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Abstract Dynamic multi-objective optimisation problems (DMOOPs) occur in
many situations in the real world. These optimisation problems do not have a single
goal to solve, but many goals that are in conflict with one another - improvement
in one goal leads to deterioration of another. Therefore, when solving DMOOPs,
an algorithm attempts to find the set of optimal solutions, referred to as the Pareto-
optimal front (POF). Each DMOOP also has a number of boundaryconstraints that
limits the search space. When the particles of a particle swarm optimisation (PSO)
algorithm moves outside the search space, an approach should be followed to man-
age violation of the boundary constraints. This chapter investigates the effect of
various approaches to manage boundary constraint violations on the performance of
the Dynamic Vector Evaluated Particle Swarm Optimisation (DVEPSO) algorithm
when solving DMOOPs. Furthermore, the performance of DVEPSO is compared
against the performance of three other state-of-the-art dynamic multi-objective op-
timisation (DMOO) algorithms.

1 Introduction

Many problems in the real-world change over time and requiremore than one goal
to be optimised. However, these goals, or objectives, are normally in conflict with
one another, where an improvement in one objective results in deterioration of an-
other objective. Therefore, a single solution does not exist and the goal becomes
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to find the set of optimal trade-off solutions. These problems are called dynamic
multi-objective optimisation problems (DMOOPs). Each DMOOP has a number of
objective functions to optimise and each variable within anobjective function has a
range of values that are valid, referred to as the search space. These bounds of valid
values of the decision variable is called boundary constraints.

A multi-swarm algorithm, called Dynamic Vector Evaluated Particle Swarm Op-
timisation (DVEPSO) [1], is presented. The effect that various approaches to man-
age boundary constraints have on the performance of DVEPSO is investigated. Fur-
thermore, DVEPSO is compared against three other state-of-the-art dynamic multi-
objective optimisation (DMOO) algorithms.

The rest of the chapter’s layout is as follows: Section 2 presents theory and back-
ground information with regards to PSO and DMOO. The DVEPSO algorithm is
presented in Section 3, as well as the approaches that can be used to manage bound-
ary constraints. Section 4 provides information about the experiments that were run,
including the benchmark functions, performance metrics and statistical analysis that
were used to measure the performance of the various algorithms. The results that
were obtained from the experiments are discussed in Section5. Conclusions about
this research are presented in Section 6.

2 Background

This section presents background information on PSO, as well as the theory on
multi-objective optimisation (MOO) and DMOO. Furthermore, some issues when
solving DMOOPs are presented.

2.1 Particle Swarm Optimisation

Inspired by the social behaviour of bird flocks, Eberhart andKennedy introduced
PSO [2]. The PSO algorithm maintains a swarm of particles, where each particle
represents a solution of the optimisation problem. Each particle moves through the
search space and its position is updated based on its own experience (cognitive in-
formation), as well as the experience of the its neighbours (social information). The
particle’s position that produced the best solution so far,is referred to as its personal
best orpbest. The position that leads to the best overall solution by all particles in a
pre-defined neighbourhood, is called the neighbourhood best or nbest. If the neigh-
bourhood is defined as the whole swarm, the neighbourhood best is referred to as
the global best orgbest.

In general, the PSO algorithm can be described as indicated in Algorithm 1.
Every optimisation problem has boundary constraints and therefore a particle

should be prevented from drifting outside the boundary constraints of the problem.
In some cases it may be beneficiary to allow a particle to move somewhat outside
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Algorithm 1 PSO Algorithm
1. Create and initialise a swarm
2. while stopping condition has not been reached
3. for each particle in swarm do
4. setpbest
5. setgbest
6. for each particle in swarm do
7. calculate new velocity
8. calculate new position

the bounds when the solution is in close proximity of the bounds. However, once a
particle has moved outside the bounds, it should not be allowed to roam outside the
boundary constraints indefinitely and should be pulled backwithin the valid bounds
of the decision space. Furthermore, if a particle’s position is outside the bounds, the
position should not be used as the particle’spbest.

According to Chuet al, there are three basic boundary handling techniques that
are widely used, namely [3]:

• Random, where if a particle moves outside the search space, arandom value from
an uniform distribution between the lower and upper boundaries of the violating
dimension is assigned to the violating dimension of the particle’s position.

