
Improved transition models for cepstral trajectories
Jaco Badenhorst

Multilingual Speech Technologies
North-West University,

Vanderbijlpark 1900, South Africa
2Human Language Technology

Competency Area,
CSIR Meraka Institute

Email: jbadenhorst@csir.co.za

Marelie H. Davel
Multilingual Speech Technologies

North-West University,
Vanderbijlpark 1900, South Africa
Email: marelie.davel@gmail.com

Etienne Barnard
Multilingual Speech Technologies

North-West University,
Vanderbijlpark 1900, South Africa
Email: etienne.barnard@gmail.com

Abstract—We improve on a piece-wise linear model of the
trajectories of Mel Frequency Cepstral Coefficients, which are
commonly used as features in Automatic Speech Recognition.
For this purpose, we have created a very clean single-speaker
corpus, which is ideal for the investigation of contextual effects
on cepstral trajectories. We show that modelling improvements,
such as continuity constraints on parameter values and more
flexible transition models, systematically improve the robustness
of our trajectory models. However, the parameter estimates re-
main unexpectedly variable within triphone contexts, suggesting
interesting challenges for further exploration.

I. I NTRODUCTION

Current approaches to automatic speech recognition (ASR)
require large amounts of speech data to achieve high ac-
curacies, since context-dependent modelling of phones is
an important feature of these approaches. The requirement
for context-dependent modelling results from the physical
constraints of the human vocal tract, which results in co-
articulation effects during the transition from one phone to
the next. Since state-of-the-art ASR systems model speech
with piecewise-constant statistical models, observations of the
influences of various phonetic contexts on each phone are
required to create adequate statistical models of the effects
of co-articulation. Hence, sufficient examples are required
for each representative context. Unfortunately, this leads to
substantial data requirements.

Trajectory modelling approaches [1], [2] have attempted to
model temporal information in a more explicit fashion in order
to reduce these data requirements. It is clear that the effects
of co-articulation are not constrained to the frame level –
appropriate models need to operate at the segmental level, and
even longer-term effects must be considered. Describing the
observed variability on all these levels is a challenging prob-
lem. We are specifically interested to know whether systematic
phone transition effects may be described more accurately.It is
our belief that finding appropriate representations is important
to enable more effective parameter sharing, and thus more
data-efficient ASR.

With this work we improve on a model that can be used to
isolate the key elements that occur in acoustic features during
phone-to-phone transitions. We first show that trajectory track-
ing may be accomplished for a basic model and the ability of

the model to predict trajectory behaviour at different context
sizes is further evaluated. To better account for additional
trajectory behaviour, a more complex model description is
developed to characterise the observed variability.

This paper is structured as follows: Related research is
discussed in Section II. Specific techniques used to model
phone transitions and the measurement strategies thereof are
presented in Section III. We then describe our experimental
setup in Section IV and details regarding our experiments and
results are given in Section V. Our concluding statements are
made in Section VI.

II. BACKGROUND

Accurate modelling of co-articulation effects in speech data
has been the main driving force behind the development of
large speech recognition corpora [3]. In fact, if unlimitedtrain-
ing data were available, it would be more beneficial to model
co-articulatory effects using whole word (or even phrasal)
units instead of phones as the basic modelling unit, since co-
articulation effects are increasingly well modelled by larger
contexts. Limited training data, however, forces the use of
smaller units. Context-dependent phones are currently widely
used to approximate the co-articulation effects for accurate
speech recognition [3]. Finding the correct segment size to
model the diversity of all co-articulation effects can, however,
prove difficult. A key motivating factor for the development
of segmental models is the fact that it is possible to exploit
acoustic features that are apparent at the segmental and notat
the frame level [1], [2].

The hope is that more data-efficient models of co-
articulation can be developed in this way, but this is not
a straightforward goal to achieve. One problem is that any
segmental approach needs to model extra-segmental variability
(between different examples of speech segments) as well as
intra-segmental variability (within a single example) accu-
rately. The observed variability for segments of variable length
may have multiple sources, and their interaction is currently
not well understood. Possible origins for these sources include
factors such as recording conditions, different speaking styles,
phonetic reduction and finally co-articulation.



