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Analytic approximation to the largest eigenvalue

distribution of a white Wishart matrix
J.D. Vlok and J.C. Olivier

Abstract—Eigenvalue distributions of Wishart matrices are given
in the literature as functions or distributions defined in terms of
matrix arguments requiring numerical evaluation. As a result
the relationship between parameter values and statistics is
not available analytically and the complexity of the numerical
evaluation involved may limit the implementation, evaluation and
use of eigenvalue techniques using Wishart matrices. This paper
presents analytic expressions that approximate the distribution
of the largest eigenvalue of white Wishart matrices and the
corresponding sample covariance matrices. It is shown that the
desired expression follows from an approximation to the Tracy-
Widom distribution in terms of the Gamma distribution. The
approximation offers largely simplified computation and provides
statistics such as the mean value and region of support of
the largest eigenvalue distribution. Numeric results from the
literature are compared with the approximation and Monte Carlo
simulation results are presented to illustrate the accuracy of the
proposed analytic approximation.

I. INTRODUCTION

The eigenvalue spectrum of noise covariance matrices plays an

important role in such fields as principal component analysis

(PCA) [1], singular value decomposition (SVD), multiple-

input multiple-output (MIMO) communication systems [2] and

signal detection [3], [4]. The behaviour of the largest eigen-

value can be used to predict the performance of MIMO sys-

tems in a fading channel and the performance of eigenvalue-

based signal detection techniques. The exact distributions of

individual eigenvalues can be obtained from the joint distribu-

tion, which is defined in terms of hypergeometric functions if

the covariance matrix has a Wishart distribution [2], [5]. The

individual distributions are then expressed in terms of Laguerre

polynomials [6] which can be simplified as matrix arguments

[2], [7]. These however require numerical evaluation which

can be performed using extensive tables or special purpose

software [8]. However, it was shown in [9] that the asymptotic

distribution of the scaled largest eigenvalue of a white Wishart

matrix can be described by the Tracy-Widom (TW) law

[10], [11] which can be evaluated numerically [12]–[14] or

approximated using a logit transform [8]. The TW distribution

was also shown to be reasonably accurate for non-asymptotic

cases [8], [9]. This paper presents a closed-form analytical

expression to approximate the TW distribution in order to de-

rive simple expressions for the largest eigenvalue distribution

of the Wishart distributed covariance matrix and the associated

sample covariance matrix, similar to an approximation given
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in [15]. Simple expressions describing the statistics and region

of support of the largest eigenvalue distribution are also given.

The rest of the paper is organised as follows. In Section

II a mathematical background is given. Section III presents

the approximation and Section IV the expression for the

largest eigenvalue distribution. Section V provides a simulation

study where numeric results from the literature are compared

with Monte Carlo simulation results and finally Section VI

summarises the main results and concludes the paper. The

focus of this paper is on the TW law of order 1 and 2, denoted

respectively by TW1 and TW2. TW4 is briefly considered in

the appendix.

II. MATHEMATICAL BACKGROUND

A. Noise matrix

Let X be an M × N matrix where each row of X is real and

independently drawn from NN (0, σ2
xI), the N -variate normal

distribution with zero mean and covariance matrix σ2
xI. The

N × N matrix

Y = X
H

X (1)

will then have a white Wishart distribution WN (M, σ2
xI) [9],

where X
H is the Hermitian transpose of X. If X is complex and

the complex components of each row are independently drawn

from NN (0, (σ2
x/2)I), Y will have a complex white Wishart

distribution. The largest eigenvalue λ1 of Y in the edge scaling

limit, that is when M → ∞, N → ∞ and M
N

→ γ ≥ 1, will

obey [9]
(

λ1/σ2
x

)

− µMN,β

σMN,β

D→ Fβ (2)

where Fβ is the TW cumulative distribution function (CDF)

with β = 1 if X is real and β = 2 if X is complex. The centre

and scaling parameters for β = 1 are given by [9]

µMN,1 =
(√

M − 1 +
√

N
)2

(3)

σMN,1 =
√

µMN,1

(

1√
M − 1

+
1√
N

)
1
3

(4)

and similarly for β = 2 are given by [9]

µMN,2 =
(√

M +
√

N
)2

(5)

σMN,2 =
√

µMN,2

(

1√
M

+
1√
N

)
1
3

. (6)

According to the limit M
N

→ γ ≥ 1, (2) to (6) hold only for

M ≥ N . It is however stated in [9] that (2) applies equally

well if M < N when M → ∞, N → ∞, and the roles of

M and N are reversed in (3) and (4). Following the same
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argument, (5) and (6) can also be used for M < N since

reversing the roles of M and N has no effect in this case.

