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ABSTRACT 

 

Predicting the location and timing of rainfall events has important social and economic impacts. It is 

also important to have the ability to predict the amount of rainfall accurately. At many operational 

centres, such as the South African Weather Service, forecasters use deterministic model output data 

as guidance to produce subjective probabilistic rainfall forecasts. The aim of this research is to 

determine the skill of a new objective multi-model, multi-institute probabilistic ensemble forecast 

system for South Africa. This was achieved by obtaining and combining the rainfall forecasts of two 

high-resolution regional atmospheric models operational in South Africa. The first model is the Unified 

Model (UM), which is operational at the South African Weather Service. The UM contributed three 

ensemble members which differ in physics, data assimilation techniques and horisontal resolution. 

The second model is the conformal-cubic atmospheric model (CCAM) which is operational at the 

Council for Scientific and Industrial Research, which in turn contributed two members to the ensemble 

system differing in horisontal resolution. A single-model ensemble forecast, with each of the ensemble 

members having equal weights, was constructed for the UM and CCAM models, respectively. The UM 

and CCAM single-model ensemble predictions have been used in turn to construct a multi-model 

ensemble prediction system, using simple un-weighted averaging. The probabilistic forecasts 

produced by single-model system as well as the multi-model system are here tested against observed 

rainfall data over three austral summer  half-years from 2006/07 to 2008/09, by using verification 

metrics such as the Brier skill score, relative operating characteristics, and the reliability diagram. The 

forecast system is found to be skillful. Moreover, the system outscores the forecast skill of the 

individual models. 
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1. Introduction 

 

Precipitation is of high relevance to users of meteorological data in South Africa, but it is also highly 

variable in time and space, making it one of the most difficult meteorological variables to predict 

skillfully. Nonetheless, skillful precipitation forecasts are essential especially in order to provide early 

warning of heavy rainfall and floods that may lead to loss of life and property. Most operational 

weather centers rely on limited-area numerical weather prediction (NWP) models in order to generate 

reliable and accurate weather forecasts (Stensrud et al., 1999; Toth et al., 2001). At short-range time 

scales (from 12-hours up to 3 days ahead) predicting the location of a precipitation event in general 

has a greater error than the prediction of the pattern and amount of precipitation (Theis et al, 2005). 

The large spatial and temporal variability in rainfall together with some internal NWP model 

restrictions contribute to the uncertainties and low skill associated with rainfall predictions (Ebert, 

2001; Theis et al, 2005; Roy Bhowmik and Durai, 2010). 

 

Precipitation forecast from NWP models are often provided in a deterministic manner. An inherent 

characteristic of deterministic forecasts is that the future state of the atmosphere is conditional on the 

present state of the atmosphere, and its evolution is governed by deterministic equations. Accurate 

short-range numerical forecasting is therefore dependent on accurately describing the initial 

conditions (Kalnay, 2003). The reason for this dependency on accurate initial conditions stems from 

the chaotic and non-periodic characteristics of the atmosphere (Lorenz, 1963). Forecasts that are 

initialized with only slightly different initial states diverge increasingly as a function of model integration 

time. Deterministic or best-guess forecasts are therefore considered to become less reliable as the 

model integration-time increases, due to the uncertainties that exist in the initial conditions as well as 

the internal error (physics and dynamics) of the numerical models (Lorenz, 1963; Ebert, 2001; 

Stensrud et al., 2005; Theis et al, 2005).  

 

Most National Meteorological Services (NMS) issue precipitation forecasts in terms of subjective 

probabilities, whereby the user can get additional information regarding the uncertainty pertaining to 

the specific forecast (Staël von Holstein, 1971). Forecasters have long been aware of the fact that 

different models can produce a variety in the outcome of the predicted weather (Ebert, 2001).  These 

probability forecasts issued by forecasters are subjective because they are based on the forecaster’s 

own insights and experience (Staël von Holstein, 1971). The issuing of objective probability forecasts 

at the short-range time-scale has the potential to objectively addresses, to some extent, the 

uncertainties associated with describing the initial state of the atmosphere as well as the uncertainties 

induced by internal model errors (Theis et al, 2005). 