A wide variety of approaches to the development of segmen-
tal models have been proposed, based on several fundamental
observations. For example, in [2] the fact that time-normalised
phones tend to behave predictably in various phonetic contexts
was used to develop a probabilistic trajectory model. Also,the
speech production process suggests the influence of underlying
articulatory patterns (trajectories) on speech data [4] and
more recently, convolutional non-negative matrix factorisation
(CNMF) has been used as an approach to discover temporal
(sequential) patterns in speech data [5]. CNMF showed a great
deal of time warping variation and therefore time-coded NMF
(motivated by findings in neuroscience) has been attempted to
improve pattern discovery [5].

Attempts to explicitly model temporal effects (trajectories)
in speech data have, to date, achieved limited success [6].
Specific limitations of the HMM modelling paradigm, in par-
ticular the state-based independence assumption, are addressed
in these methods. This is mainly accomplished by either incor-
porating explicit trajectories within the HMM framework [7]
or by defining longer-term variable-length segmental models
[8].

In a novel approach to implement a hidden trajectory
model, bi-directional filtering of vocal tract resonances (VTR)
yields promising results and also enables the implementation
of variable-length representation of long-contextual-spanning
speech effects) [9]. Conceptually, the opposite approach is
to model the trajectories of the features used for speech
recognition directly, and in [10], [11] it was found that such
models of cepstral features are able to represent co-articulatory
phenomena in a way that makes context dependency explicit.
The current paper similarly models the cepstral trajectories
directly, and demonstrates how more accurate parameter fits
can be achieved by using more sophisticated transition models.

III. A PPROACH

The piece-wise linear approximation that we use to track
cepstral trajectories effectively captures temporal changes us-
ing sub-phone level segments (as opposed to the individual
frames) for every phone transition. Applying a search to
find variable-length positions for these segments allows usto
characterise detailed transitional behaviour and obtain adirect
comparison between the modelled trajectories and the actual
speech data. By measuring how consistent the tracked changes
are, different modelling choices may be compared, leading to
new insights regarding cepstral transition behaviour.

A. Cepstral transition models

We model speech data using MFCC features, which are
widely used in state-of-the-art speech recognition systems.
Near phone transitions, co-articulatory effects on these features
have been shown to be highly regular in [10]. In particular,
the phones on either side of a transition generally determine
a target value (which the trajectory may or may not reach),
and the trajectories generally interpolate fairly smoothly be-
tween those targets. The authors of [11] utilised this finding,
describing individual phone transition behaviour with a simple

piece-wise linear approximation model. Their model consisted
of three line pieces to fit the cepstral values (frames) of a single
MFCC (cepstral transition), using least-squares optimisation.
Start and end line segments were constrained to be constant
values. We refer to these constant line segments asstable
valuesand the remaining central line segments as thechange
descriptor. To find a complete piece-wise linear approximation
for any cepstral transition, a search is required to determine
the start and ending indices (model alignments) of the change
descriptor. Similarly to the method described in [11], the
squared error for all line pieces of the cepstral transition
model can then be found, yielding a single error value for
each approximation. Optimising the squared error enables us
to find the best model alignments. In order to compare the
different options, the squared errors (SEf ) of each parameter
at each instant are estimated, followed by the mean square
error (MSEmodel) across features:

SEf = |t(xf )− yf |
2 (1)

where t(xf ) is the trajectory value at framexf and
|t(xf )− yf |

2 is the squared residual.

MSEmodel =
1

F

F
∑

f=1

SEf (2)

In [11] an algorithm is described that allows the piece-
wise linear model to share contextual information with other
(similar) transitions. By constraining the stable values to
reference value estimates of different context sizes, the context
dependency of these models can be evaluated. Similarly, what
constitutes a single “cepstral transition model” can be specified
according to context length, phone identities or even broad
classes of phones.