Although (2) is true in the limit, [9] showed that it can provide

a satisfactory approximation for matrix dimensions M and N
as small as 10.

Note that (2) is usually stated for the unit variance case

σ2
x = 1 (as in [1], [9]). The normalisation of λ1 is required

to develop expressions for the largest eigenvalue distribution

and the associated statistics for the general case of σ2
x. To

explain the normalisation and show how a given eigenvalue

λ of Y scale in comparison with the unit variance case,

suppose X(u) represents X when σ2
x = 1 and Y(u) = X

H
(u)X(u)

from (1). The corresponding eigenvalue of Y(u) is λ(u). By

substituting X = σxX(u) for the general case into (1), it

follows that Y = σ2
xY(u). From the definition of eigenvalues

and eigenvectors (Yv = λv with v an eigenvector of Y) it can

then be shown that

λ = σ2
xλ(u). (7)

The eigenvalues of Y therefore scale with σ2
x compared with

the unit variance case Y(u). The eigenvalue λ1 can therefore

be normalised by dividing it with σ2
x as is done in (2).

B. Sample covariance matrix and relation to noise matrix

The sample covariance matrix of X is given as [1]

R =
1

M

M
∑

m=1

x
H
mxm (8)

with xm the mth 1 × N row of X. The ijth element of the

N × N matrix formed by x
H
mxm in (8) can by definition be

expressed in terms of the elements of X as

[

x
H
mxm

]

ij
= X

∗

miXmj . (9)

From (8) and (9), each element of R can be expressed as

Rij =
1

M

M
∑

m=1

X
∗

miXmj. (10)

Likewise, each element of Y can be expressed from (1) as

Yij =

M
∑

m=1

X
∗

miXmj (11)

which is the scalar product of the ith row of X
H and the jth

column of X. From (10) and (11) it is clear that

R =
1

M
Y. (12)

The largest eigenvalue of R denoted by l1 is therefore related

to λ1 as

l1 =
1

M
λ1. (13)

Note that both λ1 and l1 are always real and nonnegative since

Y and R are always Hermitian (or symmetric if β = 1) and

positive semidefinite.

C. Tracy-Widom law

The Tracy-Widom law [11] or distribution TWβ refers to a

family of CDFs Fβ and related probability density functions

(PDFs) fβ describing the limiting distributions of the largest

eigenvalues of symmetric (β = 1), Hermitian (β = 2) or self-

dual (β = 4) random matrices in the Gaussian ensembles1.

The three TW CDFs are defined as [11], [12]

F1(x) = exp

(

−1

2

∫ ∞

x

q(w) dw

)

√

F2(x) (14)

F2(x) = exp

(

−
∫ ∞

x

(w − x) q2(w) dw

)

(15)

F4

(

x√
2

)

= cosh

(

−1

2

∫

∞

x

q(w) dw

)

√

F2(x) (16)

with q(w) the solution to the Painlevé II differential equation

q′′(w) = wq(w) + 2q3(w) (17)

with the boundary condition q(w) ∼ Ai(w) as w → ∞ where

Ai(w) is the Airy function. Calculation of Fβ therefore re-

quires evaluation of the Painlevé II differential equation which

can be performed numerically and tabulated (see [14] for a

review on the numerical evaluation of distributions defined

in terms of Painlevé transcendents). A number of authors

[12]–[14] developed and made available software modules to

calculate double precision solutions of TWβ . Tables containing

solutions of Painlevé II, TW1 and TW2 over x ∈ [−40, 200]
with step size ∆x = 0.0625 as described in [13] are available

at [16]. The numeric solutions of fβ obtained from [16] for

β = 1 and 2 are shown in Figure 1 and are used in this paper

to develop the approximation.