• Absorbing, where if a particle moves outside the search space, the dimension that
is violating the bounds are set to the boundary of that dimension, so that it seems
as though the particle has been absorbed by the boundary.

• Reflection, where if a particle moves outside the search space, the boundary acts
like a mirror that reflects the projection of the particle’s displacement.

Recently, studies have been done on the effect of boundary constraint violation
approaches on the performance of PSO. Helwig and Wanka investigated four ap-
proaches for managing boundary constraints when solving high-dimensional single-
objective optimisation problems (SOOPs) [4]. Chuet al. investigated the effect
of the three boundary handling techniques mentioned above for high dimensional
SOOPs and high dimensional composite SOOPs. However, in this chapter various
boundary handling approaches are investigated to determine their effect on the per-
formance of DVEPSO when solving DMOOPs.

2.2 Multi-objective Optimisation Theory

When dealing with a multi-objective optimisation problem (MOOP), the various ob-
jectives are normally in conflict with one another, i.e. improvement in one objective
leads to a worse solution for another objective. Therefore,for MOOPs, the definition
of optimality has to be adjusted from the one that is used for SOOPs. When solving
a MOOP the goal is to find a set of trade-off solutions where foreach of these solu-
tions no objective can be improved without causing a worse solution for at least one
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of the other objectives. These solutions are referred to asnon-dominated solutions
and the set of such solutions is called thenon-dominated setor Pareto-optimal set
(POS). The corresponding objective vectors in the objective space that lead to the
non-dominated solutions are referred to as thePOF or Pareto-front.

For MOOPs, when one decision vector dominates another, the dominating deci-
sion vector is considered as a better decision vector. Therefore, only non-dominated
decision vectors are included in the POS. Decision vector domination is defined as
follows:

Definition 1. Decision Vector Domination: A decision vectorx1 dominates an-
other decision vectorx2, denoted byx1 ≺ x2, if and only if

• x1 is at least as good asx2 for all the objectives, i.e.fm(x1) ≤ fm(x2), ∀m=
1, . . . ,nm; and

• x1 is strictly better thanx2 for at least one objective, i.e.∃i = 1, . . . ,nm: fm(x1)<
fm(x2) .

The best decision vectors are called Pareto-optimal, defined as follows:

Definition 2. Pareto-optimal: A decision vectorx∗ is Pareto-optimal if there does
not exist a decision vectorx 6= x∗ ∈ F that dominates it, i.e.∄m: fm(x)< fm(x∗). If
x∗ is Pareto-optimal, the objective vector,f(x∗), is also Pareto-optimal.

Together, all the Pareto-optimal decision vectors form thePOS, defined as:

Definition 3. Pareto-optimal Set: The POS,P∗, is formed by the set of all Pareto-
optimal decision vectors, i.e.

P∗ = {x∗ ∈ F |∄x ∈ F : x ≺ x∗} (1)

The POS contains the best trade-off solutions for the MOOP. The corresponding
objective vectors, form the POF, which is defined as follows:

Definition 4. Pareto-optimal Front: For the objective vectorf(x) and the POSP,
the POF,PF∗ ⊆ O is defined as

PF∗ = {f = ( f1(x∗), f2(x∗), . . . , fnm(x
∗)) |x∗ ∈ P} (2)

Therefore, the POF contains the set of objective vectors that corresponds to the
POS, i.e. the set of decision vectors that are non-dominated. The POF can have
various shapes, e.g. a convex POF or a concave POF.

2.3 Dynamic Multi-objective Optimisation Theory

Let thenx-dimensional search space (also referred to as thedecision space) be rep-
resented byS⊆ Rnx and the feasible space represented byF ⊆ S, whereF = S for
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unconstrained optimisation problems. Letx = (x1,x2, . . . ,xnx)∈Srepresent a vector
of the decision variables, i.e. thedecision vector, and let a single objective function
be defined asfm: Rnx → R. Thenf(x) = ( f1(x), f2(x), . . . , fnm(x)) ∈ O⊆ Rnm rep-
resents anobjective vectorcontainingnm objective function evaluations, andO is
theobjective space.