B. Model evaluation

Our first priority in modelling phone transitions is to accu-
rately represent speech data. This will then subsequently serve
as the enabling factor, so that systematic effects (if they are
present) may be identified. In terms of the models described
here, we analyse two main criteria to facilitate these goals. The
first measurement (model fit) is used to evaluate the ability of a
model to track observed trajectories. Secondly we characterise
individual cepstral transitions by evaluating:

• The consistency of a measurement across multiple sam-
ples of the same transition in a data set.

• The ability of the model to predict parameters of unseen
samples (we estimate transition model parameters on a
training set and evaluate the error on a separate test set).

1) Model fit: In Figure 1 the linear approximations for the
first four cepstra of a single diphone transition example canbe
seen. The separate model parts of the first cepstral coefficient
(MFC 1) can clearly be identified: two stable values (frames
9 − 15 and frames17 − 21) and a single change descriptor
(frame16, connecting the stable values). As this is a segmented
model, the stable values are anchored to the start and ending



frames of the diphone segment (frames9 and21 respectively)
and do not extend to adjacent transition frames numbers (1−
8 or 22 − 26). For all cepstra a single definite transition is
observed near the ASR boundary.

Fig. 1. Piece-wise linear model fit of the first four cepstra of the diphone
transition /@-n/ using 3-piece segmented models

Through Equation 2, the MSE measurement can be calcu-
lated for the separate model parts, or for the whole piece-
wise approximation of the specific coefficient and multiple
transition examples, by including the relevant frames. To
measure how well different trajectory estimation approaches
compare with respect to the actual observed MFCC feature
vectors, the MSE measurement (MSEtrans) of trajectories is
particularly useful. This value allows the direct comparison of
phone transitions, with regard to the training data, acrossall
cepstral transition models. TheMSEtrans measurement can
be calculated as

MSEtrans =
1

∑S

s=1
CFs

S
∑

s=1

C
∑

c=1

Fs
∑

f=1

SEfcs (3)

whereSEfcs is the squared error for a specific framef , a
specific coefficientc and a specific samples.

Every transition generatesF squared errors (one for every
frame) and there areC = 13 of these cepstra (one for every
MFCC coefficient). To analyse the parameters for all of the
examples (S) of a given class, the mean and standard deviation
are calculated for the binned trajectories of the same MFCC
coefficients.

Finally, to represent the entire set of transitions with a single
error value, the summation of the contributions from each class
is evaluated:

MSEglobal =
1

T

T
∑

t=1

MSEtrans, (4)

whereMSEtrans are the mean trajectoryMSE estimated for
S examples of a contextual class and a total ofT classes.

2) Model consistency:To identify systematic behaviour
for cepstral transition trajectories, we present two consis-
tency measurements, in which both stable values and change-
descriptors are evaluated. Different modelling options can then
be compared directly (for the same transition examples). More
consistent model parameters are a more favourable choice for
the representation of the transition model.

Reference stable values are estimated using the training
data set. These values are obtained in a similar way to that
described in [11]. Once an initial set of trajectories have been
fitted to the training data, the mean is estimated for the stable
(constant) parts of every particular context that is required.
After estimating the reference stable values, these valuescan
also be predicted for the unseen samples of the test set. We
evaluate the model fit (as described in III-B1) in order to
compare the trajectories obtained with predicted stable values.

For the measurements described here, change-descriptor
model parts are treated differently. We choose to determine
change-descriptor behaviour in terms of temporal informa-
tion and define two representative parameters to evaluate the
consistency: (1) Relative position to ASR boundary and (2)
Absolute duration.