III. TRACY-WIDOM APPROXIMATION

In this section an approximation to TWβ using the Gamma

distribution is proposed and the goodness-of-fit of the ap-

proximation is evaluated against the double precision numeric

values of [16], which are exact to sixteen significant decimal

digits. The numeric values of the PDF and CDF of TWβ

obtained from [16] are denoted respectively by fβ and Fβ .

Likewise, the PDF and CDF of the Gamma approximation

are denoted by gβ and Gβ . Whereas only β = 1 and 2 are

considered in this section, β = 4 is considered in the appendix.

A. Proposed Gamma approximation

By observing the numeric solutions of fβ in Figure 1, the

functions appear to resemble slightly asymmetric Gaussian

density functions shifted on the x-axis. To incorporate the

asymmetry, fβ could therefore be approximated using the

Gamma PDF given by

gβ(x) =
(x − x0)

k−1

θkΓ(k)
exp

[−(x − x0)

θ

]

(18)

with x0 the location or shift parameter, k the shape, θ the scale

and Γ(k) the Gamma function. Values for these parameters

1The Gaussian ensembles include the orthogonal (GOE), unitary (GUE)
and symplectic (GSE) ensembles corresponding respectively to real (β = 1),
complex (β = 2) and quaternion (β = 4) random matrices [5].
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(which are given in Table I) were obtained by fitting gβ to

the numeric values of fβ and minimising the sum of squared

differences (SSD)

ǫ2β =
L
∑

i=1

[fβ(xi) − gβ(xi)]
2

(19)

over the full range of x in [16] such that x1 = −40 and

xL = 200 with sample step size ∆x = 0.0625. The statistics

of the resultant Gamma approximation are given in Table I,

which resemble the TW statistics given in Table 1 of [11], [14].

In addition to the numeric solutions, Figure 1 also shows the

Gamma approximations using (18) with the parameter values

from Table I. The SSD values obtained using (19) are also

given in Table I.

TABLE I
PARAMETER VALUES AND RELATED RESULTS FOR THE GAMMA

APPROXIMATION TO TWβ .

Parameter Symbol β = 1 β = 2

Shape k 46.5651 79.3694

Scale θ 0.1850 0.1010

Location x0 -9.8209 -9.7874

Mean kθ + x0 -1.2064 -1.7711

Variance kθ2 1.5937 0.8096

Skewness 2/
√

k 0.2931 0.2245

SSD ǫ2
β

2.8270 × 10−5 9.3883 × 10−6

SCvM statistic W 2
β

1.0547 × 10−7 4.7651 × 10−8

Kolmogorov statistic Kβ 8.0577 × 10−4 4.0428 × 10−4
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Fig. 1. Numeric and approximated PDFs for β = 1 and β = 2. fβ is the
numeric solution of the TW PDF obtained from [16] and gβ is the Gamma
PDF given in (18).

B. Support region

Although the support of TWβ is not bounded, both left

and right tails of fβ exhibit exponential decay [9]. It is

therefore possible to truncate the support region to certain

bounds [b−, b+] without losing much probability mass. This

section proposes a truncated support region for TWβ based

on the Gamma approximation presented in Section III-A. The

probability mass lost when using the truncated support region

is also considered.

The Gamma PDF given in (18) has support [x0,∞) and the

location parameter x0 can therefore be used as the lower bound

b−. The upper bound b+ is chosen such that the mean value

of the Gamma distribution is also the mean of the lower

and upper bounds2. The support of the truncated Gamma

approximation is then

[b−, b+] = [x0, 2kθ + x0] (20)

which is also displayed in Figure 1.

To illustrate the effect of the truncation, the PDFs and CDFs

of TWβ and the associated Gamma approximations are shown

with logarithmic ordinate axes in Figures 2 and 3. To quantify

the loss in probability mass due to the truncation, values

from Figure 3 for the mass of each tail in terms of the

cumulative distribution outside the bounded region of (20)

are given in Table II. Interpolated values of [16] are used as

reference solutions for Fβ . The total probability mass lost in

the truncation is the mass outside the support region.
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Fig. 2. Numeric and approximated PDFs for β = 1 and β = 2. fβ is the
numeric solution of the TW PDF obtained from [16] and gβ is the Gamma
PDF given in (18).

