nodes in a complex model is determined in the 
same way. Such an approach is universal yet suboptimal, due 
to wasted iterations. It is desirable to be able to minimize the 
number of convergence iterations without setting the accuracy 
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of the model to an unnecessarily high level. 
This paper uses a thin wire model of a circular loop antenna 

to establish a relationship connecting the density of mesh to 
the accuracy of the solution, more specifically to the resonance 
frequency of the loop. For simplicity, it is assumed that the 
nodes are positioned equidistantly, at the corners of a regular 
polygon drawn into the circle, as illustrated in Fig. 1.  
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Fig. 1. Geometrical approximation of a circular loop with a regular polygon. 
Several polygons with four, five and twelve sides are shown as drawn into the 
circle. The notations in the figure are: r is the circle radius, α is the opening 
angle of a sector with arc length s, and area A, and sp is the length of the base 
of an equilateral triangle fitted into the sector. 

 
The paper is organized as follows. Section II describes the 

model, assumptions and methodology. The approximation 
roughness and computation error are analyzed in Section III. 
The results are then validated in Section IV. 

II.  METHOD AND MODEL 

A circular loop antenna may be modeled using straight wire 
segments, i.e. under a piecewise linear (PWL) geometrical 
approximation, used to generate a regular polygon. Herein, the 
polygon is assumed to be drawn into the circle.  

The derivations made below consider a loop antenna made 
of thin perfectly conducting wire situated in free space. Taking 
into account the high frequency of an application, it is also 
assumed that the circumference of the wire in the loop plays a 
more significant role in the error than the area of this loop.  

Fig. 1 shows a set of sample regular n-corner polygons 
drawn into a circle representing a loop antenna. Assuming that 
the polygon’s centre is at the origin, the coordinates of its 
vertices may, for example, be calculated as 
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 where k=0,1,...n-1, (1) 

 
where r is the radius of the circle/loop, φk is angular coordinate 
of the k-th vertex, and xk and yk are the respective rectangular 
coordinates. 

The first resonant frequency f1 for a circular loop antenna 
may be derived, approximately [7], using  
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 where c is the speed of light in medium, and Cc is the 
circumference of the circular loop. In numerical models using 
a polygon instead of a circle, a straightforward use of the 
approximation (2) with the polygon drawn into the circle, will 
lead to a shift in the resonant frequency computed from the 
numerical model. This occurs due to a decrease in the 
perimeter for the approximating polygon compared to the 
circumference of the original circle. Table 1 based on [10], 
shows a comparison of the main geometrical parameters of a 
circle and an equivalent regular n-corner polygon. 
 
Table 1. Expressions for the parameters of a circle with radius r, compared 
against the expressions for respective parameters of a regular n-corner 
polygon with outer radius r. Fig 1 illustrates some of the parameters.  

Geometry,  Parameter Circle 
Regular polygon with n 

corners 
Length of an arc (s) / 
polygon side with opening 
angle α (sp) 

S = αr sp = 2r sin(α/2) 

Circumference (Cc) / 
perimeter (Cp) 

Cc = 2πr Cp = n sp = 2 n r sin(α/2) 

 
It is possible to minimize this shift in the resonance 

frequency, by a slight increase in the outer diameter or radius 
of the approximating polygon in the numerical model. In order 
to find how much of increase is necessary, the circle’s 
circumference can be set equal to the perimeter of the regular 
polygon (the subscript p is used to denote quantities related to 
the polygon): 

                  ( ) ( ).)sin(22 2
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This gives the desired equivalent radius of the polygon rp 
(the one giving a more accurate estimate for the resonance 
frequency), as a function of the radius of the loop antenna r: 
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In the last expression, the factor Fp was introduced to 
signify the relative difference in the radius of a circle and the 
outer radius of a regular polygon. The expression for the factor 
Fp can be written as 
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where α is the opening angle for a side of the polygon. 

Numerically, the value of Fp starts from approximately 1.21 
for n=3 and, as the quality of the geometrical approximation 
increases with n, it asymptotically approaches unity, as n-2. 

At lower frequencies, where the loop area dependent 
magnetic interactions may dominate, similar derivations can be 
made, starting with equating the areas instead of circumference 
and perimeter. It can then be found that the radius correction 
factor for area for n=3 is about 1.56, and so the error in 
applying the expressions derived in the following section at the 
below-resonance frequencies could be as much as 
1.56/1.21=1.3 times larger. 

