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Abstract

In this paper we propose a fast, parallel 3D, fully-coupled partitioned hybrid-
unstructured finite volume fluid–structure-interaction (FSI) scheme. Spatial
discretisation is effected via a vertex-centered finite volume method, where a
hybrid nodal-elemental strain procedure is employed for the solid in the interest
of accuracy. For the incompressible fluid, a split-step algorithm is presented
which allows the entire fluid-solid system to be solved in a fully-implicit yet
matrix-free manner. The algorithm combines a preconditioned GMRES solver
for implicit integration of pressures with dual-timestepping on the momentum
equations, thereby allowing strong coupling of the system to occur through the
inner solver iterations. Further acceleration is provided at little additional cost
by applying LU-SGS relaxation to the viscous and advective terms. The solver is
parallelised for distributed-memory systems using MPI and its scaling efficiency
evaluated. The developed modelling technology is evaluated by application to
two 3D FSI problems. The advanced matrix-free solvers achieve reductions in
overall CPU time of up to 50 times, while preserving close to linear parallel
computing scaling using up to 128 CPUs for the problems considered.

Keywords: 3D fluid-structure-interaction, vertex-centered finite volume,
partitioned strongly coupled, implicit, parallel

1. Introduction

Fluid–Structure Interaction (FSI) is a growing field within computational
mechanics with important industrial applications, for example aeroelastic flut-
ter response [1, 2, 3], design of valves in air compressors and shock absorbers
[4, 5] and analysis of stresses therein, parachute dynamics [6, 7], the effect of
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wind on architectural structures [8, 9], and biomechanics [10, 11]. In real three-
dimensional systems such as these, geometries are often complex and require the
use of hybrid unstructured meshes. In addition, FSI problems are typically tran-
sient or oscillatory in nature, requiring the solution of thousands of time-steps.
The result is that FSI calculations are burdened by high computational cost,
which is at present a major obstacle to becoming a routinely used tool in in-
dustry. However, recent progress in FSI modelling technology [4, 12, 13, 14, 15]
gives cause for optimism. In this paper we extend the multiphysics code Elemen-
tal [16, 17, 18, 19, 20, 21] to three-dimensional FSI scenarios, and investigate
advanced solver strategies with the aim of achieving significant improvements
in parallel computational efficiency.

In order to robustly solve fluid-solid interaction problems which are phys-
ically strongly coupled, it is advantageous to fully converge the entire system
at each timestep. This is such that both dynamic and kinematic continuity –
i.e. continuity of forces and velocities – are satisfied at the fluid/solid interface.
So-called monolithic methods ensure this by solving the entire coupled system
[22, 23, 24]. Partitioned solvers, on the other hand, are more flexible in allowing
independent treatment of the fluid and solid, but require more care to be taken
to ensure a stable and efficient coupling procedure. Techniques which have been
developed include fixed-point iteration accelerated by Aitken or gradient meth-
ods [25, 26, 27, 28], coarse grid predictors [29], approximate [30, 31, 32, 33] and
even exact [34, 35] Newton-type methods, and the use of reduced-order models
[36]. Here we present a scheme where dual-timestepping [37, 38] is employed
to effect the fully-coupled, implicit solution of the FSI system in a partitioned
manner. While none of the techniques above have been employed to guarantee
coupling stability, the method presented was found to be robust for the test
cases presented.

In order to accomodate complex geometries, both fluid and solid governing
equations are spatially discretised via a vertex-centered, edge-based finite vol-
ume method [18, 39]. Edge-based methods hold the advantages of generic appli-
cability to hybrid-unstructured meshes, ideal parallelisation properties and im-
proved computational efficiency compared to element-based approaches [40, 41].
In the case of the solid domain, we use a hybrid between the traditional node-
based finite volume method (which suffers from locking of high aspect-ratio ele-
ments) and the element-based strain method [42] (which suffers from odd-even
decoupling), to circumvent both of these problems [43].

In this paper fluid incompressibility is dealt with using a new artificial com-
pressibility split-step method. Traditionally, incompressible solvers use pressure
projection [44] techniques to derive an equation for pressure from the incom-
pressibility constraint. Alternatively, artificial compressibility [45] may be used
to solve for pressure in a matrix-free manner. It was however recently proposed
to combine the aforementioned in order to combine the desirable properties of
each [46]. Here we propose a simplified strategy where matrix-free solution is
maintained through artificial compressibility, but instead of pressure projection,
the consistent numerical fluxes of Löhner et al. [47, 48] are applied directly to the
continuity equation to allow stable solution of pressure and in a manner which
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is free from non-physical oscillations. As noted, the use of dual timestepping
allows us to achieve a fully-coupled implicit, matrix-free solution.

The use of artificial compressibility for the fluid allows for matrix-free solu-
tion and efficient parallelisation. However, since the actual speed of pressure-
wave propagation is infinite in incompressible flow, pressure waves have to
equalise across the entire fluid domain during every timestep, a process which
can markedly slow convergence. Therefore an implicit method of solving the
pressure equation, without sacrificing its matrix-free nature, can give signifi-
cant returns in computation time. When considering the momentum equation,
there is evidence that for transient problems, explicit timestepping can be as
fast or faster than implicit matrix-free methods [48]. Through the use of dual
timestepping, further performance improvement can result [49, 50] due to the
increase in the allowable time-step size. In the latter work, however, the pres-
sure equation is still treated in a fully explicit manner. We attempt to combine
the most favourable characteristics of the cited schemes in one algorithm in or-
der to furnish an efficient and robust method. As argued, dual timestepping is
an attractive option for an FSI solver, and we combine this with an LU-SGS
preconditioned GMRES technique, pioneered by Luo et al. [51] in the context
of compressible flow, applied to the pressure equation. We further show that
additional speed-ups may be achieved by applying LU-SGS relaxation to the
momentum equations as suggested by Löhner et al. [48]. Combined with the
concurrent solution of the solid via a Jacobi method, this results in a novel,
fast, matrix-free, fully coupled parallel FSI solver which is suited to model com-
plex strongly-coupled 3D problems. The developed technology is evaluated via
application to two strongly-coupled three-dimensional problems from literature.
Metrics considered include speed-ups achieved by the advanced solver tech-
niques, as well as overall parallel computing efficiency.