 

Ensemble prediction systems (EPS) represent a stochastic approach which couples probability with 

determinism (Lewis, 2005), and which has the specific aim of predicting the probability of future 

weather events to occur; in turn addressing the uncertainty of a deterministic forecast (Stensrud et al., 

1999). Theis et al (2005) concluded that precipitation forecasts should be addressed in a probabilistic 
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manner in order to account for the chaotic nature of NWP forecasts. An important goal of ensemble 

prediction is to provide estimations of the reliability of the forecast being made (Kalnay, 2003; Grimit 

and Mass, 2005). The ensemble of forecast outputs from single or multiple numerical weather 

prediction models provides detail of the forecast regarding the confidence, possible errors and 

probability outcomes (Bakhshaii and Stull, 2009).  

 

Ensemble forecasts may be constructed in various ways (e.g. Kalnay, 2003). The traditional approach 

is to perform multiple model runs using the same model, by initializing each run from differently 

constructed initial conditions. Single-model ensemble systems effectively inhibit the description of the 

forecast uncertainty associated with model error, and this may lead to underestimation of the forecast 

error (Clark et al, 2008). However, multi-model ensemble forecasting succeeds in addressing the 

uncertainties that exists in the systematic errors of each numerical model, as well as the uncertainties 

within the initial conditions (Ebert, 2001). Clark et al (2008) noted that in addition to addressing 

uncertainties in initial conditions, ensemble forecasting, more specifically multi-model systems, will 

also inadvertently address errors related to lateral boundary conditions. At the short-range time-scale, 

synoptic and mesoscale features are less predictable due to their more chaotic features than the 

features of the planetary scale (Hamill and Colucci, 1997; Friederichs and Hense, 2008; Roy Bhowmik 

and Durai, 2010). For this reason, ensemble methodologies will improve primarily in describing the 

uncertainty and model error that exists in relation to these shorter length scales. The model 

uncertainty can be accounted for by running the same model with different physical parameterizations 

or analysis times or by using model runs from different numerical models (Bowler et al, 2008b, 

Wandishin et al., 2001). Typically, the errors and uncertainties in each individual member of the 

ensemble cancel when calculating the ensemble average, making the ensemble average appearing 

relatively smooth (Bowler et al., 2008b; Kalnay, 2003).  The combination of a multi-model system 

from a multi-institute ensemble has the advantage of effectively sharing the computational power 

needed to construct large ensembles amongst different institutions. 

 

Even though research has shown that the ensemble mean forecast outperforms the single 

deterministic forecast (Ebert, 2001), operational use of short-range ensemble systems has lagged 

behind that of long-range and medium-range forecasting (Eckel and Mass, 2005).  However, there is 

a number of NMS’s that uses short-range ensemble prediction systems operationally or quasi-

operationally.  These include NCEP (USA), INM (Spain), NMI (Norway), the Met Office (UK), DWD 

(Germany), BoM (Australia) and recently also SAWS (South Africa). 

 

The objectives of this paper are to investigate the skill of a multi-model ensemble in South Africa in 

predicting 24-hour probabilistic precipitation for South Africa, and to compare the skill of the multi-

model ensemble to that of the single-model ensemble systems.  

 

The outline of this paper is as follows. In the next section, the observed data sets and forecasting 

systems applied in the paper are discussed. The construction of a new multi-model ensemble system 
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based on two operational NWP models in South Africa, and forecast verification methods applied to 

describe the accuracy and skill of the system, are described in section 3. Verification results are 

presented in section 4, and conclusions are drawn in section 5. 

 

2. Data 

2.1. Rainfall data 

 

Three austral summer half-years were selected for the purpose of performing hindcasts. These are 

the months of October through to March for the years 2006/07, 2007/08 and 2008/09. South Africa is 

primarily a summer rainfall region, with only the southwest being a winter rainfall region (Tyson, 

1986). For these three seasons, 24-hour rainfall totals were calculated from numerical weather 

prediction data, as well as from observations stemming from automatic and manual weather stations 

of SAWS and the Agricultural Research Council (ARC). Figure 1 indicates the distribution of the 

combined observation network of SAWS and the ARC over South Africa, as used in this study. The 

rainfall totals were accumulated over the 24-hour periods from 06:00 UTC on a given day, to 06:00 

UTC the next day, in correspondence to the time of observation made at manual weather stations 

managed by SAWS. Therefore, the corresponding forecast hours of the NWP data for this 

accumulation are for forecast hours 6 to 30 (all the NWP forecasts utilized in this study were initialised 

at 00:00 UTC).  

