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On Equivalent Radius of Curvature for PWL
Geometrical Modeling of a Loop Antenna

Albert A. Lysko,Senior Member, IEEE

Abstract—A circular loop antenna is often numerically
modeled using a regular polygon. This approach isiraple and
robust, yet it alters the circumference of the loopand may thus
shifts the resonance frequency in the numerical mad. This paper
introduces a simple analytical formula for predicting and relating
the accuracy of resonance frequency determinatiorotthe number
of segments used. The result of testing on commeatisoftware
WIPL-D showed excellent match between the predictio and
numerically derived results. It is expected that tle approach can
be extended onto other structures with curvatures.

Index  Terms—Approximation  error,  electromagnetic
modeling, helical antennas, loop antennas, mesh geation,

numerical analysis, numerical models, piecewise kar
approximation, resonance, thin wire approximation, wire
modeling.

I. INTRODUCTION

ANY antenna types are based on or include curved
elements or structures, and much work has bee

dedicated to related modeling [1]-[7]. Examples sfch
antennas include loop and spiral antennas. Modelfrifpese
two types of antennas can be done theoreticallyd§well as
numerically [1]-[5], frequently using a piecewisadar (PWL)
approximation of the actual geometry [8]. Solvingorm
complex geometries normally relies on a purely micaé
solution, also based on PWL approximation of thengetry,
an approach used in the majority of commercialvgie for
computational electromagnetic modeling. The densitythe
mesh and positioning of its nodes define the aoyumaf
representing the geometry. Usually, a higher dernditmesh
produces a higher accuracy and better conditiomihghe
numerical solution [8], [9]. The required densifytloee mesh is
typically determined based on experience, or autically, in
an iterative manner, observing convergence of tiatien.
The position of nodes in a complex model is deteediin the
same way. Such an approach is universal yet subaptdue
to wasted iterations. It is desirable to be ablentnimize the
number of convergence iterations without settirgydbcuracy
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of the model to an unnecessarily high level.

This paper uses a thin wire model of a circulaplaotenna
to establish a relationship connecting the densitynesh to
the accuracy of the solution, more specificallytte resonance
frequency of the loop. For simplicity, it is assuiiat the
nodes are positioned equidistantly, at the coroéms regular
polygon drawn into the circle, as illustrated ig.FL.

circle
4 sides
—<— 5sides
—— 12 sides

Pg. 1. Geometrical approximation of a circulargoeith a regular polygon.
Several polygons with four, five and twelve sides shown as drawn into the
circle. The notations in the figure areis the circle radiusy is the opening
angle of a sector with arc lengthand area, ands; is the length of the base
of an equilateral triangle fitted into the sector.

The paper is organized as follows. Section Il dbssrthe
model, assumptions and methodology. The approxamati
roughness and computation error are analyzed itidBekl.
The results are then validated in Section IV.

II. METHOD AND MODEL

A circular loop antenna may be modeled using dttaigre
segments, i.e. under a piecewise linear (PWL) gé&icae
approximation, used to generate a regular polybi@nein, the
polygon is assumed to be draimto the circle.

The derivations made below consider a loop antenade
of thin perfectly conducting wire situated in fregace. Taking
into account the high frequency of an applicatitris also
assumed that the circumference of the wire in dlog Iplays a
more significant role in the error than the areshaf loop.

Fig. 1 shows a set of sample regutacorner polygons
drawn into a circle representing a loop antennaufsng that
the polygon’s centre is at the origin, the coortBsaof its
vertices may, for example, be calculated as
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@, =27K/n,
X, =r cos(d,), wherek=0,1,..n-1,

(1)
Yk =rsin(g,),

wherer is the radius of the circle/loop, is angular coordinate
of thek-th vertex, and andyy are the respective rectangular
coordinates.

The first resonant frequendy for a circular loop antenna
may be derived, approximately [7], using

c
27

, (2)

f Ci
where ¢ is the speed of light in medium, ar@. is the
circumference of the circular loop. In nhumericaldats using
a polygon instead of a circle, a straightforwareé wf the
approximation (2) with the polygon drawn into thecke, will

lead to a shift in the resonant frequency comptteth the
numerical model.
perimeter for the approximating polygon comparedthie
circumference of the original circle. Table 1 based[10],
shows a comparison of the main geometrical parasetea
circle and an equivalent regulaicorner polygon.

Table 1. Expressions for the parameters of a cisife radiusr, compared
against the expressions for respective parametéra oegular n-corner
polygon with outer radius. Fig 1 illustrates some of the parameters.

Geometry, Parameter Circle Regular polygon withn
corners

Length of an arc § /

polygon side with opening S=ar S = 2 sin(@/2)

anglea (S)

Circumference / -

perimeter Cy) « Cc=2tr | Co=ng=2nrsin(a2)

It is possible to minimize this shift in the resona
frequency, by a slight increase in the outer di@met radius
of the approximating polygon in the numerical modelorder
to find how much of increase is necessary, thelesc
circumference can be set equal to the perimeténeofegular
polygon (the subscripfis used to denote quantities related
the polygon):

(CC = 277r): (Cp =n2r, sin(%)). . (2)

This gives the desiredquivalent radiusof the polygonr,
(the one giving a more accurate estimate for trewmance
frequency), as a function of the radius of the laopenna:

n

— =T :

nsin(%) P
In the last expression, the factéy, was introduced to

signify the relative difference in the radius otiecle and the

outer radius of a regular polygon. The expressioritfe factor
Fp can be written as

®3)

Mo

This occurs due to a decreasehe t

n n a/2

nsin(2Z™) nsin(Z) nsin(a/2)

whereqa is the opening angle for a side of the polygon.