The outline of this paper is as follows. In Section 2 we present the govering
equations for fluid and solid domains, then describe the spatial discretisation
and mesh movement in Section 3. Section 4 details the numerical solvers and
coupling algorithm and in Section 5, parallelisation of the code is discussed. We
present numerical applications in Section 6 before concluding in Section 7.

2. Governing Equations

The physical FSI domain to be modelled consists of a Newtonian incom-
pressible fluid and homogeneous isotropic elastic solid undergoing geometrically
non-linear displacements. The mechanics of each is governed by the appropriate
governing equations, which are described next. In this work the fluid mesh is
moved in sympathy to the deforming solid and the internal nodes moved using
the mesh movement algorithm described in Section 3.3.

2.1. Fluid equations

To account for movement of the mesh, described by velocity field u∗, it
is necessary to describe the governing equations in an Arbitrary Lagrangian
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Eulerian (ALE) reference frame. To do this we write the governing equations
in weak form over an arbitrary and time-dependent volume V(t) as

∂

∂t

∫

V(t)

WdV +

∫

S(t)

(

Fj + Hj − Gj
)

njdS =

∫

V(t)

QdV , (1)

where

W =








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


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

=
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
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ρ
ρu1

ρu2

ρu3
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



, Hj =









0
pδ1j

pδ2j

pδ3j









, Gj =









0
σ1j

σ2j

σ3j









, (2)

Fj = W(uj − u∗
j ). (3)

Here, S(t) denotes the surface of the volume V(t) with n being a unit vector
normal to S(t); Q is a vector of source terms (e.g. body forces), u denotes
velocity, p is the pressure, ρ is density, σ stress, and δij is the Kronecker delta.

The governing equations are closed via the relationship between stress and
rate of strain:

σij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

, (4)

where µ is the dynamic viscosity and xi are the fixed (Eulerian) co-ordinates.

2.2. Solid Equations

To account for large deformations without accumulating strain errors due to
repeated oscillations, the solid equations are formulated in a total Lagrangian
formulation, i.e. in the undeformed reference frame. In this coordinate system
the momentum equations are written in weak form as

∂

∂t

∫

V0

ρ0vidV =

∫

S0

PijnjdS +

∫

V0

QidV , (5)

where v is the solid velocity, P is the first Piola-Kirchoff stress tensor, V0 denotes
a volume in the material coordinate system and S0 its surface, with n being its
outward pointing unit normal vector. Further, ρ0 is the solid density in its
undeformed state and Q, again, a vector of source terms.

We use the St. Venant–Kirchoff model to account for finite strains. In this
model, the Green-Lagrange strain tensor E is used, with components

Eij =
1

2

(

∂wi

∂Xj

+
∂wj

∂Xi

+
∂wk

∂Xi

∂wk

∂Xj

)

(6)

where w is the total displacement of the solid from equilibrium location X, so
that x = X + w. The second Piola-Kirchoff stress tensor S is related to the
strain tensor by

Sij = 2G(Eij −
1
3Ekkδij) + KEkkδij (7)
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Figure 1: Schematic diagram of the construction of the median dual-mesh on hybrid grids.
Here, Υmn depicts the edge connecting nodes m and n. Shaded is the dual-cell face between
nodes m and n. This is composed of triangular surfaces Smn

kl
which are constructed by

connecting edge centers, face centroids and element centroids as described in the text.

where G is the shear modulus and K the bulk modulus (summation over k
implied). Finally, we convert from the second to the first Piola-Kirchoff stress
tensor, P, with

Pij = FikSkj , where Fik = δik +
∂wi

∂Xk

. (8)

To close the system of equations, the solid velocity v and displacement w

are related in the obvious way:

Dwj

Dt
= vj . (9)

where D/Dt denotes the derivative with respect to a fixed point in the reference
(initial) configuration.

3. Spatial Discretisation

3.1. Hybrid-Unstructured Discretisation

In this work, we use a vertex-centred edge-based finite volume algorithm
for the purposes of spatial discretisation, where a compact stencil method is
employed for all Laplacian terms in the interests of both stability and accuracy
[18, 39], for both fluid and solid domains. The method allows natural generic
mesh applicability, second-order accuracy without odd-even decoupling [18], and
computational efficiency which is factors greater than element based approaches
[40]. The edge-based method is also particularly well suited to computation on
parallel hardware architectures due to the constant computational cost per edge.

Considering the fluid ALE governing equations (1), all surface integrals are
accordingly calculated in an edge-wise manner. For this purpose, bounding
surface information is similarly stored per edge and termed edge-coefficients.
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The latter for a given internal edge Υmn connecting nodes m and n (see Fig. 1,
is defined as a function of time as

Cmn(t) =
∑

k∈Emn

[

nmn
k,1 (t)Smn

k,1 (t) + nmn
k,2 (t)Smn

k,2 (t)
]

(10)

where Emn is the set of all elements k containing edge Υmn, Smn
kl is the area of

the triangle connecting the centre of edge Υmn with the centroid of element k
and the centroid of one of its two faces which is also incident on Υmn, l = 1, 2.
Further, nmn

kl are the associated unit vectors normal to these triangles and
oriented from node m to node n. The discrete form of the surface integral in
Eq. (1), computed for the volume surrounding the node m, now follows as

∫

Sm(t)

{

Fj + Hj − Gj
}

njdS ≈
∑

Υmn∩Vm(t)

{

Fj
mn + Hj

mn − Gj
mn

}

Cj
mn (11)

where all •mn quantities denote face values. In the case of the fluid, Gj
mn =

[

Gj
mn

∣

∣

tang
+ Gj

mn

∣

∣

norm

]

[18], where Gj
∣

∣

tang
is calculated by employing di-

rectional derivatives and Gj
∣

∣

norm
is approximated by employing the standard

finite volume first-order derivative terms.
When considering the solid governing equations (5), the above method of

discretising the stress term would enforce continuous gradients at nodes and
element boundaries and therefore suffers from stiffness problems on stretched
elements [43]. To remedy this we use the hybrid nodal/elemental strain tech-
nique [43]. In this method, components of strain Eij with i = j are obtained
as per the above. However, the components with i 6= j are evaluated at the
element centre and averaged with the neighbouring element’s value to obtain
the value at the edge centre.