 

Figure 1: 

 

In order for the numerical precipitation forecasts to be directly compared to the observed rainfall, the 

rainfall totals recorded at the weather station locations are interpolated to a grid field. Due to the 

sparse distribution of stations, it is not meaningful to construct a country wide grid field at a resolution 

finer than about 0.25º. An average rainfall value was calculated for each grid box defined by a grid of 

this resolution, using a box-average technique (Peel and Wilson, 2008). This procedure has been 

shown to successfully represent station data on the same grid field as that of the numerical weather 

prediction output (Peel and Wilson, 2008). Varying numbers of rainfall stations were used in the 

calculation of the average grid box value, depending on the availability of rainfall stations in the 

geographical area demarcated by the grid box. If no stations were present within a specific grid box, 

the grid box was excluded from the subsequent verification calculations. The results of the verification 

will be sensitive to the number of stations per grid box. For this study, the minimum number of stations 

required to be present within a grid box was chosen to be one. With the minimum number of at least 

two stations per grid box, the grid would have fewer samples, particularly in sparsely covered regions 

(i.e. Northern Cape), and the results would be skewed toward more populous regions of South Africa 

(i.e. Gauteng and Western Cape). Even with a grid box represented by only one station, which in turn 

has the characteristics of a point measurement, making comparison with a model grid box average a 

bit more problematic, the greater number of observational grid boxes was chosen to be the better 

option for the purpose of this study. 
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2.2. Model data 

2.2.1. Unified Model 

 

The Unified Model (UM) is a nonhydrostatic model developed at the UK Met Office (Davies et al, 

2005). Its vertical coordinate is based on geometric height. The UM can in principle be applied at 

time-scales ranging from weather forecasting to climate projection, and at resolutions ranging from 

relatively low to very high resolutions beyond the validity of the hydrostatic assumption (Davies et al, 

2005). The UK Met Office runs the UM at global scale with horisontal resolution of 40 km, four times 

per day providing initial and boundary conditions for a regional version of the UM. Since May 2006, 

the UM version 6.1 has been running operationally at SAWS with different configurations, including 

various horisontal resolutions, parameterizations schemes and data assimilation processes (Tennant, 

2007). The three configurations used in this study are described in detail. All three of the 

configurations run in-house at the SAWS on a NEC SX-8 supercomputer. 

 

2.2.1.1 12 km no Data Assimilation (no-DA) 
The 12 km no-DA UM forecast covers the sub-continent of southern Africa as well as large areas of 

the surrounding oceans (Figure 2a). This configuration runs once a day with 38 levels in the vertical, 

and produces forecasts 48-hours ahead from the initialized field at 00:00 UTC (Tennant, 2007). The 

forecast output fields are written every hour. This run uses the 18:00 UTC forecast from the UM 

Global Model to provide initial conditions to the 12 km run at 00:00 UTC, as well as lateral boundary 

condition fields.  

2.2.1.2 12 km DA 
This configuration field has the same domain (Figure 2a) and resolution as the 12 km no-DA run, but 

incorporates continuous three-dimensional variational (3DVAR) DA. DA is a statistical method of 

combining the latest observational data and the first guess field from the previous short-range 

forecast for the same period (Kalnay, 2003). The assimilation process is repeated every six hours, 

forecasting six hours ahead, i.e. four times a day, but at the 00:00 UTC assimilation update, the 

model continues to forecast 48-hours ahead. 

 

2.2.1.3. 15 km no-DA 
The 15 km horisontal resolution run has a much smaller domain (Figure 2b), than the 12 km resolution 

runs. It is set-up to cover only the South African domain, from 22ºS to 35ºS and 15ºE to 34ºE, making 

it computationally less expensive. This configuration uses no data assimilation, but also uses the 

18:00 UTC forecast from the UM Global Model to provide 00:00 UTC initial conditions. 