Using the notation above, mathematically, a DMOOP can be defined as:

minimisef(x,W(t)), x = (x1, . . . ,xnx),W(t) = (w1(t), . . . ,wnm(t))

sub ject to gi(x)≤ 0, i = 1, . . . ,ng

h j(x) = 0, j = ng+1, . . . ,nh

x ∈ [xmin , xmax]
nx (3)

whereW(t) is a vector of time-dependent control parameters of an objective func-
tion at time t, nx is the number of decision variables,x ∈ Rnx, ng is the num-
ber of inequality constraints,g, nh is the number of equality constraints,h, and
x ∈ [xmin , xmax]

nx refers to the boundary constraints.
Unlike dynamic single-objective optimisation problems (DSOOPs) with only one

objective function, DMOOPs have many objective functions.Therefore, in order to
solve the DMOOP the goal is to track the POF over time, i.e.

PF∗(t) = {f(t) = ( f1(x∗,w1(t)), f2(x∗,w2(t)), . . . , fnm(x
∗
,wnm(t))) |x∗ ∈ P} (4)

Farinaet al. [5] classified dynamic environments for DMOOPs into four types,
namely:

• Type I environment where the POS (optimal set of decision variables) changes,
but the POF (corresponding objective function values) remains unchanged.

• Type II environment where both the POS and the POF change.
• Type III environment where the POS remains unchanged, but the POF changes.
• Type IV environment where both the POS and the POF remains unchanged,

even though the problem can change.

2.4 Dynamic Multi-objective Optimisation Issues

In order to solve a DMOOP, an algorithm has to be able to detectwhen a change
in the environment has occurred and then respond to the change. A change in the
environment can be detected through the use of sentry particles [6] where a random
number of sentry particles are selected after each iteration. Just before the next iter-
ation is performed, these particles are re-evaluated, and if their current fitness value
differs more than a specified value from their fitness value just after the previous
iteration, the swarm is alerted that a change has occurred inthe environment.

In order to test whether an algorithm can solve DMOOPs, benchmark functions
are developed that test an algorithm’s ability to manage certain difficulties, such
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as local POFs and a POF that changes shape (such as from convexto concave)
over time. Benchmark functions are representative of typical real-world problems.
An approach to reformulate a three-objective optimisationtest function to define a
dynamic two-objective optimisation problem was presentedby Jin and Sendhof [7].
Guanet al. [8] presented an approach to create DMOOPs by replacing objective
functions with new ones at specific times. DMOOPs based on thestatic MOO two-
objective ZDT functions [9] and the scalable DTLZ functions[10] was presented by
Farinaet al. [5]. Some adaptions to these test functions were proposed in[11, 12].

However, when algorithms’ performances are compared against each other, per-
formance measures are required [13, 14, 15, 5]. Two main categories of performance
metrics for DMOOPs exist, namely metrics that require knowledge about the true
POF and metrics that do not require any prior knowledge aboutthe DMOOP. Various
performance metrics were developed to measure the performance of an algorithm
with regards to two main goals when solving a DMOOP, namely finding solutions
that are as close as possible to the true POF and finding a diverse set of solutions.

One of the problems when working with DMOOPs, is that there isno standard
benchmark functions or performance metrics that are used when research on an
algorithm’s performance is presented.

3 Dynamic Vector Evaluated Particle Swarm Optimisation
Approach

This section discusses the Vector Evaluated Particle SwarmOptimisation (VEPSO)
algorithm and how it has been adapted to solve DMOOPs. One type of constraint
that forms part of a DMOOP is the bounds for each decision variable, also referred
to as boundary constraints. This section presents approaches that can be used to
manage boundary constraint violations when solving DMOOPs.

3.1 Vector Evaluated Particle Swarm Optimisation

The Vector Evaluated Particle Swarm Optimisation (VEPSO) algorithm, inspired
by the Vector Evaluated Genetic Algorithm (VEGA) [16], was introduced by Par-
sopouloset al. [17]. With VEPSO, each swarm solves only one objective function
and then shares its knowledge with the other swarms.

v j
i (t +1) = w jv j

i (t)+c j
1r1(y

j
i (t)−x j

i (t))+c j
2r2(ŷ

s
i (t)−x j

i (t)) (5)

x j
i (t +1) = x j

i (t)+v j
i (t +1) (6)

wheren represents the dimension withi = 1, . . . ,n; m represents the number of
swarms with j = 1, . . . ,m as the swarm index; ˆys

i is the global best of the s-th
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swarm withs 6= j; c j
1 and c j

2 are the cognitive and social parameters of thej-th
swarm respectively;r1, r2 ∈ [0,1]; w j is the inertia weight of thej-th swarm; and
s∈ [1, . . . , j −1, j +1, . . . ,M] represents the index of a respective swarm. The index
scan be set up in various ways, affecting the topology of the swarms in VEPSO.