3.2. Geometric Conservation

In order for the fluid solution to be as transparent as possible to the move-
ment of the mesh, an identity known as the Geometric Conservation Law (GCL)
should be obeyed [52, 53, 54]. It asserts that the momentum flux into a cell due
to the motion of the faces should be consistent with the change in momentum
of the cell due to its changing volume. That is, the discretised version of

∂

∂t

∫

V(t)

dV =

∫

S(t)

u∗
jnjdS. (12)

should hold exactly, which implies that constant spatial fields will be unaffected
by arbitrary mesh deformations. The GCL can therefore be said to impose a
specific relationship between mesh deformation and the mesh-velocity field. We
could discretise the equation above at node m as

V t+∆t
m − V t

m

∆t
=

∑

Υmn∩Vm(t)

δV t
mn

∆t
, (13)
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where V is the volume of dual-cell V , δV t
mn is the volume swept out by the face

lying between nodes m and n between time-steps t and t + ∆t. Then, the GCL
will hold. Alternatively, to second order accuracy [54]

3V t+∆t
m − 4V t

m + V t−∆t
m

2∆t
=

∑

Υmn∩Vm(t)

3δV t
mn − δV t−∆t

mn

2∆t
. (14)

Thus, in order for our discretisation to be consistent with the GCL, the mesh ve-
locity flux u∗

jC
j
mn in the discretisation of (1) is set equal to (3δV t

mn−δV t−∆t
mn )/2∆t.

3.3. Dynamic Mesh Movement

For the purposes of mesh movement, we employ an interpolation procedure
[55] which, while offering no guarantees about element quality, has no significant
computational cost and is well suited to parallel computing. This approach en-
tails redistributing internal fluid nodes via the following interpolation function:

∆x = r∆x1 + (1 − r)∆x2,

where ∆x1 and ∆x2 respectively denote the displacement of the closest internal
and external boundary nodes from their initial locations, and r, which varies
between zero and one, is computed as

r =
Dp

2

Dp
1 + Dp

2

with p = 3/2. (15)

Here, D1 and D2 are the distances to the identified internal and external bound-
ary points in the undeformed configuration. Since the values of r are calculated
only once at the beginning of the entire analysis, the parallel computational
overhead of the mesh movement function is negligible; furthermore, cumulative
deterioration of element quality during repeated oscillations does not occur as
the mesh always returns to its initial configuration. While this method has
been found to perform well for many problems which include non-linear motion
(such as rotations), it is somewhat sensitive to the magnitude of motion as mesh
quality is not explicitly enforced.

4. Temporal Discretisation and Solution Procedure

The solution procedure must allow for fast, parallel, fully coupled solution of
all descritised equations while allowing independence in terms of discretisation
and solution strategy employed for the fluid and solid domains. We therefore
advocate a strongly coupled, partitioned, matrix-free iterative solution process
where fluid-solid-interface nodes communicate velocities and tractions at each
iteration. The resulting proposed solution procedure is detailed below.
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4.1. Temporal Discretisation

For the purpose of transient calculations, a dual-time-stepping temporal dis-
cretisation [16] is employed such that second-order temporal accuracy is achieved
while ensuring that all equations are iteratively solved simultaneously in an im-
plicit fashion. This results in a strongly coupled solution. The real-time tempo-
ral term is accordingly discretised to second-order and added as a source term
to the right-hand-side of the discretised fluid momentum equation as

QiV
∣

∣

τ
= −

3W τ+∆τ
i V τ − 4W t

i V t + W t−∆t
i V t−∆t

2∆t
for i = 1, 2, 3 (16)

where ∆t denotes the real-time-step size, the t superscript is the previous (ex-
isting) real time-step and τ denotes the latest known solution to the time-step
being solved for viz. t + ∆t.

For the solid equation, a similar source term is added to the right-hand side
of the discretised version of Eq. (5), namely

Qτ
i V0 = −ρ0

3vτ+∆τ
i − 4vt

i + vt−∆t
i

2∆t
V0 (17)

and also to the discrete form of Eq. (9), to give

Dwi

Dt
= vi −

3wτ+∆τ
i − 4wt

i + wt−∆t
i

2∆t
(18)

where the nomenclature is as defined previously.

4.2. Solution Procedure: Fluid

The solution of the incompressible fluid equations (2) presents two numer-
ical difficulties. Firstly, the spatial discretisation of the convective terms via
central differencing results in destabilising odd-even decoupling, and secondly,
the pressure field must evolve such that the incompressible continuity equation
∇ · u = 0 is satisfied. Since this equation does not involve pressure, solving
for it in a matrix-free manner is not straightforward. We use a new artificial
compressibility split-step algorithm stabilised with consistent numerical fluxes
[55] (CNF-AC method) to overcome this difficulty, as described below.

For incompressible flow it is usually advocated that the pressures are solved
implicitly [48] while advective (convective) terms are explicitly integrated [46,
48]. This is as the advective timescales are those of interest, whereas pressure
waves propagate instantaneously. Löhner et al. [48] have undertaken a thorough
investigation into various explicit and implicit integration strategies, with the
fastest solution times for transient problems achieved using explicit integration
of the advective terms. However, for strongly-coupled FSI systems, the use of
an implicit fluid solution methodology allows for strongly coupled concurrent
partitioned solution of both fluid and solid domains. We therefore advocate
such an approach for this work.

8



Dual-timesteping has long been used to achieve second-order accurate tem-
poral solutions without introducing the extra computational cost of a more
traditional implicit solver [16, 18, 37, 38, 49]. In the context of FSI, it con-
fers the additional advantage of allowing the coupled system to be implicitly
solved with the sub-iteration process serving the purpose of effecting numerical
strong coupling between fluid and solid. We therefore propose the use of dual-
timestepping for the momentum equations combined with implicit integration
of pressures.