During the speech segmentation process, a single ASR
boundary for every phone transition is obtained. This boundary
has the same location for all13 cepstra and is useful to provide
an initial alignment of similar transition examples. In this way,
we compensate for the fact that not all examples are equal
in length. Measuring the centre positions (exactly half way
between the model boundaries) of the change descriptors and
relative to the ASR boundary then provides a good indication
to the position where most of the change for a cepstral
transition is occurring. The absolute duration is the length
of the change descriptor as defined by the model alignments.
Both position and duration measurements are given in terms
of frame units.

For each cepstral transition class, we estimate:

x̄cep =
1

N

N
∑

n=1

x (5)

and

σcep =

√

√

√

√

1

N

N
∑

n=1

(x− x̄cep), (6)

wherex is the measured parameter value,x̄cep the mean and
σcep the standard deviation forN examples of the cepstral
transition class. To represent an entire set of cepstal transitions
with a single consistency value, we sum the contributions from
each class:

Cglobal =
1

T

T
∑

t=1

σcep, (7)

whereσcep are the standard deviations estimated forN exam-
ples cepstral transitions and a total ofT classes.



C. Cepstral model improvements

In order to gain a better understanding of the trajectory
model, and to improve its capabilities, we have refined the
basic model along a number of dimensions. These refinements
are described below.

1) Connecting model segments:In the standard model, each
segment is modelled separately. This means that stable value
estimates of two adjacent models will not necessarily be the
same, but could exhibit a ‘gap’. We extend the piece-wise
linear approximation algorithm to model the entire utterance
in a single process, eliminating this artificial gap by forcing
adjacent stable values to be equal to one another.

2) Predicting stable values with constrained alignments:
Trajectory models with fixed reference stable values behave
differently with regard to the model alignment algorithm than
free trajectory models. An intermediate option would be to
first fit free trajectories (to find transitions), then enforce
stable values (from predicted reference values). This combined
information then constitutes the final trajectory.

Fig. 2. Piece-wise linear model fit of the first four cepstra of the diphone
transition /@-n/ using 4-piece connected models

3) 4-piece models:In Figure 2 another example of the same
diphone transition as shown in Figure 1, but in a different
context, is shown. While some of the cepstral transitions are
seen to be moving (relatively) in similar directions and some
start and end positions seem to agree, it is clear that the
transition itself behaves rather differently. Instead of single
transitional changes, characteristic peaks and troughs are now
formed. This behaviour is seen quite frequently for certain
transitions and coefficients. It is clear that in such cases,a
more elaborate change descriptor could be of value to model
the change accurately.

To improve change descriptor representation, we implement
a 4-piece symmetrically constrained model. With this con-
figuration, the change descriptors consist of two line pieces,
which are kept at equal length. (This requirement drastically
reduces the search space to find model alignment, compared

to the requirement when any of the four line pieces could be
of arbitrary length, and may be more robust in specifically
detecting the peaks and troughs). In Figure 2 the linear
approximations with 4-pieces are estimated for the first four
cepstra. Since this is also a connected model, the stable value
parts are now shared with the adjacent transition models (e.g.
the stable value of the first cepstral coefficient, MFC 1, is now
fitted to frames1 − 12 with this diphone transition example
only beginning at frame9).

IV. EXPERIMENTAL SET-UP

A. Overview

The experiments of this paper are performed on phone
transitions that are selected to ensure that data scarcity does
not interfere with our investigation. (Although we eventually
want to apply our model in limited-data environments, our
current goal is to understand its description of speech features
in the absence of such a constraint.) In this section, we provide
a discussion of the selection process. Each phone transition is
selected from a high quality set of speech recordings (of a sin-
gle speaker) and reviewed acoustically before being included
in the final data set. To model any phone transition, specific
MFCC features and the appropriate speech segmentation are
derived. We also present the specifics of the features used to
model the cepstral transitions.

B. Speech data

About 6000 short utterances were recorded for the experi-
ments that we conduct. This provides a large corpus of high
quality speech of a single male speaker. Only considering a
single speaker allows us to focus on contextual effects first,
without inter-speaker differences complicating the results. The
recordings were made using a list of short Afrikaans prompts
(1 to 5 words in length) with balanced phonetic coverage
[12]. Additionally, a dynamic programming scoring algorithm
was used with initial acoustic models to verify the speaker’s
pronunciations and obtain a high quality (aligned) set of
recordings [13]. The number of utterances that showed perfect
alignment was4974 and had a total duration of about3 hours.

