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ABSTRACT

Grass quality and quantity information plays a crucial role in understanding the distribution,
densities and population dynamics of herbivores (i.e. livestock and wildlife). Leaf nitrogen (N) and
biomass (g/ m?) are indicators of grass quality and grass quantity, respectively. The objective of the
study is to estimate and map leaf N and biomass as an indicator of rangeland quality and quantity
using vegetation indices derived from one RapidEye image taken at peak productivity. The study was
undertaken in the north-eastern part of South Africa, in a transect extending from protected areas
such as Kruger National Park and a privately owned game reserve to the communal areas of
Bushbuckridge. Field work was undertaken to collect data on biomass and grass samples for
retrieving leaf N, in April 2010, same time with image acquisition. RapidEye image was
atmospherically corrected using atmospheric correction software for flat surfaces (ATCOR 2).
Environmental or ancillary data sets were also collected from various sources as to develop an
integrated modeling approach with the remotely-sensed indices. Commonly used vegetation index
such as simple ratio was used exploiting a new red-edge band embedded in the RapidEye sensor.
Leaf N regression models were developed using simple regression. Biomass (g/m?) prediction models
were developed by applying bootstrapped stepwise regression using a combination of vegetation
index and environmental or ancillary variables. Simple ratio (SR54) based on red-edge band produced
higher grass N estimation accuracy. For the biomass estimation, vegetation indices produced poor
results explaining less than 15% of variation. Biomass estimation was significantly improved to 27%
of explained biomass variation by integrating vegetation index (SR54) and ancillary data. The latter
approach is crucial because biomass is influenced by various environmental variables, which
therefore play a crucial role in model development. The study demonstrated a potential of forage
quantity and quality estimation using new high spatial remote sensing data with the red edge band.
Integrating vegetation indices and ancillary data provides an opportunity to map grass biomass
during peak productivity. Forage quality and quantity information is crucial for planning and
management of grazing resources.



INTRODUCTION

Africa has a long history of pastoralism (livestock grazing) which has been a major source of
livelihoods. Most of African people used to be nomadic, i.e. seasonal movement in search of greener
pastures for their livestock. Even today, livestock production which is dependent on grass or pasture
quality and quantity is still a major source of income in the rural economy (Shackleton et al. 2002).
Pasture quality can be defined by leaf nutrient content (e.g. nitrogen-N), while quantity can be
defined by biomass (mass per unit area). Grass quality and quantity are pertinent to understanding
the distribution, feeding patterns and population dynamics of livestock and wildlife (Drent and Prins
1987; McNaughton 1988) and crucial to inform decision making regarding the planning and
management of savanna rangelands. Therefore, spatial information about grass quality and quantity
is needed to guide farmers, resource managers and land use planners in sustainable management of
their grazing land.

Estimation and mapping of grass nutrients and biomass have been successful using mostly
laboratory, field and imaging or airborne spectrometry or hyperspectral. The techniques for
estimating vegetation parameters using remote sensing fall into two categories;

. statistical or empirical analysis using vegetation indices (Haboudane et al. 2004), full
spectrum analysis (Ramoelo et al. 2011), specific absorption features (Knox et al. 2011), as
well as integrated modeling approach (remote sensing and environmental variables) (Knox et
al. 2011; Ramoelo et al. 2012)

° inversion of radiative transfer models (Darvishzadeh et al. 2008).

Grass nutrients have rarely been mapped at the regional scale because of the lack of satellite-
based sensors that sample reflected electromagnetic energy in the red-edge region which is sensitive
to foliar chlorophyll and nitrogen (N). Medium resolution satellites are also generally not suitable to
discriminate grass and tree signals in heterogeneous and patchy savannas. The emergence of high
resolution multispectral sensors with red-edge information such as RapidEye, SumbandilaSat, and
Sentinel-2 (to be launched 2013) provides new opportunities for rangeland quality and quantity
assessment at regional level. A challenge in estimating foliar biochemical concentrations, for example
N, using indices is the interaction effects between N and biomass (Skidmore et al. 2010). Studies
argue that if foliar biochemical estimation is not biomass corrected, then the interaction between N
and biomass is likely to compromise the estimation of N (Plummer 1988; Skidmore et al. 2010). The
solution to this challenge is to predict N during peak productivity (Skidmore et al. 2010), when
multispectral indices fail to estimate biomass because of saturation problems (Mutanga and
Skidmore 2004). Thus, another challenge is to improve on the estimation of biomass at peak
productivity as to be able to assess both the nutrient and biomass status from a single image. Few
studies have tested the applicability of the integrated modelling, i.e. the use of remote sensing and
environmental or ancillary variables (Knox et al. 2011; Ramoelo et al. 2012), to estimate foliar
biochemical concentrations or biomass. We hypothesized that the prediction of biomass could be
possible through the integration of indices and environmental variables at peak productivity. The
objectives of the study are twofold; (1) to estimate and map grass N using vegetation indices as an
indicator of rangeland quality and (2) to estimate and map biomass as indicator of rangeland
guantity by integrating remote sensing and ancillary variables.