We now describe the split-step incompressible flow algorithm. The CNF-AC
scheme addresses the continuity equation directly by adding artificial compress-
ibility and fourth-order stabilisation terms as follows:

1

c2
τ

pτ+∆τ2 − pτ

∆τ2
V τ = −

∫

S(t)

[

ρuk

∣

∣

τ
+

∆τ

ℓ
(pR − pL)nk

∣

∣

∣

τ+α∆τ2

]

nkdS (19)

where α controls the level of implicitness and ∆τ2 is the iterative or pseudo-time-
step size (solution involves driving the right-hand-side of the equation to zero).
Further, pR denotes the pressure extrapolated from the node outside the control
volume (denoted n below), pL denotes the pressure extrapolated from the node
inside it (denoted m) and ℓ is the length of the edge connecting nodes m and n.
In the context of upwinding the aforementioned typically refer to the left and
right states respectively. This stabilisation term is essentially the same as the
‘consistent numerical flux’ of Löhner et al. [47, 48]. Using constant interpolation
(i.e. the nodal values for pR and pL) yields an effective second-order (Laplacian)
stabilisation term, whereas an effective fourth-order stabilisation term results
from the third-order accurate linear interpolation used in the MUSCL scheme
[56]:

pL = pm +
1

2

[

(1 − κ)∇p|m · ℓ + κ(pn − pm)
]

, κ = 1/3. (20)

Here, ℓ is the vector from node m to node n.
In the interest of computational efficiency, we use the implicit formulation

(α = 1) to approximate the interpolated pressures, and in such a way as to use
only nearest-neighbour values of the increment ∆p ≡ pτ+∆τ2 − pτ being solved
for:

(pR − pL)τ+∆τ2 ≈ (pR − pL)τ + (∆pn − ∆pm). (21)

Via numerical experimentation it is found that the computational cost of addi-
tional iterations due to the inexact Jacobian is more than offset by the saving
due to the greater sparsity of the Jacobian.

Having solved (19) for pτ+∆τ2, a momentum iteration follows as

W τ+∆τ
i − W τ

i

∆τ
V τ = −

∫

S(t)

(F j
i −Gj

i )njdS

∣

∣

∣

∣

τ+β∆τ

−

∫

S(t)

Hj
i njdS

∣

∣

∣

∣

τ+∆τ2

+QiV |
τ

≡ Ri(W), (22)

where β is set to 1 for the implicit treatment of velocity terms and zero otherwise.
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The rationale for the implicit treatment of velocities is as follows. There are
two pseudo-time-step size restrictions on ∆τ in Eq. (22): the viscous timestep
due to the diffusive terms in G and the convective timestep due to F. The former
is often more restrictive than the latter, scaling with the square of mesh spacing
rather than the mesh spacing itself. Moreover, the convective timescales are gen-
erally those of interest in transient problems. This means that it is worthwhile to
solve the viscous terms implicitly (provided a computationally efficient solver is
used) whereas increasing the convective timestep size dramatically would result
in a loss of temporal accuracy. The latter would in addition be far more com-
putationally intensive as cross-coupling between all governing equations would
have to be accounted for. However, to facilitate modest extensions of the allow-
able convective pseudo-timestep size, convective velocity components which are
not cross coupled are included in the Jacobian. This results in a nett reduction
in computational cost (as will be reported on below). Thus, the convective and
viscous velocity terms in Eq. (22) are treated as follows:

F j
i |

τ+β∆τ ≈ Wi|
τ+β∆τ(uj |

τ+δijβ∆τ − u∗
j |

τ ) (23)

and

Gj
i |

τ+β∆τ ≈ µ

(

∂ui

∂xj

∣

∣

∣

τ+β∆τ

+
∂uj

∂xi

∣

∣

∣

τ+βδij∆τ
)

(24)

for i, j = 1, 2, 3. Note that the second term above does not contribute to the
governing equations in the case of constant µ due to the continuity equation
and thus the cross-derivative terms may be treated explicitly.

Finally, the fluid mesh velocity u∗ is calculated via second-order backward
difference as per Eq. (17).

4.2.1. Preconditioned GMRES Routine

As mentioned, we wish to solve Eqs (19) and (22) implicitly in order to over-
come the time-step-size restrictions on ∆τ2 and on ∆τ to which explicit methods
are subject. However, in order to scale efficiently to very large problems, the
procedures must be matrix-free. Different approaches are required to efficiently
solve the pressure equation (19) and the momentum equations (22), since in the
former case the pseudo-time-step size should be increased as much as possible,
while in the latter it remains restricted by the convective limit. Thus, it is more
efficient to solve the momentum equations with more iterations of a computa-
tionally less intensive solver, compared to the pressure equations, which we now
consider first.

A popular approximate matrix solver is the Generalised Minimum Residual
(GMRES) method of Saad and Schultz [57], which finds an optimum solution
within a reduced subspace spanned by the so-called Krylov vectors. The choice
of the preconditioner to be applied to the GMRES Krylov-subspace vectors
is of utmost importance. It must ensure a good condition number while, im-
portantly, preserving the matrix-free nature of the solution scheme and being
computationally efficient. Luo et al. [51] were the first to employ LU-SGS
[58, 59, 60] for this purpose. As compared to its main competitor, Incomplete
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Lower-Upper decomposition (ILU), it does not require the storage of any part
of the preconditioning matrix. Furthermore, it has been applied with success
to the nonlinear heat conduction equation [20], showing orders of magnitude
performance improvement over Jacobi iterations and even over both GMRES
and LU-SGS in isolation. As the pressure equations have a diffusive character
similar to the heat equation, a similar methodology was adopted for this work.

The discrete form of Eq. (19) can be written in the form

A∆p = Res (25)

where ∆p = pτ+∆τ2 − pτ and Res is the residual vector. The lengths of the
vectors ∆p and Res are equal to the number of nodes N , and A is a sparse
coefficient matrix. An outline of the LU-SGS preconditioned, restarted GMRES
procedure follows.