From this “clean” data set, training and test data sets were
selected. All diphone transitions that occur30 or more times
in the clean data set were retained, and greedy selection was
used to select test utterances until the test set contained at least
3 examples of each of these diphones. The remaining clean
utterances formed the training data set. After performing these
steps the total number of utterances that were selected totalled
902 and4072 for the test and training data sets, respectively.

C. Segmentation

Accurate identification of phone transition boundaries is
very important, since our modelling approach relies on these
boundaries. We use a standard HMM-based ASR system
trained on all4974 clean recordings to automatically align the
speech data. A context-dependent cross-word phone recogniser
with tied triphone models is employed;39 MFCC features are
used, which include the first13 and their first and second



order derivatives. These features are computed with a window
size of 25ms and a frame rate of 10ms. Semi-tied transforms
are applied. Each triphone model has 3 emitting states with 7
Gaussian mixtures per state and a diagonal covariance matrix.
Verifying phone recognition accuracy on the test set, usinga
flat-phone grammar yields a value of 92.71%.

Triphone model alignments are obtained using a forced
alignment on all the data and the model alignment labels are
then converted to the base label sequence (the actual phonemes
observed in the training data).

D. Features for transition modelling

After transition boundaries have been obtained, we extract
13 MFCCs features for transition modelling. For these fea-
tures, while we still use a window size of 25ms, the frame
rate is adjusted to 5ms. This provides us with better time
resolution. Only the raw MFCC coefficients are used and
not any of the derivatives. Finally, for every utterance, each
of the MFCC vectors is associated with the phone-boundary
alignments from above, which provides contextual labelling at
the triphone level.

E. Selection of transition examples

Transitions All data Train Test
Total number 783 769 678
> 30 examples 470 436 173
Final selection 331 331 331

TABLE I
Number of unique diphone transition labels in data sets for various

selection stages.

Given the test and training data sets, a further selection
process was used to select the data for our experiments. In
Table I, the total number of unique transition labels is given to
show that for a large number of labels (470) we have more than
30 examples. (For the transition model analysis all transitions
with fewer examples are ignored.) After excluding transitions
including the silence label, we perform a final (per example)
selection. A particular transition example is only allowedif
the duration (in frames) is no more than a single standard
deviation from the mean. The result of this selection provides
us with the331 most frequent transition labels and transition
examples that have low speech rate variability.

V. EXPERIMENTS AND RESULTS

We compare various trajectory tracking techniques, re-
porting on the results obtained with each of the possible
improvements described in Section III-C. For all of the model
options, theMSEglobal values are calculated to measure
overall effectiveness. In the case of connected models, we
always convert to a valid segmented representation, which
ensures that direct comparison of the phone transitions on
a per-segment basis is valid. Model options with predicted
stable value parts require a train and test data set to assess
trajectory tracking. Reference stable values are predicted using

the training data and then applied as fixed stable value fits
during model estimation on the transitions of the test data set.

To compare change-descriptor behaviour we estimate the
global consistency valuesCglobal of specific temporal parame-
ters. More detailed comparison can be obtained (on a cepstral
level), comparing the standard deviationσcep for the same
cepstral transitions.

A. Connecting segments

As mentioned in Section III-C3, correctly representing the
more stable parts of phone transitions given the imposed
models requires us to extend the piece-wise linear approxima-
tion algorithm. Now, an entire utterance must be represented
by a single piece-wise approximation. Finding the utterance-
level trajectory model is accomplished in two estimation steps
(adding to the definition in Section III-A):

• Locate the model alignments for all of the transitions in
the utterance for segmented models.

