Improved transition models for cepstral trajectories
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Abstract—We improve on a piece-wise linear model of the the model to predict trajectory behaviour at different eant
trajectories of Mel Frequency Cepstral Coefficients, which are gjzes is further evaluated. To better account for additiona
commonly used as features in Automatic Speech Recognltlon.trajectory behaviour, a more complex model description is

For this purpose, we have created a very clean single-speaker . L
corpus, which is ideal for the investigation of contextual effects developed to characterise the observed variability.

on cepstral trajectories. We show that modelling improvements, ~ This paper is structured as follows: Related research is
such as continuity constraints on parameter values and more discussed in Section Il. Specific techniques used to model

f"]?Xib'et”?“Sti“O” m%d‘?'& HSyStematitCﬁ”y improvte the tr_ObUtSt”ess phone transitions and the measurement strategies themreof a
Of our trajectory moaels. nowever, € parameter estimates re : : . :
ma(i)n uneipectgdly variable within’tripho%e contexts, suggesting preser?ted n .Sectlon . We. then de§crlbe our ex'perlmental
interesting challenges for further exploration. setup in Section IV and details regarding our experiments an
results are given in Section V. Our concluding statemergs ar
. INTRODUCTION made in Section VI.
Current approaches to automatic speech recognition (ASR)
require large amounts of speech data to achieve high ac- Il. BACKGROUND
curacies, since context-dependent modelling of phones is
an important feature of these approaches. The requiremenficcurate modelling of co-articulation effects in speecteda
for context-dependent modelling results from the physichRs been the main driving force behind the development of
constraints of the human vocal tract, which results in céarge speech recognition corpora [3]. In fact, if unlimiteain-
articulation effects during the transition from one phooe tng data were available, it would be more beneficial to model
the next. Since state-of-the-art ASR systems model spedégharticulatory effects using whole word (or even phrasal)
with piecewise-constant statistical models, observatimithe units instead of phones as the basic modelling unit, sinee co
influences of various phonetic contexts on each phone @miculation effects are increasingly well modelled bygkr
required to create adequate statistical models of the teffegontexts. Limited training data, however, forces the use of
of co-articulation. Hence, sufficient examples are reguiremaller units. Context-dependent phones are currentlglyid
for each representative context. Unfortunately, this $etml used to approximate the co-articulation effects for adeura
substantial data requirements. speech recognition [3]. Finding the correct segment size to
Trajectory modelling approaches [1], [2] have attempted toodel the diversity of all co-articulation effects can, lewer,
model temporal information in a more explicit fashion inerd prove difficult. A key motivating factor for the development
to reduce these data requirements. It is clear that theteffeef segmental models is the fact that it is possible to exploit
of co-articulation are not constrained to the frame level acoustic features that are apparent at the segmental arad not
appropriate models need to operate at the segmental lekl, the frame level [1], [2].
even longer-term effects must be considered. Describieg th The hope is that more data-efficient models of co-
observed variability on all these levels is a challengingbpr articulation can be developed in this way, but this is not
lem. We are specifically interested to know whether systemaa straightforward goal to achieve. One problem is that any
phone transition effects may be described more accurdttedy. segmental approach needs to model extra-segmental Viyiabi
our belief that finding appropriate representations is ifgpa  (between different examples of speech segments) as well as
to enable more effective parameter sharing, and thus madnga-segmental variability (within a single example) acc
data-efficient ASR. rately. The observed variability for segments of variablegth
With this work we improve on a model that can be used tmay have multiple sources, and their interaction is culyent
isolate the key elements that occur in acoustic featureimglurnot well understood. Possible origins for these sourcdsdiec
phone-to-phone transitions. We first show that trajectragit- factors such as recording conditions, different speakiyigs,
ing may be accomplished for a basic model and the ability phonetic reduction and finally co-articulation.