At each iteration the change in the primitive variable vector p is calculated
from ∆p = vlal, l = 1 . . . L. Here L denotes the number of preconditioned
Krylov-space vectors vl, and the coefficients al are calculated such that they
minimise the residual Res for a given set of Krylov-space vectors (the expression
from which al is calculated follows below). The latter are calculated via the
following GMRES procedure, which is invoked iteratively for a pre-specified
number of GMRES iterations.

1. Initialise ∆p0 = 0.

2. Starting Krylov-subspace vector:

v1 =
[

P−1(Res− A∆p0)
] ∣

∣P−1(Res− A∆p0)
∣

∣

−1
(26)

where P−1 denotes the preconditioning matrix, or P−1 ≈ A−1, and | · |
denotes the Euclidian norm.

3. For l = 1, 2, . . . , L − 1, compute Gramm-Schmidt orthogonalisation:

wl+1 = P−1Avl −

l
∑

k=1

hklvk, hkl = vk · P−1Avl (27)

vl+1 =
wl+1

|wl+1|
(28)

4. The change in p is now calculated from the expression given previously,
namely

∆p = ∆p0 + vlal (29)

where al are calculated such that the residual is minimised:

(

Avk
)

·
(

Avl
)

al =
(

Avk
)

·
(

Res− A∆p0

)

(30)

5. Restart from Step 2 using ∆p0 = ∆p until a pre-set number of iterations
complete.
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We now outline the preconditioning procedure. The generic vector ω is pre-
conditioned by the LU-SGS procedure by performing two computational sweeps
over the mesh:

• Sweep 1: Calculate ω∗ from (D + L)ω∗ = ω, and

• Sweep 2: Calculate ωp from (D + U)ωp = Dω∗,

where L, D and U are the strict lower, diagonal and upper parts of A.
Further, ω∗ and ωp respectively denote the intermediary and preconditioned
versions of ω. Note that this procedure may be implemented in a completely
matrix-free form.

As mentioned, a fixed number of GMRES iterations (restarts) are used rather
than running the GMRES procedure to convergence. (Recall that the GMRES
method runs inside the pseudo-time iteration sequence detailed in Section 4.2,
which must itself be iterated in order to reach pseudo-steady state.) For the
purposes of this work it was found that efficient convergence of the overall
scheme is attained with three GMRES iterations (i.e. two restarts). This is
because the residual is rapidly reduced at first, with diminishing returns for
further restarts.

For fastest convergence of the pseudo-timestep iterations, ∆τ2 should be
made as large as possible. On the other hand, if it is made too large the
performence of GMRES degrades as the A matrix loses diagonal dominance.
For the purpose of this work, ∆τ2 = 105∆τ was employed.

Turning now to the implicit solution of velocity in the momentum equations
(22), as mentioned, a computationally cheap solver is necessary in order to effect
an overall speedup due to the convective timestep size restriction. For the same
reason, however, the Jacobian remains diagonally dominant and so it is found
that a single LU-SGS sweep per pseudotime iteration – computationally no
more expensive than two Jacobi iterations – is sufficient to remove the viscous
timestep restriction altogether [61].

The procedure is as follows. Similar to Eq. (25), the discretised form of Eqs
(22) can be written in the form

Ai∆ui = Resi for i = 1, 2, 3, (31)

where ∆ui = uτ+∆τ
i − uτ

i and Resi are the residual vectors. The LU-SGS
procedure outlined above is then applied with ω = ui, with ui then replaced
by the calculated ωp. The speed-up in solution gained via the above will be
assessed in Section 6.1.1.

4.3. Solution Method: Solid

For the majority of FSI problems, the solid domain contains far fewer equa-
tions to solve as compared to the fluid. As such, a simple Jacobi iterative proce-
dure was selected for this work, which involves the pseudo-temporal discretisa-
tion of Eqs (5) and (18). Traction boundary conditions are realised numerically
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by excluding external boundaries from the surface integral in (5) and adding in
surface integrals of the applied tractions τ . Thus, the equation becomes

∂

∂t

∫

V0

ρ0vidV =

∫

S0internal

PijnjdS +

∫

Sboundary

τidS +

∫

V0

QidV ≡ Ri(w), (32)

For pseudo-temporal discretisation a single-step procedure proposed in [62]
was used:

wτ+∆τ
i = wτ

i + ∆τ
[

vτ
i −

3wτ
i −4wt

i+w
t−∆t

i

2∆t
+ 1

2∆τRi(w
τ )/(ρτ+∆τ

0 V τ+∆τ
0 )

]

vτ+∆τ
i = vτ

i + ∆τRi(w
τ )/(ρτ+∆τ

0 V τ+∆τ
0 )

(33)
where V0 is the volume of dual-cell V0 in the undeformed configuration and wτ

denotes a projected displacement which is calculated as

wi
τ = wτ

i + ∆τvτ
i (34)

where the nomenclature is as previously defined.

4.4. Pseudo-timestep Calculations

The pseudo-timestep local to each computational cell is to be determined
in the interest of a stable solution process. For this purpose, the following
expression is employed:

∆τ = CFL

[

|ui − u∗
i | + cunified

∆xi

+ κ(1 − β)
2µ

ρ∆x2
i

]−1

(35)

where CFL denotes the Courant-Friedrichs-Lewy number, ∆xi is the effective
mesh spacing in direction i and κ is equal to 1 in the fluid domain and 0 in
the solid domain. Note that if the velocity terms are being treated implicitly
(β = 1), the viscous time-step size restriction falls away. Further,

cunified = κcτ + (1 − κ)
(

√

K/ρ0 +
√

η/ρ0

)

. (36)

4.5. Solution Procedure

To achieve simultaneous solution of the discretised fluid-solid equations in
a manner which effects strong coupling, the following solution sequence is em-
ployed in an iterative fashion:

1. The fluid and solid discrete equations are solved concurrently via (19)–(22)
and (32). Due to the accelleration of the fluid solver with GMRES, con-
vergence of the fluid domain is typically faster than the solid. Therefore,
in order to achieve fast convergence of the coupled system, an adjustable
number of iterations of Eq. (32) may be performed for every iteration of
the fluid equations.
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2. At the interface, the calculated fluid traction is applied to the solid bound-
ary and the solid velocities to the fluid boundary. That is, the following
equations for traction and velocity at the boundary are prescribed:

τj = pnj − σijni

u = v
(37)

where n is the normal unit vector pointing outward from the fluid domain.