III.   ERROR DUE TO PWL APPROXIMATION OF GEOMETRY 

It is also possible to evaluate the relative error in the 
resonance frequency of a loop antenna. This error may be 
defined as: 
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where fc is the resonance frequency of a circular loop given by 
(2), and fp is the resonance frequency of a respective  
polygonal loop defined similarly, via the perimeter of the 
polygon Cp: fp = c/Cp. Hereinafter, the resonance frequency of 
the loop is assumed to be defined by its perimeter only, i.e. the 
phase velocity of a wave travelling around the loop periphery 
is assumed to be independent of the geometrical properties of 
the periphery, including the radius of curvature. Using (5) and 
Table 1, the expression for the relative error (6) may then be 
expressed through the factor Fp: 
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In order to obtain the minimum number of required 
segments, n, from the prescribed accuracy of solution ε, one 
would need to solve this transcendent equation. Solving a 
transcendent equation might be inconvenient. Instead, it is 
possible to obtain a simple approximate solution. The 
expression (6) can be expanded asymptotically for large n by 
using Taylor’s series expansion with parameter 1/n. Keeping 
only the first two terms in the expansion of the sine function 
results in the asymptotic estimate given by 
 

                         ( ) .1,
!3 22

2

>>
−

≅ n
n π
πε  (7) 



AWPL-07-12-0767.R1 3

Thus, in order to achieve the relative frequency error below 
ε, the number of segments in a polygonal loop must be equal 
to or greater than the nearest higher integer of  
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The exact (6) and asymptotic (8) forms may be used to 

estimate the required quality of geometrical approximation 
based on the desired accuracy in the resonance frequency. To 
keep the same level of accuracy for frequencies different to the 
first resonance frequency, the π in right hand side in (9) will 
need to be additionally factored with the ratio of the required 
frequency to the first resonance frequency, increasing the 
number of wire segments used in proportion to the frequency. 

IV.  NUMERICAL VALIDATION  

The expressions (7) and (9) have been applied to a 
polygonal loop antenna modeled using various number of wire 
segments. To compare these results against a numerical model, 
the resonance frequency error was also obtained from the input 
reactance data computed using WIPL-D [8] applied to a 
circular loop antenna modeled with a regular polygon having 
the number of sides varying from 3 to 39, and made of thin 
wire with radius 1.64⋅10-3

λ. The number 39 was chosen to 
preserve the thin wire approximation [8]. The accuracy level 
for impedance matrix elements calculation was set to 
maximum (level 10) to minimize the unrelated effects. The 
degree of current-approximating-polynomial was set to 
automatic. Sample WIPL-D model geometries are shown in 
Fig. 2.  
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Fig. 2. Samples WIPL-D models: two regular polygons with 5 sides, modeled 
using (a) 1 sub-division of each side into two segments and (b) 2 sub-
divisions (into 3 segments). 

 
The resonance frequency, defined as the frequency 

corresponding to the point of zero input reactance, was then 
extracted from each WIPL-D model and compared against the 
most accurate WIPL-D model computed with 39 segments.  

The results are shown in Fig. 3. The theoretical curves run 
very close to and in parallel to the numerical estimations, 
indicating an excellent match of the theoretical solution 
derived. The figure also demonstrates that (i) the expression 
(9) is very close to its more accurate counterpart (7), even for 
the lowest practical n=3, and that (ii) multiplying the π in the 
right hand side of (9) by an empirically determined factor of 
about 1.1 can match the theoretical and numerical results even 
better. In terms of the predictions, it may be also important to 
factor in the influence of the current-approximating function, 

which, as may be seen from Fig. 3, may require an additional 
factor with value of up to 1.4. 

There are also some artifacts visible in Fig. 3: (a) the 
crossing of the theoretical and numerical solutions around 
n=20 was found to be due to the use of the reference resonance 
frequency determined from a solution of limited accuracy 
(n=39); (b) the different behavior of the “0 sub-divisions” 
curve is due to the change of the current-approximating 
polynomial from the 2nd to 1st degree, triggered by the 
WIPL-D’s automatic routines, and effected from n=7. 
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Fig. 3. Error in determining the first resonance frequency of a circular loop 
antenna modeled with a regular polygon of n sides/corners, using formulas (7) 
and (9), and WIPL-D. The latter computed results for different number of 
sub-divisions per the side of a polygon to illustrate numerical convergence, 
e.g. “0 sub-div.” means that only 1 wire was used to connect the corners. 

V. CONCLUSION 

A geometrical approximation of a circular loop antenna by a 
regular polygon, suitable in numerical modeling, has been 
considered. The error in determining the first resonance 
frequency of the loop antenna made of thin wire was used to 
derive the relationship between the accuracy of the resonance 
frequency and the number of polygon corners required to 
obtain such accuracy. 

The estimations derived are expected to be also valid for 
other wire antennas with curvatures, such as helical antennas, 
spiral antennas (per radiating region’s radius) and surface 
based elements including higher modes on plates, as long as 
the other dimensions of the curvature are negligible.  
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