A wide variety of approaches to the development of segmepiece-wise linear approximation model. Their model cdesis
tal models have been proposed, based on several fundamaeuitétiree line pieces to fit the cepstral values (frames) ofglsi
observations. For example, in [2] the fact that time-noiseal MFCC (cepstral transition), using least-squares optititisa
phones tend to behave predictably in various phonetic gtteStart and end line segments were constrained to be constant
was used to develop a probabilistic trajectory model. Alse, values. We refer to these constant line segmentstakle
speech production process suggests the influence of undgrlyaluesand the remaining central line segments asdhenge
articulatory patterns (trajectories) on speech data [4d adescriptor To find a complete piece-wise linear approximation
more recently, convolutional non-negative matrix factation for any cepstral transition, a search is required to detegmi
(CNMF) has been used as an approach to discover tempdha start and ending indices (model alignments) of the abang
(sequential) patterns in speech data [5]. CNMF showed & grdascriptor. Similarly to the method described in [11], the
deal of time warping variation and therefore time-coded NM&quared error for all line pieces of the cepstral transition
(motivated by findings in neuroscience) has been attemptedhtodel can then be found, yielding a single error value for
improve pattern discovery [5]. each approximation. Optimising the squared error enatdes u

Attempts to explicitly model temporal effects (trajecem) to find the best model alignments. In order to compare the
in speech data have, to date, achieved limited success [iifferent options, the squared erroiSK;) of each parameter
Specific limitations of the HMM modelling paradigm, in par-at each instant are estimated, followed by the mean square
ticular the state-based independence assumption, aressadr error (M SFE,,.qc;) across features:
in these methods. This is mainly accomplished by eitherrinco

_ 2
porating explicit trajectories within the HMM framework][7 SEy = |tlxy) = vyl @
or by defining |0nger-term Variable-length Segmental mdajvhere t(.]?f) is the trajectory value at frameUf and
[8]. t(zf) — yy|? is the squared residual.

In a novel approach to implement a hidden trajectory
model, bi-directional filtering of vocal tract resonanc¥9 R) F
yields promising results and also enables the implememtati MSE,pogel = 1 Z SE; )
of variable-length representation of long-contextuarsgpng o F =

speech effects) [9]. Conceptually, the opposite approach i ) ) i ]
to model the trajectories of the features used for speechn [11] an algorithm is described that allows the piece-

recognition directly, and in [10], [11] it was found that $uc Wi_se_ linear mo_o_lel to share conte_xt_ual information with othe
models of cepstral features are able to represent co-aticy  (Similar) transitions. By constraining the stable values t
phenomena in a way that makes context dependency exp“gﬁference value estimates of different context S|ze§,qlmeeat
The current paper similarly models the cepstral trajeesorid®Pendency of these models can be evaluated. Similarly, wha
directly, and demonstrates how more accurate parameter $gstitutes a single “cepstral transition model” can be#igel

can be achieved by using more sophisticated transition mod@ccording to context length, phone identities or even broad
classes of phones.

Ill. APPROACH .
B. Model evaluation

The piece-wise linear approximation that we use to track , L . . .
Ouir first priority in modelling phone transitions is to accu-

cepstral trajectories effectively captures temporal geanus- L
P J y cap P g gﬁely represent speech data. This will then subsequesrtixe s

ing sub-phone level segments (as opposed to the individli ; . .
frames) for every phone transition. Applying a search @s the enabling factor, so that systematic effects (if they a

find variable-length positions for these segments allowtnusﬁresem) ma); be identified. In te_rmsfof _T_he m?]dels dde_&lscrlbed
characterise detailed transitional behaviour and obtaiimext €' WE analyse two n;allr}_crl_tena tg act |ta:tet eie gbil'e
comparison between the modelled trajectories and the lact{{ist measurement (mode 't.) Is used to evaluate the abiliy o
speech data. By measuring how consistent the tracked cha Qdel to track observed trajectories. Secondly we chaiaete

are, different modelling choices may be compared, Ieaot'nngI dividual cepstral transitions by evaluating:

new insights regarding cepstral transition behaviour. « The consistency of a measurement across multiple sam-
N ples of the same transition in a data set.
A. Cepstral transition models « The ability of the model to predict parameters of unseen