3. The mesh is only moved if a solid mesh boundary node displacement
exceeds 30% of the attached dual-cell size or the residual of the fluid
or solid mesh has been reduced by three orders of magnitude (a real-
time-step is considered converged when the residual of all fluid and solid
equations have dropped by at least 4 orders of magnitude); hence, the mesh
is always moved at least once per timestep, and more if the residual is too
large or there is significant displacement of the interface nodes during the
convergence process. A mesh move involves redistribution of fluid nodes,
followed by pre-processing of the mesh. The latter involves computation
of edge-coefficients and finite volumes.

4. The residuals are now calculated for all equations, and if larger than the
convergence tolerance steps 1–3 are repeated.

5. If the residuals are below the convergence tolerance, the real-timestep is
terminated, and the next time-step entered by proceeding to step 1.

As far as fluid–structure interaction is concerned, the method above repre-
sents a block-Jacobi method, which suffers from slow convergence compared to
block-Gauss-Seidel or block-Newton methods. However, in the current frame-
work the coupling iterations are the same as the dual-timestepping pseudo-
timesteps which are numerous (typically on the order of 100 per timestep), and
so this does not represent a significant performance penalty. However, in order
to ensure robustness, a more sophisticated coupling method (listed in Section 1;
see [35] for an overview) should be incorporated. This is because block-Jacobi
and block-Gauss–Seidel methods are known to suffer from instabilities due to the
‘added mass effect’ [63, 64, 65], which are most severe when fluid and structure
have comparable densities.

5. Parallelisation

Because of the fully matrix-free nature of the numerical method at solver
sub-iteration level, the mesh can be decomposed into separate subdomains for
parallel operation. Firstly, in composing the right-hand side, all loops are over
edges, with the operation count for each edge being very nearly identical. Sec-
ondly, in performing the various sparse-matrix–vector dot products that make
up the preconditioned GMRES algorithm, there is one dot product per node;
however, the number of nonzero entries in the corresponding row of the Jaco-
bian matrix is equal to the number of edges surrounding the node, plus one.
Therefore, to balance the operation count for efficient parallelisation of not only
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Figure 2: Example of domain decomposition.

the right-hand side calculation but also the LU-SGS/GMRES routine, the num-
ber of edges in each domain was balanced. This was done by weighting each
node with an integer equal to the number of edges which connect to it, followed
by applying the METIS library [66] to its connectivity graph. For interdomain
communication, a system of “ghost nodes” is used in this work, with one layer
of overlapping nodes at domain boundaries, where ‘slave’ nodes are updated
with the values from corresponding ‘master’ nodes in the neighbouring domain.
For efficiency, data transfer is consolidated into the largest possible packets and
communicated using MPI. An example of the decomposition into subdomains
is shown in Fig. 2, where individual domains are distinguished by colour.

The GMRES routine consists of sparse-matrix–vector products and dot prod-
ucts which are suited to parallel computing. However, the LU-SGS precondi-
tioning steps are formally serial in nature. These involve sweeps across the
mesh, with each subsequent nodal value calculated from the newly updated val-
ues of the preceding ones. While this process may be efficiently vectorised on
shared-memory architectures [67], on distributed-memory machines excessive
communication would be required during each sweep over the mesh, severely
impairing performance. In this work we have elected to perform the LU-SGS
preconditioning only within each parallel subdomain, thereby eliminating the
need for communication altogether. Being merely a preconditioning step, this
has no influence on the solution accuracy; neither was it found to impair stabil-
ity. What does suffer somewhat is the speed of convergence, since information
does not propagate across the entire mesh at each iteration to the same extent
as the serial implementation. However, as demonstrated below, this effect was
found to diminish as the number of parallel domains increases. When using
LU-SGS for implicit relaxation of the velocities in the momentum equations,
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Figure 3: Block with flexible tail: geometry and boundary conditions. Top view (left) and
side view (right).

similar arguments apply.

6. Application and Evaluation

6.1. Block with flapping plate

The first FSI problem we consider comprises a block connected to a flexi-
ble plate in cross-flow, as proposed by von Scheven and Ramm [29] and also
considered by Kassiotis et al. [68] As shown in Fig. 3, it is a three-dimensional
version of the popular block with flexible tail used to test 2D FSI algorithms
[12, 22, 34, 42, 69].

The material properties are as follows: Incompressible fluid density is 1.18×
10−3 g cm−3 and viscosity µ = 1.82 × 10−4 g cm−1 s−1. For the plate, two
different material properties have been used. We shall refer to these as the
‘stiff’ and ‘flexible’ plate respectively. In the first place, to reproduce the case
considered by other researchers [29, 68], we use a density ρs = 2.0 g cm−3, and
a Young’s modulus E = 2.0×106 g cm−1 s−2. These are also the same material
properties considered in the 2D analyses referenced above. Secondly, for the
‘flexible’ plate we reduce both the density and elastic modulus by a factor of 20,
i.e. ρs = 0.1 g cm−3 and E = 1×105 g cm−1 s−2. This is to decrease the stiffness
of the plate without affecting its characteristic frequencies, thereby increasing
the three-dimensionality of the response. In both cases we use a Poisson’s ratio
ν = 0.35.