 

2.2.2. CCAM 

 

The Conformal-cubic atmospheric model (CCAM) was developed by the Commonwealth Scientific 

and Industrial Research Organisation (CSIRO) in Australia (McGregor, 19962005a, 2005b; McGregor 

and Dix, 2001, 2008). CCAM is a variable-resolution global model, that may be applied either in 

quasi-uniform mode to function as a global circulation model, or alternatively in stretched-grid mode to 

provide high resolution forecasts over an area of interest. The model solves the hydrostatic primitive 
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equations using a semi-implicit semi-Lagrangian method (McGregor, 2005). It has been illustrated by 

Engelbrecht et al. (2009) and Engelbrecht et al. (2012) that CCAM is capable of satisfactorily 

simulating many attributes of the present-day climatological conditions over southern and tropical 

Africa. The model has also been shown to produce skillful short-range and seasonal forecasts over 

the southern African region (Potgieter, 2006; Ghile and Schulze, 2010; Landman et al., 2009; 

Landman et al., 2010, Engelbrecht et al, 2011). CCAM became operational at the Council for 

Scientific and Industrial Research (CSIR) in 2010, so that hindcast data were created in order to 

perform verification studies for the three summer half-years relevant to this study. In operational 

mode, the CCAM is initialized at 00:00 UTC, using initial condition fields obtained from the Global 

Forecast System (GFS). Two different 7-day forecasts are produced daily using the 00:00 UTC initial 

state. A forecast that has a resolution of about 60 km over southern and tropical Africa is performed 

first (Figure 2c). In order to obtain this forecast the model is applied in stretched-grid mode over 

southern and tropical Africa, with the resolution decreasing to about 400 km in the far-field. A high-

resolution forecast is subsequently performed using a more strongly-stretched grid that provides 

resolution of 15 km over southern Africa, with this run nudged within the 60 km forecast. Hindcasts for 

the three half-years under consideration were performed using a set-up that mirrors the operational 

forecasting system. For both the 60 km and 15 km hindcasts, model output is available at six-hourly 

time-steps over a domain that covers southern and tropical Africa. All the hindcasts were performed 

on the Sun Hybrid System of the Centre for High Performance Computing (CHPC) in South Africa. 

 

Figure 1. 

 

3. Methodology 
3.2. Construction of the Multi-Model Ensemble Prediction System 
 

An ensemble of forecasts to some extent describes the uncertainties pertained in single-model 

forecasts (Zongjian, 2008; Kalnay, 2003). The multi-model ensemble system (MMENS) presented 

here is formulated with the purpose of predicting the probability of precipitation exceeding 

predetermined thresholds, over a 24-hour period, from 06:00 UTC to 06:00 UTC. Although each of the 

individual members of the mult-model ensemble described in the following sections covers a bigger 

domain than South African (22º to 35ºS and 16ºE to 33ºE), the spatial extent of the SAWS and ARC 

observational network limits the verification analysis to South Africa. The model output was regridded 

to the same horisontal resolution of 0.25° over the South African domain as applicable to the 

observational grid. 

 

Different 24-hour rainfall total thresholds are considered in order to formulate dichotomous forecasts 

for each threshold value. That is, for a given threshold a value of zero is assigned to the forecast if the 

threshold is not exceeded and a value of one if the threshold is exceeded. In this paper the threshold 

values of daily rainfall totals considered are 1 mm and 10 mm, with the latter representing significant 

rainfall events. Ebert (2001) noted that 1 mm/day threshold is useful in the construction of gridded 
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rainfall fields, in order to eliminate dew and insignificant rain. The forecast accuracy and skill in 

predicting rainfall occurring at or above each of the various thresholds are subsequently investigated. 

 

The MMENS is constructed from forecasts for the UM and CCAM. The skill of the single-model 

ensemble forecasts is compared to the MMENS and the influences of each of the single-model 

ensemble systems on the MMENS accuracy and skill is described. Only for days where all of the 

ensemble members are available are used in the analysis.  

