Zinc oxide and silver nanoparticles influence the antioxidative status in a higher aquatic plant, Spirodela punctata.

Melusi Thwala^{1,2}, Ndeke Musee^{3,4,}, Lucky Sikhwivhilu⁵, Victor Wepener²

¹Water Ecosystems and Human Health Research Group, CSIR, Pretoria.

²Zoology Department, University of Johannesburg, Johannesburg.

³Nanotech Environmental Impacts Research Group, CSIR, Pretoria.

⁴Department of Chemical Engineering, University of Johannesburg, Johannesburg.

⁵DST/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg.

7th ICEENN 2012, BANFF CENTRE, CANADA, 11 SEPTEMBER 2012

Fig. 2 Particle surface area calculated from diameter assuming spherical geometry and density 6.7 g/cm^3 (based on the average of densities for pure Fe⁰ and Fe₃O₄). Tratnyek and Johnson. 2006. NanoToday 1(2): 44-48

reactivity
solubility
conductivity
strength

Nanotech Environmental Impacts Research Group

SOME FUNDAMENTAL COMPLEXITIES

- Interaction with biological matter?
- Uptake routes: Do NM parameters influence uptake, how?
- Basis for biological response? Molecular definition
- Inducive level of dosage: environmentally relevant?
- Biomarkers of exposure: nano vs bulk

OLD SCIENCE SOLUTIONS FOR NEW TECHNOLOGY PROBLEMS

LOOK AT WHAT HAD BEEN DONE

The distribution of nanoecotoxicological data between organism groups. Kahru and Dubourgier . 2010. *Toxicology* 269: 105-119.

The distribution of L(C)50 values if nanoparticles to different groups of organisms. Kahru and Dubourgier . 2010. *Toxicology* 269: 105-119

Production of nanoparticles from different sources and respective applications.

Source	Type of nanoparticle	Quantity used in terms of tons	Application/uses
Metals and alkaline earth metals	Ag Fe	High High	Antimicrobials, paints, coatings, medical use, food packaging Water treatment
Metal oxides	TiO ₂	High	Cosmetics, paints, coatings
	ZnO	Low	Cosmetics, paints, coatings

http://www.oecd.org/dataoecd/37/19/37770473.pdf>.

OVERALL APPROACH

THE OXIDATIVE STRESS HYPOTHESIS

Free radicals are like robbers which are deficient in energy. Free radicals attack and snatch energy

Free radicals attack and snatch energy from the other cells to satisfy themselves.

LABORATORY MAINTANANCE and TESTING

Free floating higher aquatic plant,

- easy laboratory maintenance,
- higher protein content,
- rapid growth.

Holding conditions:

- 22°C+2
- cool-white fluorescent
- light:dark/8:16hrs
- · weekly water renewal.

- Exposure period:
- 4 days-static and 14 days- static renewal
- Hoegland's Medium
- 5 replicates 30 plants/replicate

Free radical activity

- ROS/RNS
- H₂O₂, ROO⁻, NO, ONOO⁻
- DCFH-DiOxyQ probe

Enzymatic scavengers

- Catalase
- Superoxide dismutase
- Total antioxidant capacity

Size

Morphology

- TEM
- DLS
- TEM

XRD

Surface area

BET

Ag nanoparticles

Sample	SA _{BET}	Pore Volume	Particle size	
	(m²/g)	(cm³/g)	(nm)	(mV)
nAg	3.399	0.01509	40-60	-16.3

Morphology

- Spherical nanoparticles.

Surface area

- Small relative to size.

XRD pattern

- Few crystal particles also detected.Pure phase: no impurities peaks detected.

ZnO nanoparticles

Sample	SA _{BET}	Pore Volume	Particle size	Z-potential
	(m ² /g)	(cm ³ /g)	(nm)	(mV)
nZnO	11.44	0.03020	10-130	22.7
nAg	3.399	0.01509	40-60	-16.3

Morphology

- regular (20-50 nm) and irregular spheres (80-120 nm), rods (15-45 nm), cubes (10-130 nm) and hexagonal platelets (60-80 nm).

Surface area

- Higher than nAg although bigger sized.

XRD pattern

- High crystallisation: hexagonal crystal system.
- Pure phase: no impurities peaks detected.

ROS/RNS

Total Antioxidant Capacity

Superoxide dismutase – 96 hrs

Catalase – 96 hrs

CONCLUSIONS and THE FUTURE

- Significant bottom settling of particles → nano tracking analysis.
 - →Generally, what are actual environmental implications?
- Exposure period as significant parameter on toxicity
- Clear evidence of significant oxidative offence due nZnO and nAg exposure.
- Suggestion of toxicity influence by nanoparticle parameters
 - → further investigate this phenomena (morphologies and z-potential)
 - → how does such influence uptake dynamics

CURRENT WORK

Investigate protein damage and lipid peroxidation.

FUTURE

- DNA damage → focus on oxidative linked DNA damage.
- Physiological pathways integrity photosynthetic and energy metabolism parameters.

THANK YOU

science & technology

Department:
Science and Technology
REPUBLIC OF SOUTH AFRICA

TABLE MOUNTAIN NATIONAL PARK- CAPE TOWN