• Use model alignments to fit all required line pieces of
the utterance. On a per-segment basis (left-to-right), fit
the change descriptor and ending stable value (except for
the first transition), re-using the last stable value of the
previous segment as the first stable value of the current
segment.

Additionally, if fixed reference stable values are required, fit
the mean of the two reference stable values contributing to a
single shared stable value. By sharing the first stable valueof
the previous segment (transition), the segmented models are
connected to form a single trajectory for the whole utterance.

Table II shows all of the estimatedMSEglobal values.
Global MSEs are estimated for the phone transitions of dif-
ferent data sets (train and test) and two values are given per
measurement: the means and standard deviations (in brackets)
of the diphone transition class MSEs, respectively. Only free
trajectories are constructed for the training data set. Theglobal
MSE for the test set, however, are compared for all options
(free or fixed stable value trajectories). To aid the comparison,
a ratio is also determined between the global MSE values with
every fixed stable value trajectory option and its corresponding
free trajectory. Finally, separate model parts can be evaluated,
and the global MSE values for only the frames corresponding
to the stable value of change-descriptor parts of trajectory
models are given.

We observe that the error on the training set is in agreement
of the test set results for free trajectories. There is a costto
connecting segments: Overall the error increases (as can be
expected for the more constrained model). However, the ratios
of error between fixed stable value and free trajectories are
similar, and we see that the error increases at least five-fold
when predicting stable values (rather than estimating themon
each phone occurrence).

As previously observed [11], larger context sizes allow for
more specific stable values and improved model fit. Therefore,
we test reference stable values of different context sizes
(monophones, biphones and triphones) and find that predicted
stable value model fits improve up to the triphone context



Model Stable Global MSE Global MSE Ratio Global MSE Global MSE
reference value (train) (test) (with free fit) (stable values) (change)

3-piece segmented Monophone 24.553 (6.338) 6.803 27.636 (6.662) 8.861 (5.165)
Biphone 19.228 (4.223) 5.328 21.908 (4.447) 6.756 (2.979)
Triphone 19.118 (3.574) 5.297 21.961 (4.105) 6.974 (2.141)
No ref 3.604 (1.265) 3.609 (1.306) 4.047 (1.448) 1.821 (0.794)

3-piece connected Monophone 47.659 (8.232) 6.196 54.594 (10.458) 18.354 (5.893)
Biphone 43.595 (7.319) 5.668 50.038 (9.503) 17.339 (4.226)
Triphone 42.157 (7.064) 5.481 48.826 (9.219) 17.038 (3.512)
No ref 7.710 (2.335) 7.692 (2.433) 8.299 (2.667) 5.415 (1.837)

4-piece connected Monophone 22.788 (3.614) 5.450 38.089 (6.691) 13.482 (2.362)
Biphone 21.497 (3.410) 5.142 35.968 (6.109) 12.461 (2.107)
Triphone 21.398 (3.453) 5.118 36.246 (5.978) 12.303 (2.220)
No ref 4.211 (1.243) 4.181 (1.242) 4.959 (1.481) 3.427 (1.106)

TABLE II
Overall MSEglobal measurements for train and test data trajectories, including options with predicted stable values.

level. Finally, consistency measures of the mean position of
the change descriptor and the mean duration of the change
descriptor show similar distributions for 3-piece segmented
and connected models.

B. Aligned transitions

Once stable values have been estimated, the timing of the
change descriptor of a specific transition is determined by
finding the best fit from one stable value to another. This may
not produce optimal change descriptor alignment, especially
if a specific stable value does not suit a specific sample
of a transition well. Change descriptor alignments can be
constrained to the free trajectory alignments for better change
detection. The fixed stable values can then still be applied
without allowing the model to find a further optimal fit for
chosen parameters.

In Table III, a global free trajectory baseline consistency
(Cglobal) of the change descriptor centre position is estimated.
Since trajectories with fixed stable values only exist for the
test data, all comparisons are made for the transitions of the
test set. We find that the measured change descriptor position
is less consistent for trajectory models with fixed stable values
(free trajectory models show most consistent change descriptor
positions in all cases).