We model speech data using MFCC features, which are Samples (we estimate transition model parameters on a
widely used in state-of-the-art speech recognition system training set and evaluate the error on a separate test set).
Near phone transitions, co-articulatory effects on theatures 1) Model fit: In Figure 1 the linear approximations for the
have been shown to be highly regular in [10]. In particulafirst four cepstra of a single diphone transition examplelan
the phones on either side of a transition generally dete¥migeen. The separate model parts of the first cepstral coefficie
a target value (which the trajectory may or may not reacHMFC 1) can clearly be identified: two stable values (frames
and the trajectories generally interpolate fairly smopthé- 9 — 15 and framesl7 — 21) and a single change descriptor
tween those targets. The authors of [11] utilised this figdin(frame16, connecting the stable values). As this is a segmented
describing individual phone transition behaviour withimgie model, the stable values are anchored to the start and ending



frames of the diphone segment (franteand 21 respectively) 2) Model consistency:To identify systematic behaviour
and do not extend to adjacent transition frames numbers ( for cepstral transition trajectories, we present two c®nsi
8 or 22 — 26). For all cepstra a single definite transition igency measurements, in which both stable values and change-
observed near the ASR boundary. descriptors are evaluated. Different modelling optionstteen
be compared directly (for the same transition examplesyeMo
consistent model parameters are a more favourable chaice fo

20— Phone transition: @n the representation of the transition model.
— s Reference stable values are estimated using the training
50T s R - 1 data set. These values are obtained in a similar way to that

described in [11]. Once an initial set of trajectories hagerb
fitted to the training data, the mean is estimated for thelestab
(constant) parts of every particular context that is rezplir

B ] After estimating the reference stable values, these valaas
J / . IR also be predicted for the unseen samples of the test set. We
STl ¢ V4 . evaluate the model fit (as described in 11I-B1) in order to

10

Magnitude

compare the trajectories obtained with predicted staligega
For the measurements described here, change-descriptor
model parts are treated differently. We choose to determine
change-descriptor behaviour in terms of temporal informa-
W A ETRT B R R R R R R TR T tion and define two representative parameters to evaluate th
Frames consistency: (1) Relative position to ASR boundary and (2)
Absolute duration.
Fig. 1. Piece-wise linear model fit of the first four cepstra fud tiphone During the speech segmentation process, a single ASR
transition /@-n/ using 3-piece segmented models boundary for every phone transition is obtained. This bamd
i has the same location for dl cepstra and is useful to provide
Through Equation 2, the MSE measurement can be call; jnitial alignment of similar transition examples. Inghiay,
lated for the separate model parts, or for the whole pieCga compensate for the fact that not all examples are equal
wise approximation of the specific coefficient and multiplg, jongih. Measuring the centre positions (exactly half way
transition examples,. by mcludmg the rglevgnt frames. Tk?etween the model boundaries) of the change descriptors and
measure how well different trajectory estimation appreachgasive to the ASR boundary then provides a good indication
compare with respect to the actual observed MFCC fealyfe \he nosition where most of the change for a cepstral
vectors, the MSE measurement G Ly, qxs) Of rajectories is yangition is occurring. The absolute duration is the langt
particularly useful. This value allows the direct compan®f ¢ 1o change descriptor as defined by the model alignments.
phone transm.o.ns, with regard to the training data, acedss Both position and duration measurements are given in terms
cepstral transition models. Th®/ SEt,q,s Mmeasurement can g¢ frama units.

be calculated as For each cepstral transition class, we estimate:

—10}

S

1 F.,
MSE rans — o SE cs 3 N
t ZLCFSZ;;; e O Py = Do ®)
n=1

where SE;., is the squared error for a specific franfe a
specific coefficient and a specific sample
Every transition generates squared errors (one for every N
frame) and there ar€’ = 13 of these cepstra (one for every Ocep = 1 Z (Z — Zeep), (6)
MFCC coefficient). To analyse the parameters for all of the N =~
examples §) of a given class, the mean and standard deviation
are calculated for the binned trajectories of the same MFc¢herez is the measured parameter valdg,, the mean and
coefficients. ocep the standard deviation foN examples of the cepstral
Finally, to represent the entire set of transitions withrglsi  transition class. To represent an entire set of cepstaitrans
error value, the summation of the contributions from eaelks| With a single consistency value, we sum the contributioosfr
is evaluated: each class:

[

and

T T
1 1
MSEQlobal = T Z MSEtran57 (4) Cglobal = T Z Oceps (7)
t=1

t=1

whereM SE,,q.ns are the mean trajectory/ SE estimated for whereo,., are the standard deviations estimated/foexam-
S examples of a contextual class and a totalloflasses. ples cepstral transitions and a total’Bfclasses.