Numerically, the value of, starts from approximately 1.21
for n=3 and, as the quality of the geometrical approkioma
increases witt, it asymptotically approaches unity, @

At lower frequencies, where the loop area dependent
magnetic interactions may dominate, similar deforet can be
made, starting with equating the areas insteadrafimference
and perimeter. It can then be found that the radarsection
factor for area forn=3 is about 1.56, and so the error in
applying the expressions derived in the followiegt®n at the
below-resonance frequencies could be as much as
1.56/1.21=1.3 times larger.

It is also possible to evaluate the relative erimorthe
resonance frequency of a loop antenna. This erray be
defined as:

ERROR DUE TOPWL APPROXIMATION OF GEOMETRY

, (5)

wheref, is the resonance frequency of a circular loop e

(2), and f, is the resonance frequency of a respective
polygonal loop defined similarly, via the perimetef the
polygonC,: f, = c/C,. Hereinafter, the resonance frequency of
the loop is assumed to be defined by its perimatéy, i.e. the
phase velocity of a wave travelling around the Ipepiphery

is assumed to be independent of the geometricglepties of
the periphery, including the radius of curvatursirg (5) and
Table 1, the expression for the relative errorr®@y then be
expressed through the factey:

S_C/CP—C/CC /n

=F -1=
c/C, P sin(7/n)

sin(n/n): 1
Tin l+e

-1, or

(6)

In order to obtain the minimum number of required
segmentsn, from the prescribed accuracy of solutignone
would need to solve this transcendent equationvispla
transcendent equation might be inconvenient. ldstéais
possible to obtain a simple approximate solutiorhe T
expression (6) can be expanded asymptoticallydageln by
using Taylor's series expansion with parameter. Keeping
only the first two terms in the expansion of theesfunction
results in the asymptotic estimate given by

2

. 7
(3)n? - 7 @

ed , n>>1.
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Thus, in order to achieve the relative frequencgrelbelow
& the number of segments in a polygonal loop maesedual
to or greater than the nearest higher integer of

N, = max 3,”\/17+1 , valid fore<< 1 (8)
£ \/g c

The exact (6) and asymptotic (8) forms may be used
estimate the required quality of geometrical appnation
based on the desired accuracy in the resonanceefiey. To
keep the same level of accuracy for frequencideréift to the
first resonance frequency, thein right hand side in (9) will
need to be additionally factored with the ratiotled required
frequency to the first resonance frequency, inéngashe
number of wire segments used in proportion to teguency.

IV. NUMERICAL VALIDATION

The expressions (7) and (9) have been applied to
polygonal loop antenna modeled using various nurobaire
segments. To compare these results against a rahnerodel,
the resonance frequency error was also obtained thhe input
reactance data computed using WIPL-D [8] appliedato
circular loop antenna modeled with a regular potygaving
the number of sides varying from 3 to 39, and maféin

wire with radius 1.640°%.. The number 39 was chosen to

preserve the thin wire approximation [8]. The aecyrlevel

for impedance matrix elements calculation was set t

maximum (level 10) to minimize the unrelated effecthe
degree of current-approximating-polynomial was det
automatic. Sample WIPL-D model geometries are shown
Fig. 2.

(@) (b) T
Fig. 2. Samples WIPL-D models: two regular polygerith 5 sides, modeled
using (a) 1 sub-division of each side into two segta and (b) 2 sub-
divisions (into 3 segments).

The
corresponding to the point of zero input reactaneas then
extracted from each WIPL-D model and compared agdime
most accurate WIPL-D model computed with 39 segment

The results are shown in Fig. 3. The theoreticavesi run
very close to and in parallel to the numerical mations,
indicating an excellent match of the theoreticaluson
derived. The figure also demonstrates that (i) dkpression
(9) is very close to its more accurate counterf@rteven for
the lowest practicah=3, and that (ii) multiplying the in the
right hand side of (9) by an empirically determirfadtor of
about 1.1 can match the theoretical and numer&sllts even
better. In terms of the predictions, it may be amportant to
factor in the influence of the current-approximgtifunction,

resonance frequency, defined as the frequency

which, as may be seen from Fig. 3, may requiredatitianal
factor with value of up to 1.4.

There are also some artifacts visible in Fig. 3 ffze
crossing of the theoretical and numerical soluti@meund
n=20 was found to be due to the use of the referesgmnance
frequency determined from a solution of limited wecy
(n=39); (b) the different behavior of the “0 sub-dians”
curve is due to the change of the current-apprakima
polynomial from the %' to 1% degree, triggered by the
WIPL-D’s automatic routines, and effected from7.

=
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Fig. 3. Error in determining the first resonancegfrency of a circular loop

antenna modeled with a regular polygomaides/corners, using formulas (7)

and (9), and WIPL-D. The latter computed results didferent number of

sub-divisions per the side of a polygon to illustraumerical convergence,

I I I
14 16 18 20

e.g. “0 sub-div.” means that only 1 wire was useddnnect the corners.

V. CONCLUSION

A geometrical approximation of a circular loop amta by a
regular polygon, suitable in numerical modelings Haeen
considered. The error in determining the first reswe
frequency of the loop antenna made of thin wire wsead to
derive the relationship between the accuracy ofréisenance
frequency and the number of polygon corners reduie
obtain such accuracy.

The estimations derived are expected to be alsd Yait
other wire antennas with curvatures, such as Heliggennas,
spiral antennas (per radiating region’s radius) andface
based elements including higher modes on platefyrasas
the other dimensions of the curvature are neghygibl
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