In Equation (5) the global best of another swarm (indexed bys) is used to update
the velocity of the particles of thej-th swarm. In this way the knowledge of thes-th
swarm is shared with thej-th swarm.

3.2 Dynamic Vector Evaluated Particle Swarm Optimisation

When solving DMOOPs, in order to track the changing POF, an algorithm must be
able to detect that a change has occurred in the environment and then respond to the
change appropriately. The VEPSO algorithm adapted to solveDMOOPs (DVEPSO)
is presented in Algorithm 2.

Algorithm 2 VEPSO for DMOO problems
1. for number of iterations do
2. check whether a change has occurred
3. if change has occurred
4. respond to change
5. remove dominated solutions from archive
6. perform iteration
7. if new solutions are non-dominated
8. if space in archive
9. add new solutions to archive
10. else
11. remove solutions from archive
12. add new solutions to archive
13. select sentry particles

The default configuration of DVEPSO algorithm that is used for this research is
as follows:

• Each swarm has 20 particles.
• The non-dominated solutions found so far is stored in an archive and the archive

size is set to 100.
• If a particle’s new position is non-dominant with regards toits currentpbest, one

of these two positions is randomly selected as the particle’s newpbest.
• If a particle’s new position is non-dominant with regards tothe swarm’s current

gbest, one of these two positions is randomly selected as the swarm’s newgbest.
• Sentry particles is used for change detection (refer to lines 2 and 13 in Algo-

rithm 2).
• If a change has been detected, 30% of the particles of the swarm(s) whose ob-

jective function changed is re-initialised (refer to line 4in Algorithm 2). The
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non-dominated solutions in the archive is re-evaluated andthe solutions that have
become dominated are removed from the archive (refer to line5 in Algorithm 2).

• If the archive is full, the distance between the solution andthe other non-
dominated solutions in the archive is calculated, and the one with the lowest
average distance is removed. This ensures that a solution from a crowded region
in the found POF is removed (refer to line 11 in Algorithm 2).

• For knowledge sharing between the various swarms, a ring topology is used.
Therefore,s in Equation (5) is selected using

s=

{

M for j = 1
j −1 for j = 2, . . . ,M

(7)

The next section discusses approaches that can be followed to appropriately re-
spond to a violation of the boundary constraints.

3.3 Management of Boundary Constraints

This section presents the various approaches that are used in the experiments to man-
age boundary constraint violations. Below,xmax andxmin refer to the upper bounds
and lower bounds of the decision variables of the DMOOP respectively.

The following approaches to handle boundary constraints isinvestigated to de-
termine their effect on the performance of DVEPSO when solving DMOOPs:

3.3.1 Clamping Approach

With the clampingapproach, any particle that violates a specific boundary of the
search space, is placed on or close to the violated boundary of the search space [18].
This approach is used for the default configuration of DVEPSOas discussed in
Section 3.2. Mathematically, clamping is defined as:

if x(t +1) > xmax then x(t +1) = xmax− ε
if x(t +1) < xmin then x(t +1) = xmin (8)

with ε a very small positive number.

3.3.2 Deflection Approach

With the deflection approach, if a particle moves outside thebounds of the search
space, the velocity’s direction of the violated dimension is inverted, thereby causing
a bouncing effect of the bounds. Mathematically, the deflection approach is defined
as:
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if xi(t +1)> xmaxi then xi(t +1) = xi
max− (xi(t +1)−xi

max)%(xi
max−xi

min) and

vi(t +1) = −vi(t)

if xi(t +1)< xmini then xi(t +1) = xi
min+(xi

min−xi(t +1))%(xi
max−xi

min) and

vi(t +1) = −vi(t) (9)

wherexi , xi
min andxi

max are thei-th dimension ofx, xmax andxmin respectively.