C. Goodness-of-fit

The approximation accuracy can also be measured using

goodness-of-fit tests which indicate how close an empirical

CDF is to a theoretical CDF. The difference or distance

between the two CDFs is given for the purpose of this study

as

Dβ(x) = Fβ(x) − Gβ(x). (21)

2For the purpose of choosing bounds the TW PDFs can be assumed to be
approximately symmetric - which can be seen clearly in Figure 1.
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TABLE II
PARAMETER VALUES RELATED TO TRUNCATED SUPPORT AND LOSS IN PROBABILITY MASS.

Parameter Expression β = 1 β = 2

Lower bound b
−

-9.8209 -9.7874

Upper bound b+ 7.4082 6.2452

Left tail mass (reference) Fβ(b
−

) 3.4799 × 10−21 7.6093 × 10−35

Right tail mass (reference) 1 − Fβ(b+) 4.3875 × 10−8 1.0734 × 10−12

Total mass lost (reference) Fβ(b
−

) + 1 − Fβ(b+) 4.3875 × 10−8 1.0734 × 10−12

Left tail mass (approximation) Gβ(b
−

) 0 0

Right tail mass (approximation) 1 − Gβ(b+) 3.4942 × 10−8 1.1563 × 10−12

Total mass lost (approximation) Gβ(b
−

) + 1 − Gβ(b+) 3.4942 × 10−8 1.1563 × 10−12
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Fig. 3. Numeric and approximated CDFs for β = 1 and β = 2. Fβ is the
numeric solution of the TW CDF obtained from [16] and Gβ is the Gamma
CDF derived from (18).

Two tests from [17] based on (21) are used in this paper

to evaluate the approximation accuracy. The first test is the

Smirnov-Cramér-Von-Mises (SCvM) test with test statistic

W 2
β =

∫ b+

b
−

D2
β(x)gβ(x) dx. (22)

The second test is the Kolmogorov test with test statistic

Kβ = max |Dβ(x)| ; x ∈ [b−, b+]. (23)

Both the SCvM and Kolmogorov test statistics are indications

of how well the numeric values from [16] fit the analytic

expression in (18). These statistics will approach zero as the

goodness-of-fit improves. The values of (22) obtained through

numerical integration with step size ∆x = 0.0625 and (23)

are given in Table I. The values of the test statistics remain

unchanged whether they are evaluated over [−40, 200] or

[b−, b+] given in (20), confirming that the truncation has a

negligible effect on the accuracy of the approximation. Graphs

depicting the absolute value of (21) over x and the associated

Kolmogorov statistics are shown in Figure 4.
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Fig. 4. Absolute difference between the CDFs Fβ and Gβ as defined in
(21) for β = 1 and β = 2. The Kolmogorov statistic defined in (23) is also
shown on each graph.

IV. AN EXPRESSION FOR THE LARGEST EIGENVALUE

DISTRIBUTION

This section provides expressions for the largest eigenvalue

distributions of the noise matrix Y and the sample covariance

matrix R based on the TW approximation presented in Section

III. Other approximation methods are also briefly considered.

A. Noise matrix Y

Using (2) and (18) and linear random variable transformations

[18] the PDF of λ1 can be expressed as

pλ1
(x) =

1

σ2
x σMN,β

gβ

{

(

x/σ2
x

)

− µMN,β

σMN,β

}

(24)

which can be written in the form of (18) as

pλ1
(x) =

(x − x′
0)

k−1

θ′kΓ(k)
exp

[−(x − x′
0)

θ′

]

(25)

with updated parameters

θ′ = σ2
x σMN,β θ (26)

x′

0 = σ2
x (µMN,β + x0 σMN,β) . (27)
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The support of pλ1
(x) can then be written from (20) with the

updated parameters given in (26) and (27) as

[b−, b+] = [x′

0, 2kθ′ + x′

0]. (28)

B. Sample covariance matrix R

Using (13) the PDF of l1 can be written from (24) as [18]

pl1(x) = Mpλ1
(Mx) (29)

which can also be written in the form of (18) or (25) as

pl1(x) =
(x − x′′

0 )
k−1

θ′′kΓ(k)
exp

[−(x − x′′

0 )

θ′′

]

(30)

with parameters updated again, giving

θ′′ =
θ′

M
(31)

x′′

0 =
x′

0

M
. (32)

The support of pl1(x) can then be written as (28) by replacing

the updated parameters with the twice-updated parameters

given in (31) and (32).