C. Cepstral model improvements to the requirement when any of the four line pieces could be

In order to gain a better understanding of the trajecto’% arbitrary length, and may be more robust in specifically
model, and to improve its capabilities, we have refined tf¥tecting the peaks and troughs). In Figure 2 the linear
basic model along a number of dimensions. These refinemeRRProximations with 4-pieces are estimated for the first fou
are described below. cepstra. Since this is also a connected model, the stahle val
1) Connecting model segments:the standard model, eachParts are now shared with the adjacent transition modegs (e.

segment is modelled separately. This means that stable vdfif Stable value of the first cepstral coefficient, MFC 1, i no
estimates of two adjacent models will not necessarily be tfifed to framesl — 12 with this diphone transition example
same, but could exhibit a ‘gap’. We extend the piece-wily beginning at frame).

!inear .approximation a[gqrithrn to r_node] .the entire uttem_n IV. EXPERIMENTAL SET-UP

in a single process, eliminating this artificial gap by forgi
adjacent stable values to be equal to one another.

2) Predicting stable values with constrained alignments: The experiments of this paper are performed on phone
Trajectory models with fixed reference stable values behalvgnsitions that are selected to ensure that data scaroéyg d
differently with regard to the model alignment algorithnath not interfere with our investigation. (Although we everilya
free trajectory models. An intermediate option would be toant to apply our model in limited-data environments, our
first fit free trajectories (to find transitions), then enforccurrent goal is to understand its description of speeclufeat
stable values (from predicted reference values). This @oecb in the absence of such a constraint.) In this section, weigkeov
information then constitutes the final trajectory. a discussion of the selection process. Each phone tramsitio

selected from a high quality set of speech recordings (ofia si
gle speaker) and reviewed acoustically before being irdud
20 Phone transition: @-n in the final data set. To model any phone transition, specific
MFCC features and the appropriate speech segmentation are
derived. We also present the specifics of the features used to
model the cepstral transitions.

A. Overview

B. Speech data

About 6000 short utterances were recorded for the experi-
ments that we conduct. This provides a large corpus of high
quality speech of a single male speaker. Only considering a
. \ single speaker allows us to focus on contextual effects first
~10} ’ | without inter-speaker differences complicating the rissdihe
recordings were made using a list of short Afrikaans prompts
(1 to 5 words in length) with balanced phonetic coverage

[12]. Additionally, a dynamic programming scoring algbrit
PR T N mes P mm e was used with initial acoustic models to verify the speaker’
pronunciations and obtain a high quality (aligned) set of
Fig. 2. Piece-wise linear model fit of the first four cepstra tuf tiphone recordings [13]. The number of utterances that showed gerfe
transition /@-n/ using 4-piece connected models alignment wasl974 and had a total duration of aboBitours.
From this “clean” data set, training and test data sets were

3) 4-piece modelstn Figure 2 another example of the sameelected. All diphone transitions that occfr or more times
diphone transition as shown in Figure 1, but in a differeni the clean data set were retained, and greedy selection was
context, is shown. While some of the cepstral transitions agiged to select test utterances until the test set contatiedst
seen to be moving (relatively) in similar directions and 8om3 examples of each of these diphones. The remaining clean
start and end positions seem to agree, it is clear that thgerances formed the training data set. After performirese
transition itself behaves rather differently. Instead ofgke steps the total number of utterances that were selectdtetbta
transitional changes, characteristic peaks and troughs@w 902 and 4072 for the test and training data sets, respectively.
formed. This behaviour is seen quite frequently for certain )
transitions and coefficients. It is clear that in such casesC: Ségmentation
more elaborate change descriptor could be of value to modeAccurate identification of phone transition boundaries is
the change accurately. very important, since our modelling approach relies ondhes

To improve change descriptor representation, we implemdygundaries. We use a standard HMM-based ASR system
a 4-piece symmetrically constrained model. With this corrained on ald974 clean recordings to automatically align the
figuration, the change descriptors consist of two line mecespeech data. A context-dependent cross-word phone resswgni
which are kept at equal length. (This requirement dradgicalith tied triphone models is employed9 MFCC features are
reduces the search space to find model alignment, compansdd, which include the first3 and their first and second
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order derivatives. These features are computed with a windthe training data and then applied as fixed stable value fits
size of 25ms and a frame rate of 10ms. Semi-tied transformhsring model estimation on the transitions of the test data s
are applied. Each triphone model has 3 emitting states with 7To compare change-descriptor behaviour we estimate the
Gaussian mixtures per state and a diagonal covariancexmatglobal consistency values,;.,q; of specific temporal parame-
Verifying phone recognition accuracy on the test set, usingters. More detailed comparison can be obtained (on a cépstra
flat-phone grammar yields a value of 92.71%. level), comparing the standard deviation,, for the same
Triphone model alignments are obtained using a forcegpstral transitions.
alignment on all the data and the model alignment labels afe

then converted to the base label sequence (the actual plesneni Connecting segments

observed in the training data). As mentioned in Section 1lI-C3, correctly representing the
more stable parts of phone transitions given the imposed
D. Features for transition modelling models requires us to extend the piece-wise linear appaxim