Two meshes of different densities were employed (Fig. 4) in order to assess
the mesh-sensitivity of the solution. The coarse mesh consists of circa 480 000
fluid cells and 8 000 solid cells (with 6 elements through the plate thickness).
For the fine mesh the spacing was reduced by a factor of 1.5 in each direction,
resulting in 1 580 000 fluid cells and 27 000 solid cells. As pointed out previously,
multiple solid sub-iterations are run for every fluid mesh iteration. For the
problem considered here, 30 solid sub-iterations for the coarse mesh and 50
sub-iterations for the fine mesh were found to result in similar fluid and solid
drop in residual (measured between fluid-solid-boundary communication). The
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Figure 4: Meshes used for block with flexible plate. Coarse mesh [(a) and (b)] and fine mesh
(c).

analysis was run on a Sun Microsystems Constellation cluster with 8-core Intel
Nehalem 2.9 GHz processors and Infiniband interconnects at the Centre for High
Performance Computing (CHPC), Cape Town. On the course mesh, the 7 500
timesteps completed in 6 days using 23 parallel fluid subdomains and 7 solid
subdomains. The fine mesh analysis took 11 days with 64 fluid and 32 solid
subdomains.

For the first analysis, with the stiffer plate, the inflow velocity was linearly
ramped up to its final value of 100 cm s−1 within the first 2 s of the analysis as
per [29]. The time-step size was chosen as ∆t = 0.004 s. The calculated time-
history of horizontal displacement of the top and bottom corners is depicted in
the left panels of Fig. 5. Although there is a significant difference in the rate
of growth between the coarse and fine meshes, both settle to similar limit cy-
cles. The initial difference is to be expected since the initial state is an unstable
equilibrium, the breaking down of which is initially dominated by discretisation
errors. Since the limit-cycle oscillation is modulated by a lower frequency fluc-
tuation, to obtain a quantitative comparison we consider the RMS amplitude
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Figure 6: Solution snapshots of flexible plate case. Pressure contours on the plane x1 = 4
(top left) and x3 = 0 (others), given in Pa.

of the vertical-midpoint at the end of the plate (x1 = 4, x2 = x3 = 0) over
the last ten seconds of the simulation, which is 0.734 cm for the coarse mesh
and 0.723 cm for the fine mesh; an agreement to within 1.5%. The average
frequencies over this same range are 0.970 Hz for the coarse mesh and 0.932 Hz
for the fine mesh, a difference of 3.9%. A high degree of mesh independence of
the steady-state solution has thus been reached.

It is interesting to compare these results with the equivalent two-dimensional
case [22, 55]. In that case, two different regimes of limit-cycle oscillation were
observed, the first with an amplitude of approximately 2.0 cm and a frequency
of approximately 0.8 Hz, and the second with an amplitude of 0.8 cm and
frequency of 2.9 Hz, approximately. These correspond to the first and second
mode of vibration of the flexible tail, and depend on initial conditions applied
to the flexible tail. In the 3D case analysed here, vibration is in the first mode
and the amplitude is almost half of the equivalent 2D case. This is attributable
to the fact that pressure can equalise from one side of the plate to the other
via flow across its lateral edges. The resulting circulation in the x2–x3 plane
is clearly visible in the first panel of Fig. 6. The frequency, on the other hand,
is of comparable magnitude, with the discrepancy attributable to the nonlinear
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Table 1: Speedup in computation time for a representative timestep of the block-plate problem
with two different mesh densities. Number of iterations to convergence are also shown. Overall
speedup includes time taken on mesh movement and preprocessing, in contrast to solver
speedup.

Mesh Algorithm Iterations
Overall Solver
speedup speedup

Coarse
Explicit 31016
Exp u/Imp p 362 31.7 × 38.1 ×
Imp u/Imp p 233 46.0 × 65.3 ×

Fine
Explicit 49995
Exp u/Imp p 1398 17.8 × 20.0 ×
Imp u/Imp p 346 51.0 × 67.6 ×

dependence of frequency on amplitude. In the 3D simulation in [68], on the
other hand, the plate begins oscillating in its second mode, with a frequency
close to 4 Hz and an amplitude of approximately 0.5 cm – also similar to the
equivalent 2D results. The fact that we observe a different mode of vibration
to that in [68] may be due to initial conditions. In that paper, the plate is kept
rigid for the first two seconds of analysis while the flow velocity is ramped up.
This may prevent the plate from receiving the perturbation necessary to excite
first-mode vibrations. Also, the form of ramping is different in [68] to that used
here. Both results are of much larger amplitude than those reported in [29].

In the second analysis, with the more flexible plate, an inflow velocity of
51.3 cm s−1 was used. A smaller time-step size of ∆t = 0.002 s was selected
to account for the faster, second-mode oscillations present in this case. Time-
histories of corner displacements are shown in the right-hand panels of Fig. 5,
and Fig. 6 shows snapshots of the response with pressure contour colouring. As
seen, the higher-frequency second-mode of vibration is excited, with additionally
a much larger component of the anti-symmetric twisting mode present. The
vortices that drive the oscillations are visible in the right-hand panes of Fig.
6, while in the top-left pane, counter-rotating vortices coming off the corners
are visible in the vertical plane. The coarse and fine mesh solutions again show
good qualitative agreement once oscillations have grown to limit-cycle state. To
quantify this we measure the RMS amplitude of the vertical-midpoint oscillation
for 6 < t < 10 s, obtaining a value of 0.579 cm for the coarse mesh and 0.586 cm
for the fine mesh, which constitutes agreement to within 1.2%. For the coarse
mesh, the average frequency over this range is 4.95 Hz while for the fine mesh
it is 4.90 Hz, a difference of 1.0%.

6.1.1. LU-SGS/GMRES performance speedup

In this section, we analyse the performance improvement effected by the
advanced solver algorithms applied to the pressure and momentum equations.
Quoted values are the improvement in overall performance of the FSI solver,
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Figure 7: Parallelisation speed-up for the block-tail problem. (a) Coarse mesh (490 000 cells)
and (b) fine mesh (1.6M cells). The right axis depicts the number of fluid iterations required
per time-step.

even though the advanced solver is only applied to the fluid subdomain. The
number of parallel subdomains used was 23 and 7 for the coarse fluid and solid
meshes respectively, increased to 42 and 22 in the case of the fine mesh.