C. Other approximations

Other related approximations include the logit transform ap-

proximation to the TW law presented in [8] and a Gamma

approximation describing the largest eigenvalue distribution

in [15]. The logit transform approach considers only β = 1
and is computationally more complex than the approximation

proposed in this paper. The approximation of [15] calculates

the shape k and scale θ of the Gamma distribution by matching

the first two moments of the largest eigenvalue and Gamma

distributions using an equivalent of (2) and the TW law. The

TW distribution is however not approximated directly and the

shift parameter x0 is not used. The focus of [15] is on spectrum

sensing applicable to cognitive radio and only β = 2 is

considered for matrix Y. The approximation of [15] is however

evaluated in the simulation study in Section V against the

approximation presented in this paper for both β = 1 and 2
using the same scaling parameters given in Section II-A and

the values of the first two TW moments given in [14].

V. SIMULATION STUDY AND RESULTS

A Monte Carlo computer simulation study was conducted

with the aim of evaluating how accurate the proposed Gamma

approximations can predict actual largest eigenvalue distri-

butions. Empirical distributions of the largest eigenvalues of

matrices Y and R for both β = 1 and 2 were obtained

through simulation using 106 replications of these matrices for

a given set of matrix dimensions (M, N) with σ2
x = 1. Every

simulation set was started using identical random seed values.

The empirical PDF for a given set was obtained from the

simulated data by calculating the histogram over the support

region given in (20) with the number of bins fixed to 100.

To measure the approximation accuracy, the SCvM criterion

given by (21) and (22) was used with Fβ(x) corresponding

to the empirical CDF obtained through the Monte Carlo

simulations. Likewise, Gβ(x) and gβ(x) correspond to the

Gamma approximations with densities defined by (25) or (30)

depending on whether λ1 or l1 is concerned. Subsequently

the SCvM results are presented. Section V-A considers an

example set (M, N) = (20, 40) and Section V-B a range of

matrix dimensions. For the purpose of comparison, the SCvM

statistics calculated for the approximation method given in [15]

(see Section IV-C) are also given in Section V-B. The results

are discussed in Section V-C.

A. Example set

Figures 5 and 6 show the predicted and simulated distributions

of the largest eigenvalues for β = 1 and (M, N) = (20, 40).
The predicted curves correspond to the Gamma approxima-

tions based on (18) and the simulated curves to the empirical

data. Figure 5 shows the results for λ1 using (25) as prediction

and Figure 6 shows the results for l1 using (30) as prediction.

Table III shows parameter values for β = 1 (corresponding to

Figures 5 and 6) and β = 2. The goodness-of-fit statistics are

identical for λ1 and l1 for each case of β since the random

seed values used are identical and the number of histogram

bins used in determining the empirical CDF is constant.
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Fig. 5. Predicted and simulated PDFs and CDFs of λ1 for β = 1, (M, N) =
(20, 40) and σ2

x = 1.

B. Range of matrix dimensions

The range of matrix dimensions from (M, N) = (20, 20)
to (200, 200) for both cases of M ≥ N and M < N is

considered. Results for the square matrix case M = N are

given in Table IV and plotted in Figure 7. As in Table III,

the SCvM statistics for λ1 and l1 are identical in Table IV.

Figure 7 shows that as the matrix dimensions increase, the

SCvM statistics decrease indicating an improvement in the

approximation accuracy. For β = 1, the approximation given

in (25) outperforms [15] up to a maximum SCvM difference of

9.2809×10−5 at M = 200. For β = 2 the two approximation

methods show similar accuracies though for smaller values of
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TABLE III
PARAMETER VALUES FOR THE LARGEST EIGENVALUE DISTRIBUTIONS FOR (M, N) = (20, 40).