 

The individual members of each of the single-models contribute equal weights to the respective 

single-model ensemble systems. The UM ensemble (UMENS) is created by adding the dichotomous 

forecasts at the grid points for each of the individual members, and to then dividing by N (the number 

of model configurations). Symbolically,  

  

 

 

 

The same process is repeated for the CCAM ensemble (CCAMENS), by adding the dichotomous 

forecasts of the two deterministic forecasts and to then divide by : 

 

 

 

The MMENS is then created by applying equal weights to the two single-model ensemble systems 

described above.  

 

 

 

That is, the output from the UMENS is added to that of the CCAMENS and the total is then averaged, 

so that both models contribute equally to the MMENS. 

 

3.3. Verification metrics 

 

The score presented for the two thresholds are calculated over all of the 18 months of the three 

summer half-years. For a more detailed description of the results for individual months see Landman 

(2012).  

 

The various statistical scores to be presented for the two thresholds were calculated over all of the 18 

months of the three summer half-years. For a more detailed description of the results for individual 

months see Landman (2012).  
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The forecast bias is calculated in order to determine whether the ensemble systems have a wet 

(positive) or a dry (negative) bias.  The forecast bias ( ) explores whether a 

variable under consideration is systematically over-forecast or under-forecast, and is a measure of 

forecast accuracy. The perfect forecast would have a bias of 0. Here  represents the total number 

of forecasts issued for the summer half-year. 

 

The statistics used here for determining the performance of the dichotomous forecasts by using a 

contingency table (Table 1) are the Frequency Bias Index (FBI; FBI ), Probability of Detection 

(POD; ), False Alarm Rate (F; ) and the Critical Success Index (CSI; 

). These verification scores are calculated to explore the accuracy of the dichotomous forecasts 

based on different thresholds. For each forecast or observation where the threshold is exceeded, the 

deterministic forecast becomes “yes (or 1)” and “no (or 0)” if the threshold is not exceeded. This  

forecast is then analysed using the contingency table which shows the frequency of “yes” and “no” 

forecasts  relative to the observed occurrences (Joliffe and Stephenson, 2003; Wilks, 2006, Fawcett, 

2008 – see Table 1). The series of verification statistics obtained in this way, for various threshold 

values, give an indication of the forecast to correctly predict the occurrence as well as the amount of 

rainfall (Ebert, 2001). This process was applied separately to the different ensembles that were 

formulated. Usually, the contingency tables are set-up to explore the average forecast performance 

over a model domain. This has the disadvantage that the verification scores represents an area 

average (Ebert, 2001) and cannot distinguish between different geographical locations of the domain 

or different weather regimes. For this reason, a contingency table was set-up for each grid box in the 

domain, and the scores calculated to present forecast performance at each grid box. In this manner 

the spatial patterns of the forecast performance can be evaluated. In this paper, only the area 

average values will be presented, with the spatial details provided by Landman (2012).  

 

TABLE 1: The contingency table for the analysis of dichotomous forecasts 

 

a : HITS – the event was forecast and observed 

b : FALSE ALARMS – the event was forecast but not observed 

c : MISSES – the event was not forecast but observed 

d : CORRECT NEGATIVES – the event was neither forecast not observed 

 

    OBSERVED   

    YES NO   

FORECAST 
YES a b forecast yes 

NO c d forecast no 

    observed yes observed no TOTAL 
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For probability forecasts of dichotomous events the verification metrics consisted of the Brier skill 

score (BSS; Stanski et al (1990)), the reliability diagram (Jollife and Stephenson (2003); Wilks (2006)) 

as well as the relative operating characteristic (ROC; Jollife and Stephenson (2003); Wilks (2006)). 

These metrics give almost a complete diagnostic evaluation of forecast performance (Peel and 

Wilson, 2008).  

 

The BSS (Stanski et al. 1990) is derived from the Brier score (BS; Wilks, 2006, Fawcett, 2008). The 

BSS answers the question of the relative skill the probability forecast (predicting whether the event 

occurred or not) has over that of the persistence (reference) forecast (Mason, 2004). The BS consists 

of the mean squared error in the probability forecast  

 

             (1) 

 

Here assumes a value of 1 if the event was forecast and 0 if the event was forecast not to occur. 

Similarly, a value of 1 is assigned to  if the event did occur and 0 if the event did not occur. The 

three independent terms of the Brier score are also calculated and are indicated in (2).  