After transition boundaries have been obtained, we extrd{@" @lgorithm. Now, an entire utterance must be represente
13 MFCCs features for transition modelling. For these fedY & Single piece-wise approximation. Finding the utteeanc
tures, while we still use a window size of 25ms, the fram§Vel trajectory model is accomplished in two estimaticepst
rate is adjusted to 5ms. This provides us with better tinf@dding to the definition in Section I1I-A):
resolution. Only the raw MFCC coefficients are used ande Locate the model alignments for all of the transitions in
not any of the derivatives. Finally, for every utterancesrea  the utterance for segmented models.
of the MFCC vectors is associated with the phone-boundarys Use model alignments to fit all required line pieces of

alignments from above, which provides contextual labg!k the utterance. On a per-segment basis (left-to-right), fit
the triphone level. the change descriptor and ending stable value (except for
the first transition), re-using the last stable value of the
E. Selection of transition examples previous segment as the first stable value of the current
segment.
Transitions All data  Train  Test Additionally, if fixed reference stable values are requirgd
Total number 83 769 678 the mean of the two reference stable values contributing to a
> 30 examples 470 436 173 . . .
Final selection 331 331 331 single shared stable value. By sharing the first stable vaflue
TABLE | the previous segment (transition), the segmented models ar
Number of unique diphone transition labels in data sets mous connected to form a single trajectory for the whole utteeanc
selection stages. Table 1l shows all of the estimated/SE ., values.

Global MSEs are estimated for the phone transitions of dif-
ferent data sets (train and test) and two values are given per
Given the test and training data sets, a further selectigfeasurement: the means and standard deviations (in bsjcket
process was used to select the data for our experimentsointhe diphone transition class MSEs, respectively. Onge fr
Table I, the total number of unique transition labels is git@ trajectories are constructed for the training data set.glbieal
show that for a large number of label7() we have more than MSE for the test set, however, are compared for all options
30 examples. (For the transition model analysis all transio (free or fixed stable value trajectories). To aid the consuar;
with fewer examples are ignored.) After excluding tramsiti g ratio is also determined between the global MSE values with
including the silence label, we perform a final (per example)ery fixed stable value trajectory option and its corresjran
selection. A particular transition example is only allowiéd free trajectory. Finally, separate model parts can be atedl
the duration (in frames) is no more than a single standagéld the global MSE values for only the frames corresponding
deviation from the mean. The result of this selection presidto the stable value of change-descriptor parts of trajgctor
us with the331 most frequent transition labels and transitiomodels are given.
examples that have low speech rate variability. We observe that the error on the training set is in agreement
of the test set results for free trajectories. There is a twst
connecting segments: Overall the error increases (as can be
We compare various trajectory tracking techniques, rexpected for the more constrained model). However, thegati

porting on the results obtained with each of the possib&# error between fixed stable value and free trajectories are
improvements described in Section I1I-C. For all of the modaimilar, and we see that the error increases at least fige-fol
options, the M SEg.ua Values are calculated to measurevhen predicting stable values (rather than estimating them
overall effectiveness. In the case of connected models, wach phone occurrence).
always convert to a valid segmented representation, whichAs previously observed [11], larger context sizes allow for
ensures that direct comparison of the phone transitions wore specific stable values and improved model fit. Therefore
a per-segment basis is valid. Model options with predictade test reference stable values of different context sizes
stable value parts require a train and test data set to asgessnophones, biphones and triphones) and find that predicte
trajectory tracking. Reference stable values are pretdlicting stable value model fits improve up to the triphone context