β = 1 β = 2

Parameter λ1 l1 λ1 l1

Mean (Theory) kθ + x0 105.4619 5.2731 102.6974 5.1349

Mean (Measured) 105.4344 5.2717 103.1117 5.1556

Lower bound b
−

38.3724 1.9186 39.9136 1.9957

Upper bound b+ 172.5515 8.6276 165.4811 8.2741

Bin size ∆x 1.3418 6.7090 × 10−2 1.2557 6.2784 × 10−2

SCvM statistic W 2
β

9.9414 × 10−5 9.9414 × 10−5 4.2237 × 10−4 4.2237 × 10−4

Kolmogorov statistic Kβ 1.3901 × 10−2 1.3901 × 10−2 3.2812 × 10−2 3.2812 × 10−2

TABLE IV
SCVM STATISTICS FOR THE LARGEST EIGENVALUES WHEN M = N .

W 2
1

(β = 1) W 2
2

(β = 2)

M λ1 (25) and l1 (30) λ1 [15] λ1 (25) and l1 (30) λ1 [15]

20 2.8308 × 10−4 2.8493 × 10−4 7.4245 × 10−4 6.9550 × 10−4

40 9.5246 × 10−5 1.0662 × 10−4 2.7204 × 10−4 2.0513 × 10−4

60 5.2480 × 10−5 8.7108 × 10−5 1.6838 × 10−4 1.1199 × 10−4

80 3.1733 × 10−5 7.8397 × 10−5 1.0092 × 10−4 6.7867 × 10−5

100 2.5417 × 10−5 8.2993 × 10−5 7.9621 × 10−5 5.4370 × 10−5

120 1.8896 × 10−5 7.9911 × 10−5 5.9821 × 10−5 4.4188 × 10−5

140 1.1512 × 10−5 9.0566 × 10−5 3.7689 × 10−5 4.2799 × 10−5

160 1.2007 × 10−5 9.3116 × 10−5 3.6145 × 10−5 4.3566 × 10−5

180 8.3928 × 10−6 9.2033 × 10−5 2.7315 × 10−5 4.1183 × 10−5

200 6.8972 × 10−6 9.9706 × 10−5 2.7319 × 10−5 4.0576 × 10−5
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Fig. 6. Predicted and simulated PDFs and CDFs of l1 for β = 1, (M, N) =
(20, 40) and σ2

x = 1.

M , [15] performs slightly better and for larger values of M ,

(25) performs slightly better.

SCvM results for fixed values of M = 20 and 200 (the

extreme cases) over the range of N ∈ [20, 200] when β = 2
are shown in Figure 8. Again it is evident that larger matrix

dimensions result in improved approximation accuracy. Figure

8 also shows that the two methods (25) and [15] exhibit similar

approximation accuracies, though [15] is slightly better for
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S
C

vM
 s

ta
tis

tic
 W

β2

Matrix dimension M = N

β = 1 (25)

β = 1 [15]

β = 2 (25)

β = 2 [15]

Fig. 7. SCvM statistics for λ1 as given in Table IV. The curves labelled
(25) correspond to the Gamma approximation given in (25) and the curves
labelled [15] correspond to the approximation method given in [15].

M = 20 and (25) is slightly better for M = 200.

C. Discussion of results

The presented results indicate that the Gamma approximation

can provide an accurate prediction of the empiric distribu-

tion of the largest eigenvalue. It was also shown that the

approximation accuracy improves as the matrix dimensions
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Fig. 8. SCvM statistics for λ1 (β = 2) with M fixed over the range of
N . The curves labelled (25) correspond to the Gamma approximation given
in (25) and the curves labelled [15] correspond to the approximation method
given in [15].

increase. This can be explained from (2) which is stated in

terms of the edge scaling limits of the matrix dimensions.

As the matrix dimensions increase, the TW law will provide

a better prediction of the largest eigenvalue distribution. The

approximation to the TW law will therefore also provide a

more accurate prediction for larger matrix dimensions. Lastly,

the approximation given by (25) is generally more accurate

than [15] (especially for larger matrix dimensions). This can be

ascribed to the different approximation methods. The method

of [15] relies on matching moments (see Section IV-C) to find

k and θ of the Gamma distribution. The method presented in

this paper fits the Gamma distribution (k, θ and x0) to the TW

law directly and then uses (2) to derive the largest eigenvalue

distribution. Using the shift parameter in the approximation

provides a method to more accurately describe the TW law in

terms of the Gamma distribution, which results in improved

approximation accuracies.