 

Here is the number of times the events was observed  for each of the forecasts made for each 

probability, ,  is the mean of all the observations and  is the mean of all the forecasts (Wilks, 

2006). 

 

        (2) 

 

The reliability term needs to be as small as possible, which will indicate a well calibrated forecast 

because it summarizes the conditional bias of the forecast. The resolution term needs to be as large 

as possible, which will indicate that the forecast resolves the event strongly because it summarizes 

the ability of the forecasts to discern between events. The uncertainty term is only dependent on the 

climatological frequency of an event occurring and therefore is not influenced by the forecast. 

 

In this paper the BSS is obtained by (3) since it has the advantage of being independent of how the 

forecasts are binned, where  is the Brier score with persistence as the reference forecast. 

 

                     (3) 

 

The relative operating characteristics determines the discrimination of the forecast between events 

and non-events. The area under the ROC curve is calculated here with the trapezoid method and this 

value depends on the degree of separation of distribution of forecast probabilities conditional on the 
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occurrence of the event from the distribution conditional on non-events. (Wilks, 2006; Clark et al, 

2008; Peel and Wilson, 2008). 

  

The reliability diagram represents the relationship between the observed frequency and the forecast 

probability of an event (Joliffe and Stephenson, 2003, Wilks, 2006). The reliability diagram is a good 

companion to the ROC curve, where the reliability diagram is conditioned on the forecast. The 

reliability diagram shows what the observed frequency is given the forecast probability for that event 

to occur.  

 

Together with the reliability diagram a sharpness or frequency diagram is constructed where the 

forecast probability bins are plotted against the frequency of the event forecast within each probability 

bin (over the verification period and at all the gridpoints). The sharpness diagram is in indication of the 

confidence of the forecast system under investigation. 

 

4. Results 

 

The average bias (calculated over the three summer half-years) for  each of the ensemble systems in 

predicting 24-hour rainfall totals  during  is shown Figure 3 (a) to (c). . The map of the bias provides 

insight into the location of areas with relatively high and low as well as positive (blue shades) and 

negative (red shades) biases. Considering the three maps, it is noticeable that all three ensembles 

systems generally have positive  biases over the entire domain. The spatial average bias was 

calculated for each of the ensemble systems and the value is given on the maps in Figure 3 (a) to (c). 

It is seen in Figure 3 (c) that the CCAMENS has the lowest average bias (0.63 mm/day) of all three 

systems, whereas the UMENS has the highest daily average bias of ~0.98 mm/day.   

 

Figure 3 

 

Considering the contingence table related scores, the UMENS generally outscores the MMENS with 

the lower threshold value of 1 mm/day, whereas the MMENS outscores both the single model 

ensemble systems with the 10 mm/day threshold values. The exception to this is with the POD values 

where the UMENS has a slightly higher detection rate at of the 10 mm/day events than the MMENS 

(Table 2). 

 

TABLE 2: 

 

In Figure 4, the BSS is presented spatially with a score value at each of the grid boxes. Figure 4 (a) – 

(c) represent the BSS for each of the three ensemble systems for the 1 mm/day threshold and Figure 

4 (d) – (f) the BSS for the 10 mm/day threshold. On each of the maps, the percentage of grid points 

with positive BSS values is provided. This number gives an indication of the percentage of grid points 
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over the domain that has skill over that of the persistence (reference) forecast. Therefore, the greater 

this number, the greater the skill of the forecast is for the 18-month period.  

 

Similar to the scores calculated with the contingency table, the MMENS is outscored on the area 

average percentage positive grid boxes  for the case of the 1 mm/day threshold, but is more skillful 

than the single-model systems forthe 10 mm/day threshold. All three systems have no skill over the 

interior and west-coast of the country in predicting rainfall totals greater than 1 mm/day, with the 

remaining coastal regions having some skill over persistence. The MMENS only has 16.6% skillful 

grid boxes compared to 21.6% of the UMENS at 1 mm/day threshold, but for the important 10 mm/day 

threshold the MMENS outscores the  two single-model systems, having skill over 72.2% of the total 

number of grid boxes. However, all three systems have  difficulties in correctly forecasting the 

ocurrence of events greater than 10 mm/day over the Free State and parts of the northeast of the 

country. The results as depicted in Figure 3 has a significant bearing on operational weather 

forecasting, since it shows that the forecasters have a better chance of success for 10 mm/day 

thresholds as opposed to the low threshold of 1 mm/day. Weather forecasters and other users of 

NWP rainfall forecasts should therefore be careful with the interpretation and use of low threshold 

value forecasts.  