For the purpose of solver speed-up assessment, we have first initialised the
block with flexible plate problem by running it for one second in order to reach
a representative time-step, and then compared the time taken to reduce the
residual at the subsequent time-step by five orders of magnitude. Two ad-
vanced solver variants were investigated. Firstly, preconditioned GMRES was
applied to the pressure equation with Jacobi iterations used to converge the
momentum equations (denoted ‘Exp u/Imp p’ in Table 1). Six Krylov-space
vectors were used with three GMRES iterations for each iteration in pseudo-
time. The CFL number used was 0.8 for the momentum equations and 1 × 105

for the pressure equation. Secondly, we considered the momentum equations
implicitly by setting β = 1 in Eq. (22) and adding one LU-SGS iteration for
each pseudo-timestep (‘Imp u/Imp p’). This allowed the CFL number to be
increased to 1.4 for the momentum equations. Both of these algorithms are
compared to standard Jacobi used for both pressure and momentum equations
(‘Explicit’), where the CFL number was set to 0.8.

The achieved speed-ups are listed in Table 1. Overall solver speed-ups for
the full implicit method were around 65 times. It is interesting to note that
the speedup effected by the implicit treatment of the pressure in isolation is
less for the fine mesh than for the coarse mesh, whereas with implicit velocity
relaxation the speedup is very similar in the two cases. This is most likely
due to the restriction in timestep size caused by the viscous terms, which is a
quadratic function of mesh spacing. Thus, although the pressure equation is
treated implicitly, for the finer mesh the viscous timestep restriction begins to
become the bottleneck unless the viscous terms are treated implicitly as well.
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Figure 8: Meshes used for pipe problem.

6.1.2. Parallel efficiency

The strong-scaling performance of the entire coupled solver was evaluated by
assessing the time taken to complete the first two time-steps of the block with
flexible plate problem. The results of the study are depicted in Fig. 7, where
the number of iterations achieved per second has been normalised to the value
for a single processor. Note that, as a consequence of the preconditioning being
done block-for-block on each parallel subdomain, the number of iterations taken
to converge the time-step is not constant, and is also plotted in Fig. 7. As seen,
this does not show a clear deteriorating trend as one may expect. Also plotted
is the speed-up per iteration. After the initial scaling from one to eight cores
which is somewhat below linear due to shared-memory bandwidth saturation,
the scaling with distributed memory is linear until communication begins to
dominate over computation.

6.2. Pressure-pulse in flexible tube

The second test-case comprises a flexible tube 5 cm in length with inner
diameter of 1 cm and wall thickness of 0.1 cm. This problem is associated with
arterial flow and has been considered by many researchers [27, 70, 71, 72]. It
constitutes a worthy test for an incompressible FSI solver as tube flexibility is
paramount to the solution. However, a mesh independent solution has never
been provided for comparison purposes. Here we aim to establish one, as the
problem constitutes a simple and relatively inexpensive test for FSI codes. The
walls have density ρs = 1.2 g cm−3 and elastic modulus E = 3 × 106 g cm−1

s−2. A Poisson’s ratio of ν = 0.3 is used. To model a prototypical liquid, the
fluid inside has density 1 g cm−3 and a viscosity µ = 3× 10−2 g cm−1 s−1. The
tube wall is clamped at both ends, with a pressure boundary condition imposed
on the fluid at either side. On the left side the pressure is set to 1.3332×104 Pa
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Figure 9: Solution snapshot at t = 0.0035 s. Solid deflection is exaggerated by a factor of
10. Velocity vectors are scaled according to velocity magnitude and coloured according to
pressure.

for t < 0.003 s and zero thereafter, while on the right it is set to zero throughout
the analysis. The result is that a pressure wave travels down the tube.

The three computational meshes used are depicted in Fig. 8 and denoted
Coarse, Intermediate and Fine. In each case to obtain a finer mesh, the spacing
was reduced by a factor of 1.5 in each direction, resulting in a roughly 3.4 times
increase in the number of cells. The number of fluid cells is, respectively, 91 000,
301 000 and 1 million for the three meshes, with the solid domain containing
38 000, 130 000 and 454000 cells respectively. A time-step size of 1 × 10−4 was
used as in [27]. For this problem, the calculation of the redistribution of nodes
for mesh movement has to be modified, with D1 and D2 in Eq. (15) taking on
the meaning of shortest distance to the solid boundary and shortest distance to
the centreline, x = y = 0, respectively.

Figure 9 shows a snapshot of the solution, with wall displacement exagger-
ated by a factor of 10 for clarity. Figure 10 depicts the radial components of
displacement and velocity of the pipe wall at a point on the inner wall halfway
along the pipe. It is evident that the fine mesh result is close to converged, with
the maximum change in velocity between the coarse and intermediate meshes
of 8.2% in peak velocity reducing to 3.4% between the intermediate and fine
meshes. The coarse mesh analysis completed in 125 minutes using four Intel
Core 2 2.66 GHz computational cores, while the finest mesh took 938 minutes
using 31 AMD Opteron 800 MHz cores.

7. Conclusion

A fast parallel strongly-coupled partitioned FSI scheme was developed us-
ing a 3D edge-based finite volume methodology. Laminar incompressible flows
interacting with structures undergoing large non-linear displacements were con-
sidered. The incompressible fluid divergence constraint was dealt with using
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Figure 10: Radial component of dispacement (left) and velocity (right) of the inner tube wall
at half the length of the pipe. Solutions are shown for the three mesh densities given in the
text.

a new artificial-compressibility algorithm stabilised with Consistent Numerical
Fluxes. The fluid solver was accelerated via the implicit treatment of pressures
in the continuity equation and implicit treatment of viscous terms in the mo-
mentum equations. These were respectively solved via two matrix-free methods
viz. LU-SGS preconditioned GMRES and LU-SGS. The solver was parallelised
using METIS and MPI for distributed memory architectures. Two strongly-
coupled test problems were considered, and solver performance assessed via
mesh indepedance studies. A high degree of mesh indepedance was demon-
strated throughout. Advanced solver computational performance demonstrated
truly fast and efficient parallel solution. Overall speed-ups achieved were circa
50 while ensuring linear distributed parallel-scaling for up to 128 CPUs for the
problems considered.
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