V. EXPERIMENTS AND RESULTS



Model Stable Global MSE Global MSE Ratio Global MSE Global MSE
reference value (train) (test) (with free fit)  (stable valus) (change)
3-piece segmented Monophone 24.553 (6.338) 6.803 27.68626. 8.861 (5.165)
Biphone 19.228 (4.223) 5.328 21.908 (4.447) 6.756 (2.979)
Triphone 19.118 (3.574) 5.297 21.961 (4.105)  6.974 (2.141)
No ref 3.604 (1.265)  3.609 (1.306) 4.047 (1.448) 1.821 (8)79
3-piece connected Monophone 47.659 (8.232) 6.196 54.5945%8) 18.354 (5.893)
Biphone 43.595 (7.319) 5.668 50.038 (9.503)  17.339 (4.226)
Triphone 42.157 (7.064) 5.481 48.826 (9.219)  17.038 (3.512
No ref 7.710 (2.335)  7.692 (2.433) 8.299 (2.667) 5.415 (I)83
4-piece connected Monophone 22.788 (3.614) 5.450 38.0891p 13.482 (2.362)
Biphone 21.497 (3.410) 5.142 35.968 (6.109)  12.461 (2.107)
Triphone 21.398 (3.453) 5.118 36.246 (5.978)  12.303 (2.220
No ref 4211 (1.243)  4.181 (1.242) 4,959 (1.481) 3.427 (6)10

TABLE I

Overall MSE .5, Mmeasurements for train and test data trajectories, inalgdbptions with predicted stable values.

level. Finally, consistency measures of the mean position o

the change descriptor and the mean duration of the change

descriptor show similar distributions for 3-piece segrednt
and connected models.

B. Aligned transitions

Once stable values have been estimated, the timing of the
change descriptor of a specific transition is determined by
finding the best fit from one stable value to another. This may

Model Stable Position
reference value (centre)
3-piece segmented No ref 2.847 (1.215)
Biphone 4.095 (1.753)
Triphone 4.107 (1.753)
3-piece connected No ref 2.848 (1.215)
Biphone 3.924 (1.708)
Triphone 4.024 (1.721)
4-piece connected No ref 2.167 (0.751)
Biphone 2.289 (0.832)
Triphone 2.281 (0.827)
TABLE Il

not produce optimal change descriptor alignment, espggcialyyeral consistency’y;opq, Measurement of change descriptor position on

if a specific stable value does not suit a specific sample
of a transition well. Change descriptor alignments can be
constrained to the free trajectory alignments for bettemge
detection. The fixed stable values can then still be appli
without allowing the model to find a further optimal fit for
chosen parameters.

In Table 1, a global free trajectory baseline consistenc
(Cygiobar) Of the change descriptor centre position is estimate
Since trajectories with fixed stable values only exist fog th
test data, all comparisons are made for the transitions eof 1
test set. We find that the measured change descriptor posil
is less consistent for trajectory models with fixed stablees
(free trajectory models show most consistent change géscri
positions in all cases).

The more consistent change descriptor positions of t
free trajectory models motivate further investigation odef
trajectory alignments. To better understand the relakigns
between reference stable values, free trajectory aligtsne
and model fit, we also determine the MSE parameters wh
constraining fixed stable value trajectory models to haee fr
trajectory alignments. Similarly to the values in Table Il
Table IV shows theM SE ., values, now with free trajec-
tory alignments. As expected, the overall MSE measureme
show increased error for constrained alignments. Sincde&p
model change-descriptors are so dependent on stable vadues
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find substantial error increases when comparing the valtjesF%. 3. Comparing consistenay.., of change descriptor position on a per

Table I1.

C. 4-piece segments

cepstrum basis

For all the previous trajectory options, a change desariptend points of the stable values (at the model alignmentgh Wi
consisted of a single straight line, connected to the stalt ad4-piece models, the complexity of the change descriptor is



Model Stable Global Global MSE Global MSE
reference value MSE (stable values) (change)
3-piece connected Monophone 50.245 (8.563) 54.156 (9.8285.059 (7.502)
Biphone 45.429 (7.315)  49.102 (8.512)  32.014 (5.904)
Triphone 44521 (7.057) 48.169 (8.161)  31.199 (5.870)
4-piece connected Monophone 32.890 (5.485) 50.626 (8.65%5.527 (2.696)
Biphone 29.856 (4.771) 45.772 (7.339)  14.268 (2.409)
Triphone 29.373 (4.888) 45.001 (7.151) 14.002 (2.521)