 

FIGURE 4: 

 

The ROC curves for all three ensemble systems are represented in Figure 5. In contrast to the low 

skill determined by the BSS for the 1 mm/day threshold events, the MMENS shows the best 

discrimination for these events (compared to the 10 mm/day thresholds) indicating that the ensemble 

can distinguish between rainfall and non-rainfall events (ROC areas > 0.6). The scores obtained by 

the MMENS for the 1 mm/day and 10 mm/day thresholds are in general very similar. However, the 

MMENS can skillfully distinguish between events and non-events for all the different thresholds.  

 

Considering the ROC values in Table 3, it is shown that the single-model ensemble systems also 

display good discrimination abilities for both thresholds and both systems are skillful for these 

threshold during the summer half-year. It is interesting to note that although the CCAMENS scores 

systematically lower than the UMENS, the MMENS forecasts are more skillful than those of both the 

constituting single-model ensembles. This result may be due to the CCAMENS having only three 

possible outcomes for each probabilistic forecast at a given location (0, 0.5 or 1), whilst there are 4 

possible outcomes for the UMENS and 12 for the MMENS. It is a significant result, which indicates the 

value of a multi-model ensemble system over single-model systems. 

 

The ROC analysis has shown that the MMENS system is the most suitable to discriminate between 

rainfall events exceeding predetermined thresholds, from non-events. Hence, reliability diagrams are 

only presented for this system (Figure 6). The diagram however shows that the MMENS system 

exhibit over-confidence for both thresholds. Considering the 1 mm/day threshold (blue line) the 



12 
 

system is under-forecasting the events with low probabilities and over-forecasting for higher 

probabilities (< 70%). The 10 mm/day threshold (green line) has slightly better reliability but are over-

forecasting the events > 30%. The sharpness diagrams in Figure 6 show that for both thresholds the 

MMENS has high confidence. In all the threshold events, the highest number of forecasts is made in 

the lower probability bins, with some increase with the 10 mm/day threshold events in the higher 

probabilities. 

 

In order to accurately determine the difference between the three systems, the reliability, resolution 

and uncertainty are calculated for both threshold values and represented in Table 3. For the events 

exceeding the 10 mm/day threshold, the MMENS has a better resolution, but the UMENS has better 

resolution for 1 mm/day events. For reliability, the MMENS outscores at the lower threshold, but the 

CCAMENS is the most reliable of the three systems with 10 mm/day events. The same holds true for 

the uncertainty of the systems, except that the uncertainty is the lowest with the UMENS at 10 

mm/day threshold. 

 

In terms of the skill for each of the ensemble systems, the three systems are skillful in predicting 

rainfall for the South African domain. All of the systems are however less skillful in predicting low 

threshold events (1 mm/day). Looking at the multi-models’ ability to distinguish between events and 

non-events, the multi-model has better discrimination abilities than the two single-model ensemble 

systems. The multi-model ensemble system can possibly be improved by removing the model errors 

within ensemble members as well as through the use of a weighted combination method that 

considers the relative skill of the individual contributing ensemble members. 

 

5. Discussion and Conclusions 

 

Weather forecasters at operational centres such as SAWS are often faced with the challenge of 

making reliable probabilistic forecasts for rainfall to occur over certain areas for the next day or two. 

Even though they are presented with forecasts from a number of configurations from the same 

weather forecast model, and/or forecasts from other models, for the forecaster to combine the various 

forecast output into a probability statement is done highly subjectively and is often based on a 

forecaster’s own experience or preference of a particular model. Combining forecasts through a 

simple un-weighted approach into a single objective probability forecast was presented here, and the 

forecasts were verified over three summer half-years. 