MATERIALS AND METHODS

Study area and data collection

The study area is located in the north-east of South Africa and covers part of the Kruger National
Park (KNP), SabiSands and Bushbuckridge communal rangelands (Figure 1). Field work was
undertaken in April 2010, the same month than the acquisition of the RapidEye satellite image. The
areas along the main roads covering the study area were purposively selected for the field sampling,
also considering the underlying geological strata. The road sampling technique was preferred since
penetration into the savanna landscape was constrained by management and logistical restrictions.
Buffers of 300 m were created on both sides of these roads using ArcGIS software (ESRI, USA). Within
the buffer polygons random sample points were generated using the ArcGIS add-on called Hawth
tools. Once in the field location, 51 plots were placed in relatively large areas with homogeneous
grass to avoid the possible contamination of the tree signal on the grass signal. In each plot of 20m
x20 m, two subplots of 0.5m x 0.5m were randomly placed and the following data were collected
percentage composition of green or photosynthetic vegetation (PV), non-PV and bare soil , grass
samples were cut and weighed to determine green or wet biomass (g/m?), henceforth referred to as
biomass.

Grass materials were dried at 80°C for 24 hours, and then sent for chemical analysis to retrieve
leaf N (% of dry matter) to the South African’s Agricultural Research Council, using wet digestion
techniques. Foliar N was multiplied by PV to derive a canopy N which is a proxy of structure and foliar
N (N*PV). The RapidEye data were acquired in April 2010. The sensor is a multispectral push broom
imager with a spatial resolution of 6.25 m and captures data in the spectral bands: blue (440-550
nm), green (520-590 nm), red (630-685 nm), red edge (690-730 nm), and near infrared (760-850 nm).
Surface reflectance data were retrieved using the atmospheric and topographic correction software
(ATCOR 2) implemented in the IDL Virtual Machine (Richter 2011). ATCOR 2 models reflectance for
flat surfaces, which was considered sufficient because the study area is not characterized by very
rugged terrain. Ancillary or environmental variables used included; mean annual temperature and
precipitation (www.worldclim.com), altitude (STRM 4.1, http://srtm.csi.cgiar.org/), distance to rivers
(river layer from South African National Botanical Institute-SANBI), slope and aspect were derived
from altitude data using ArcGIS (ESRI, USA).
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Figure 1: Study area map showing the north-eastern part of South Africa

Data analysis

For foliar N prediction, a commonly used simple ratio vegetation index was used, but we assessed
one conventional version based on the NIR and red bands (SR53) and one version using the red-edge
band (SR54) as to take full benefit of the RapidEye data. Foliar N prediction models were developed
using simple regression in combination with the vegetation indices. Biomass (g/m’) prediction
models were developed by applying stepwise regression using a combination of vegetation indices
and environmental or ancillary variables. Stepwise multiple linear regression is the commonly used
technique to estimating vegetation parameters (Kokaly and Clark 2009; Ramoelo et al. 2012). Best
models were applied to the image to create the biomass map. The models were validated using
bootstrapping, which is an unbiased validation technique, because we had a small sample size. All
the models were developed using R programming project for statistical computing.

RESULTS AND DISCUSSION

The descriptive statistics of field data showed that the mean, min and max values of the canopy
nitrogen was 63, 35 and 119 (unit-less), and leaf N, 0.84, 0.53 and 1.44 (%), respectively. For biomass,
mean, min and max values were 800, 284 and 1536 g/mz, respectively. The coefficient of variance
indicated that there is relatively high variation or dispersion (20-25 %) for leaf and canopy N and 38%
percent for biomass. The relative high variation or dispersion of grass N and biomass can be
attributed to the heterogeneous nature of savannas, influenced by several biophysical and climatic
drivers (Venter et al. 2003)