The more consistent change descriptor positions of the
free trajectory models motivate further investigation of free
trajectory alignments. To better understand the relationship
between reference stable values, free trajectory alignments
and model fit, we also determine the MSE parameters when
constraining fixed stable value trajectory models to have free
trajectory alignments. Similarly to the values in Table II,
Table IV shows theMSEglobal values, now with free trajec-
tory alignments. As expected, the overall MSE measurements
show increased error for constrained alignments. Since 3-piece
model change-descriptors are so dependent on stable valueswe
find substantial error increases when comparing the values of
Table II.

C. 4-piece segments

For all the previous trajectory options, a change descriptor
consisted of a single straight line, connected to the start and

Model Stable Position
reference value (centre)

3-piece segmented No ref 2.847 (1.215)
Biphone 4.095 (1.753)
Triphone 4.107 (1.753)

3-piece connected No ref 2.848 (1.215)
Biphone 3.924 (1.708)
Triphone 4.024 (1.721)

4-piece connected No ref 2.167 (0.751)
Biphone 2.289 (0.832)
Triphone 2.281 (0.827)

TABLE III
Overall consistencyCglobal measurement of change descriptor position on

test set

Fig. 3. Comparing consistencyσcep of change descriptor position on a per
cepstrum basis

end points of the stable values (at the model alignments). With
4-piece models, the complexity of the change descriptor is



Model Stable Global Global MSE Global MSE
reference value MSE (stable values) (change)

3-piece connected Monophone 50.245 (8.563) 54.156 (9.826)36.059 (7.502)
Biphone 45.429 (7.315) 49.102 (8.512) 32.014 (5.904)
Triphone 44.521 (7.057) 48.169 (8.161) 31.199 (5.870)

4-piece connected Monophone 32.890 (5.485) 50.626 (8.655)15.527 (2.696)
Biphone 29.856 (4.771) 45.772 (7.339) 14.268 (2.409)
Triphone 29.373 (4.888) 45.001 (7.151) 14.002 (2.521)

TABLE IV
Overall MSEglobal measurement on test set, when applying fixed stable values and constrained alignments

Fig. 4. Comparing mean duration̄xcep of the change descriptors on a per
cepstrum basis

increased to include two straight lines. This allows the change
descriptor to have a freely varying centre point (connecting the
two change descriptor line pieces). As a final constraint, the
change descriptor must be symmetrical along the time axis
(two lines of equal duration) during model alignment. Final
model fits (when connecting segments) of the utterance may
however find “shared” stable values different to the ones used
during model alignment, leading to non-symmetric change
descriptors.

Comparing the overall consistencyCglobal of the change
descriptor position with that of the 3-piece models shows the
4-piece models to be the most consistent choice for free tra-
jectory models (Table III). Furthermore, rather than becoming
much less consistent when trajectories with fixed stable values
are used, 4-piece models show comparable consistency for
fixed stable value trajectories.

Figure 3 provides a more detailed comparison. Measuring
the centre position of the change descriptors relative to the
ASR boundary for each cepstral transition example, and com-

puting the standard deviationσcep allows transition compari-
son on a per cepstrum basis. The scatter plot therefore depicts
these values for3 and4-piece models and the same transition
examples. We find that most of the cepstral transitions have
larger standard deviations when 3-piece models are used.
According to the histogram frequencies and the placement
of cepstral transition measurements, only a relatively small
number of cepstral transitions have smaller standard deviation
for 3-piece models. Generally 4-piece models also tend to have
lower standard deviation for most of these cepstral transitions.

Model Duration (absolute)
3-piece segmented 2.710 (0.858)
3-piece connected 2.583 (0.876)
4-piece connected 2.842 (0.930)

TABLE V
Overall consistencyCglobal measurement of change descriptor durations on

all data

To understand more about the differences between the 3-
piece and 4-piece change descriptors, we also compare their
absolute durations (length in frames). Figure 4 shows the mean
duration in frames compared for every cepstral transition class
between 3-piece and 4-piece models. It is clear that for all
cepstral transition classes, the mean durations of the change
descriptors are longer for 4-piece models compared to 3-piece
models and the same class.