VI. CONCLUSION

This paper presented an approximation to the Tracy-Widom

law based on the Gamma distribution which was shown,

through Monte Carlo computer simulation and an analysis of

the distributions, to be able to accurately predict the largest

eigenvalue distribution of white Wishart matrices and their

corresponding sample covariance matrices. The approximation

provides a tractable and closed-form solution and does not

require numerical evaluation. Furthermore, simple equations

were derived to accurately predict the statistics and support

region of the principal component of a noise matrix directly

from the matrix dimensions. The results of this paper can

be used to develop analytic expressions where the Tracy-

Widom law forms part of the argument. Such expressions

will be useful in the analysis and application of detection

receivers where decision thresholds in noisy environments are

concerned, e.g. in MIMO, cognitive radio and signal detection

systems.
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VIII. APPENDIX

This appendix considers two approximations to TW4. The

first approximation (referred to as the indirect Gamma ap-

proximation) is based on the Gamma approximations to TW1

and TW2 developed in this paper. The second approximation

(direct Gamma approximation) is obtained using the method

presented in Section III-A.

A. Indirect Gamma approximation

The CDF F4 given in (16) can be written in terms of F1 and

F2 as

F4

(

x√
2

)

= cosh(α(x))
√

F2(x) (33)

with

α(x) = −1

2

∫

∞

x

q(w) dw = ln

(

F1(x)
√

F2(x)

)

(34)

from (14). The PDF f4 can then be obtained by differentiation

from (33) as

f4

(

x√
2

)

=
sinh(α(x))

√

2F2(x)f1(x)

F1(x)
+

exp(−α(x))f2(x)
√

2F2(x)
.

(35)

It is required in (34) and (35) that F1(x) > 0 and F2(x) > 0.

F4(x) = 0 and f4(x) = 0 wherever F1(x) = 0 or F2(x) = 0.

By substituting the Gamma approximations gβ and Gβ (β = 1
and 2) developed in Section III into fβ and Fβ in (33) to (35),

the indirect Gamma approximation Γ̃4 is obtained. Using the

double precision values obtained from [14] as reference (over

x ∈ [−10, 10] and ∆x = 0.0625), the goodness-of-fit statistics

(see Section III-C) are calculated as W 2
4 = 1.1455×10−5 and

K4 = 5.4584× 10−3.

B. Direct Gamma approximation

The direct Gamma approximation Γ4 was obtained using the

method described in Section III-A and the numeric values from

[14]. The resultant parameter values are given in Table V.

The PDFs and CDFs of TW4 from [14], Γ4 and Γ̃4 are

displayed in Figure 9. It is evident from Figure 9 and the

goodness-of-fit statistics given in the previous section and

Table V that Γ̃4 is a less accurate approximation than Γ4.

This can be expected since the approximation Γ̃4 is based on

approximations to TW1 and TW2.



This paper is a postprint of a paper submitted to and accepted for publication in IET Communications and is subject to Institution of

Engineering and Technology Copyright. The copy of record is available at IET Digital Library.

8

TABLE V
PARAMETER VALUES AND RELATED RESULTS FOR THE DIRECT GAMMA

APPROXIMATION TO TW4.

Parameter Symbol β = 4

Shape k 105.7442

Scale θ 0.0700

Location x0 -9.7038

Mean kθ + x0 -2.3017

Variance kθ2 0.5181

Skewness 2/
√

k 0.1945

SSD ǫ2
β

1.0623 × 10−4

SCvM statistic W 2
β

1.9356 × 10−6

Kolmogorov statistic Kβ 1.8025 × 10−3
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Fig. 9. Numeric and approximated PDFs and CDFs for β = 4. TW4 refers

to the numeric solution obtained from [14]. Γ4 and Γ̃4 refer respectively to
the direct and indirect Gamma approximations to TW4.
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