The simple ratio (SR54) based on red-edge (4) and near-infrared (5) bands produced significantly
higher canopy N estimation accuracy (bootstrapped: R’=0.45, RMSE=13, 20% of mean, p<0.05),
compared to the conventional index (SR53) (bootstrapped: R’=31, RMSE=15, 24% of mean), using is
the red band (3) (Figure 2). Similar trends were observed for foliar N, and red edge based index was



significant (bootstrapped: R’=0.15 and 0.23, for the conventional and red edge based index,
respectively) (Figure 2). Red-edge position is known to be insensitive to background effects, and
highly correlates to chlorophyll (Darvishzadeh et al 2008). Chlorophyll relates positively with leaf N
(Yoder and Pettigrew-Crosby 1995), which permits a prediction of leaf N using vegetation indices.
The disadvantage of using vegetation indices to predict leaf N, is that the relationship between leaf
chlorophyll and N deteriorate as the leaf senesce (Wang et al. 2009). Figure 3 shows the nutrient
maps. The distribution of nutrients approximates well the various geological types of the study area,
with the highly nutritious grasses found in basalt-derived soils and the low nutritious grasses found in
the granitic-derived soils. Geology and soil are known to be an important driver of the nutrient
content of the grass in savanna ecosystems (Venter et al. 2003; Scholes 2003).
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Figure 2: Scatterplots showing the performance of red-edge based vegetation indices (Top and
Bottom Left) as compared to conventional ones (Top and Bottom Right).

Figure 3: Maps showing a spatial distribution of foliar (Above) and canopy N (Below) derived
from vegetation indices.



For the biomass estimation, vegetation indices produced non-significant results explaining less
than 15% of variation. The result were improved by integrating the vegetation index SR54 and
environmental variables (Bootstrapped: R?=0.27, RMSE=264g/m’, 33% of mean) using stepwise
regression. SR54, precipitation and altitude were found to be significant in explaining the variation of
grass biomass across the study area. There is an evident east-west gradient of precipitation and
altitude in the study area which plays a role in the spatial distribution of biomass. Further, low lying
areas are likely to have high biomass than the uplands, because the low lying areas have higher soil
fertility with accumulation of clay materials (Scholes 2003). As for the nutrient maps, and as expected
the more fertile soils derived from basalt geological type were found to have a higher biomass as
compared to the granitic-derived soils (Figure 4). Figure 4 showed gabbro to have lower biomass and
N than granite, similar results for leaf N was attained by Grant and Scholes (2006). This could be
attributed to the occurrence of high leaf N content in the bottomlands of the granitic areas (Scholes
et al 2003). Basalt parent materials have higher clay content as compared to granitic type of soils
(Venter et al. 2003). The spatial distribution of biomass is generally related to the geological types
(Figure 5). The results also show that protected area have higher biomass than communal areas
(Figure 5), see blue patches on the western part of the map). Communal areas in this area are
subjected to overgrazing. Several studies argued that there is land degradation in this area, which
could attributed to lack of planning and management of this rangelands.
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Figure 4: Boxplots indicating varying grass biomass (left) and N (right) over geological types
(18=granite, 77=gabbro, 59=shale, 4=Basalt)
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Figure 5: spatial distribution of green biomass (g/m?) over Great Kruger National Park.



Vegetation indices yielded poor results in estimating biomass, because of known saturation
problems especially during a period of peak productivity. During this period, the amount of light that
can be absorbed in the red region of the spectrum reaches a plateau (Tucker 1977; Mutanga and
Skidmore 2004). Additionally, the NIR reflectance continue to increase, because addition of new
leaves influence the multiple scattering within the canopy (Kumar et al. 2001). This results into
smaller change in the vegetation index (e.g. NDVI or SR), explaining and causing the poor relationship
with biomass. The concentration of foliar N, in particular, reaches a maximum during the active
growth during the wet season (Tolsma et al. 1987). Therefore, it is assumed that the foliar N
dominates the reflectance during maximum biomass, and it is during this period that we can
successfully estimate foliar N (Skidmore et al. 2010). On the other hand, combining vegetation index
and ancillary data improves the biomass estimation, which partially addresses the problem of
saturation or poor correlation with indices. Even though ancillary variables improve the estimation of
biomass, their quality needs to be assessed in order to understand error propagation.

CONCLUSIONS

e The study demonstrated a potential to estimate rangeland quality using new high spatial
resolution remote sensing data with the red edge band.

e Integrating vegetation index and environmental factors improves rangeland quantity
estimation during peak productivity.
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