 

The results show that in general combining forecasts from different forecast systems outscores 

forecasts from the individual models. Care should however be taken when using this multi-model 

system in predicting low threshold values (i.e. 1 mm/day). In fact, the systematic overestimation of 

rainfall by all three ensemble systems over the interior of South Africa, the absence of skill in 

predicting the occurrence of rainfall above the 1 mm threshold event, and relatively poor performance 

of all systems in predicting events above the 10 mm threshold over the central interior of South Africa, 
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warrants research into the improvement of convective rainfall parameterizations, and perhaps the 

application of non-hydrostatic models at very high resolution, over South Africa (e.g. Engelbrecht et 

al., 2007). The paper has also demonstrated the attributes of combining forecasts produced by 

different institutions running different forecast models, and therefore suggests that additional models’ 

output may be considered for including in a multi-model system for operational weather forecasting 

practices. Additional forecast output to consider includes forecasts from the Weather and Research 

Forecast model (to be used as operational model at SAWS and at the University of Pretoria), the 

NCEP ensemble, and possibly forecasts from the European Centre for Medium-Range Weather 

Forecasts.  

 

Apart from improving on model physics and numerics, future NWP research in South Africa should 

address the best way to weigh forecasts form different models, downscaling or recalibrating forecasts 

(since it was shown here that the different models have different systematic errors), and the use of 

larger forecast ensembles. In addition, the use of even higher resolution forecasts beyond the 

hydrostatic limit should be considered.  
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FIGURE 1: Location of rainfall stations in the combined SAWS-ARC data set.  

 

 

FIGURE 2: Domain size maps of the individual members of the multi-model ensemble system; (a) UM 12 

km resolution members, (b) UM 15 km resolution member and (c) CCAM members.  

 

 



 

 

FIGURE 3: The spatial maps for the daily bias for the three ensemble systems; (a) UMENS, (b) 

CCAMENS and (c) MMENS.  

 

 

FIGURE 4: The spatial maps for the Brier skill score for the three ensemble systems. a) UMENS, (b) 

CCAMENS and (c) MMENS represent the Brier skill score with 1 mm/day threshold and (d) UMENS, (e) 

CCAMENS and (f) MMENS 10 mm/day threshold.  

 

 

 

 



 

TABLE 2: Summary of the area average values of the verification scores calculated from the contingency 

table for both the threshold values as well as for all three ensemble systems. The best verification score 

is indicated in bold for each of the systems 

VERIFICATION 
METRIC 

UMENS CCAMENS MMENS 

 1 mm/day 10 mm/day 1 mm/day 10 mm/day 1 mm/day 10 mm/day 

FBI – 1 mm/day 2.515 1.417 2.629 1.213 2.797 1.211 

CSI – 1 mm/day 0.362 0.216 0.340 0.187 0.352 0.225 

FAR – 1 mm/day 0.309 0.057 0.330 0.049 0.38 0.047 

POD – 1 mm/day 0.823 0.393 0.807 0.323 0.862 0.371 

 

 

FIGURE 5: The ROC curves for all three ensemble systems. The UMENS curve is in blue, the CCAM in 

green and the MMENS in red. The two threshold values are represented by (a) 1 mm/day and (b) 10 

mm/day respectively.  

 



 

 

FIGURE 6: The reliability and sharpness diagram for the MMENS. The two threshold values are 

represented by 1 mm/day the blue line/bar and 10 mm/day the green line/bar.  

 

TABLE 3: Summary of the resolution, reliability and uncertainty scores as calculated by the three terms of 

the Brier skill score for both the threshold values as well as for all three ensemble systems. The best 

score is indicated in bold for each of the systems 

VERIFICATION METRIC UMENS CCAMENS MMENS 

 1 mm/day 10 mm/day 1 mm/day 10 mm/day 1 mm/day 10 mm/day 

ROC Score 0.719697 0.724556 0.648406 0.674402 0.765278 0.762357 

Resolution 0.370072 0.076532 0.306917 0.178127 0.130799 0.248717 

Reliability 0.069963 0.158378 0.079857 0.044348 0.04625 0.128062 

Uncertainty 0.236747 0.224744 0.209404 0.235932 0.178549 0.241282 

 