TABLE IV
Overall MSEg;05q1 Measurement on test set, when applying fixed stable valubsanstrained alignments
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puting the standard deviation..,, allows transition compari-
son on a per cepstrum basis. The scatter plot thereforetdepic
these values fo3 and4-piece models and the same transition
examples. We find that most of the cepstral transitions have
larger standard deviations when 3-piece models are used.
According to the histogram frequencies and the placement
of cepstral transition measurements, only a relatively lkma
number of cepstral transitions have smaller standard tewnia

for 3-piece models. Generally 4-piece models also tendie ha
lower standard deviation for most of these cepstral tranmst

Model
3-piece segmented
3-piece connected
4-piece connected

TABLE V
Overall consistency’y; b Measurement of change descriptor durations on
all data

Duration (absolute)
2.710 (0.858)
2.583 (0.876)
2.842 (0.930)

To understand more about the differences between the 3-
piece and 4-piece change descriptors, we also compare their
absolute durations (length in frames). Figure 4 shows thenme
duration in frames compared for every cepstral transitiaas

Fig. 4. Comparing mean duratiof.,, of the change descriptors on a perpetween 3-piece and 4-piece models. It is clear that for all

cepstrum basis

cepstral transition classes, the mean durations of thegehan
descriptors are longer for 4-piece models compared to &pie
models and the same class.

increa_\sed to include two straight lines. This_allows thengjea Confirming the overall variabilityCypq; ON the mean
descriptor to have a freely varying centre point (connectite  qyration (free trajectories), we find that connecting segmie
two change descriptor line pieces). As a final constraird, thy 3-piece models seems to provide the most consistent mean
change descriptor must be symmetrical along the time axigange descriptor durations in general (Table V). Althodgh
(two lines of equal duration) during model alignment. Finaliece models with longer change descriptors are less consis
model fits (when connecting segments) of the utterance M@y this value is still very comparable to the 3-piece nhode
however find “shared” stable values different to the oneslusgyge.

during model alignment, leading to non-symmetric change Finally, the overallM SE,;..; values in Table Il confirm

descriptors.

that the additional freedom of the 4-piece model reduces

Comparing the overall consisteney.p.; Of the change overall error by considerable amounts; this is true for both
descriptor position with that of the 3-piece models shoves thhe model fit of change descriptor and stable value parts, as
4-piece models to be the most consistent choice for free tigell as trajectories with predicted stable values compsred
jectory models (Table Ill). Furthermore, rather than beit@n piece models of similar configuration. The ratio of the MSE fo
much less consistent when trajectories with fixed stableesl trajectories with predicted stable values and free trajees
are used, 4-piece models show comparable consistency if0BIso seen to improve for 4-piece models.

fixed stable value trajectories.

Additional insight regarding the predictability of refecse

Figure 3 provides a more detailed comparison. Measuristable values may be achieved by exchanging (“swapping”)
the centre position of the change descriptors relative & tthe matching reference values betw&eand4-piece models.
ASR boundary for each cepstral transition example, and coifable VI shows theé\/.SE,;.; values for the different context



Model Stable Global Global MSE Global MSE

reference value MSE (stable values) (change)
3-piece connected Monophone 47.860 (8.270) 54.505 (1p.36¥8.474 (6.062)
Biphone 43.701 (7.381)  49.706 (9.341)  17.306 (4.309)
Triphone 42.638 (7.440)  48.940 (9.445)  17.159 (3.738)
4-piece connected Monophone 23.095 (3.708)  38.847 (6.920)3.518 (2.393)
Biphone 22.070 (3.612) 37.100 (6.586) 12.665 (2.184)
Triphone 21.906 (3.597)  37.245 (6.375)  12.465 (2.271)
TABLE VI

Overall MSEg;05q1 ON test set for “swapping” reference stable values betwaeand 4-piece models

sizes. Improved model fit of stable regions for 3-piece modehe 3-piece model case. Swapping the predicted stablesvalue
(using the 4-piece predicted stable values) are obtaimeal] i between 3 and 4-piece models also generate similar error
cases except the triphone case. Similarly, the 4-piece motte these parts, with slight improvement when using the 4-
model fit for these regions degrades in all cases. Overalemogiece predictors. The exact reason why these regions show
tracking degrades slightly in all cases. so much intra-segmental variability is not yet well undeost

VI. CONCLUSION and additional investigation may prove valuable.
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