Confirming the overall variabilityCglobal on the mean
duration (free trajectories), we find that connecting segments
for 3-piece models seems to provide the most consistent mean
change descriptor durations in general (Table V). Although4-
piece models with longer change descriptors are less consis-
tent, this value is still very comparable to the 3-piece model
case.

Finally, the overallMSEglobal values in Table II confirm
that the additional freedom of the 4-piece model reduces
overall error by considerable amounts; this is true for both
the model fit of change descriptor and stable value parts, as
well as trajectories with predicted stable values comparedto 3-
piece models of similar configuration. The ratio of the MSE for
trajectories with predicted stable values and free trajectories
is also seen to improve for 4-piece models.

Additional insight regarding the predictability of reference
stable values may be achieved by exchanging (“swapping”)
the matching reference values between3 and4-piece models.
Table VI shows theMSEglobal values for the different context



Model Stable Global Global MSE Global MSE
reference value MSE (stable values) (change)

3-piece connected Monophone 47.860 (8.270) 54.505 (10.367) 18.474 (6.062)
Biphone 43.701 (7.381) 49.706 (9.341) 17.306 (4.309)
Triphone 42.638 (7.440) 48.940 (9.445) 17.159 (3.738)

4-piece connected Monophone 23.095 (3.708) 38.847 (6.920)13.518 (2.393)
Biphone 22.070 (3.612) 37.100 (6.586) 12.665 (2.184)
Triphone 21.906 (3.597) 37.245 (6.375) 12.465 (2.271)

TABLE VI
Overall MSEglobal on test set for “swapping” reference stable values between3 and 4-piece models

sizes. Improved model fit of stable regions for 3-piece models
(using the 4-piece predicted stable values) are obtained, in all
cases except the triphone case. Similarly, the 4-piece model
model fit for these regions degrades in all cases. Overall model
tracking degrades slightly in all cases.

VI. CONCLUSION

With this work we improve upon the piece-wise linear
model approximation of cepstral transitions. This is accom-
plished by the introduction of new approximation options
(connecting segments, constraining model alignments and
more complex change descriptors). Trajectory model tracking
is analysed in more detail and for separate model parts
(change descriptors and stable values). We find that connect-
ing segments, to form a single linear approximation for the
entire utterance, proves to be successful and leads to similar
distributions for the change descriptors. Although we do obtain
similar context dependent improvements to [11] for predicting
stable values, these predictors are confirmed not to be very
accurate representations of the actual magnitudes for frames
of the stable regions of individual transition examples.

Our analysis of change descriptor behaviour shows free
trajectories to be the most consistent at detecting the relative
position of change. Change descriptor behaviour is tightly
coupled to the chosen stable values for 3-piece models and are
therefore strongly affected, introducing large error, foraligned
model fits. In contrast, the extra degree of freedom for the
change descriptor of the 4-piece model is seen to be much less
dependent on the stable value parts, resulting in comparatively
consistent positions of detected changes. Further examination
of the change descriptors shows the 4-piece approximation
to model much longer changes in general, which agrees
with plots of cepstral transitions where characteristic (longer)
double transition behaviour can frequently be observed near
the ASR boundary for some cepstra and phone transition
labels. This also implies that fewer frames are assigned to
stable regions.

In spite of these factors, the error in the stable values of the
4-piece approximation increases substantially for constrained
alignments and is fairly similar to the stable value error for

the 3-piece model case. Swapping the predicted stable values
between 3 and 4-piece models also generate similar error
for these parts, with slight improvement when using the 4-
piece predictors. The exact reason why these regions show
so much intra-segmental variability is not yet well understood
and additional investigation may prove valuable.
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