3.3.3 Per Element Re-initialisation Approach

With per element re-initialisation, if a particle moves outside the search space,
each dimension of the particle’s position that violates theboundary constraint is
re-initialised to a random valid value [18]. Therefore, thedimensions of the posi-
tion that is valid remains the same. Mathematically, per element re-initialisation is
defined as:

if xi(t +1) > xi
max then xi(t +1) = rand(xi

min,x
i
max)

if xi(t +1) < xi
min then xi(t +1) = rand(xi

min,x
i
max) (10)

3.3.4 Periodic Approach

Theperiodic approachis similiar to the deflection approach. However, if a particle’s
position violates the upper boundary for a specific dimension, it is placed near the
lower boundary for that dimension and vice versa [19]. Mathematically, the periodic
approach is defined as:

if xi(t +1) > xi
max then xi(t +1) = xi

min− (xi(t +1)−xi
max)%(xi

max−xi
min)

if xi(t +1) < xi
min then xi(t +1) = xi

max− (xi
min−xi(t +1))%(xi

max−xi
min)(11)

3.3.5 Random Approach

The randomapproach re-initialises a particle’s position to a valid position within
the search space if it violates the boundaries of the search space [19] [4]. There-
fore, in contrast to the per element re-initialisation approach, all dimensions are
re-initialised and not only the violating dimensions. Mathematically, it is defined
as:

if x(t +1) > xmax then x(t +1) = rand(xmin,xmax)

if x(t +1) < xmin then x(t +1) = rand(xmin,xmax) (12)
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3.3.6 Re-initialisation Approach

With there-initialisation approach, a particle that violates the bounds of the search
space has its position re-initialised to a valid position within the search space, its
velocity set to zero and itspbestset to the particle’s new position [18].

3.3.7 Unconstrained Approach

With theunconstrainedapproach, no clamping is performed and particles are free
to move outside the search space. However, only valid positions are selected as the
pbestof a particle.

4 Experiments

This section describes experiments that were conducted, using benchmark functions
and performance metrics discussed in Sections 4.1 and 4.2 respectively, to test:
• the effect of various approaches to manage boundary constraints on the perfor-

mance of DVEPSO (refer to Section 3.3); and
• the performance of DVEPSO compared to three other state-of-the-art DMOO

algorithms (refer to Section 4.3).

All experiments consisted of 30 independent runs and each run consisted of 1,000
iterations. For all benchmark functions the severity of change (nt) is set to 10 and
the frequency of change (τt) is set to either 5, 25 or 50. This will cause the DMOOP
to change everyτt iterations withnt distinct steps in timet.

The PSO parameters were set to values that lead to convergentbehaviour [20],
namelyw= 0.72 andc1 = c2 = 1.49.

All code is implemented in the Computational Intelligence Library (CIlib) [18].
All simulations were run on the Sun Hybrid System’s Nehalem System of the Center
for High Performance Computing [21]. The SUN Nehalem systemhas an Intel Ne-
halem Processor of 2.93 GHz, 2304 CPU cores, 3465 Gb of Memoryand produces
24 TFlops at peak performance.

4.1 Benchmark Functions

This section presents the benchmark functions that were used to test whether the
algorithms can track a POF that changes over time. Three functions presented by
Farinaet al. [5] and three functions of Goh and Tan [15] were used. Additionally,
two functions that are based on the ZDT3 function of Deb [9] that were adapted
to become DMOOPs were used [22]. Below,τ is the generation counter,τt is the
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number of iterations for whicht remains fixed, andnt is the number of distinct steps
in t.
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Minimize: f (x, t) = ( f1(xI, t),g(xII , t) ·h(xIII , fi(xI, t),g(xII , t), t))

f1(xI) = xi

g(xII ) = 1+∑xi∈xII
(xi −G(t))2

h( f1,g) = 1−
√

f1
g

where:

G(t) = sin(0.5πt), t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0,1]; xII = (x2, . . . ,xn) ∈ [−1,1]
(13)

As suggested by [5], the dimension,n, was set to 20. Function FDA1’s values in
the decision variable space change over time, but its valuesin the objective space
remain the same. Therefore, it is a Type I DMOOP. It has a convex POF withPOF=
1−√

f1.
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h( f1,g) = 1− f1
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(xi−H(t))2)−1
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H(t) = 0.75+0.75sin(0.5πt), t = 1
nt
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xI ∈ [0,1];xII ,xIII ∈ [−1,1]
(14)

For FDA2 the parameters|XII| and|XIII| were set to:|XII| = |XIII| = 15 (as sug-
gested by [5]). Function FDA2 has a POF that changes from a convex to a non-
convex shape. It is a Type III DMOOP, since the values in the objective space
change while the values in the decision variable space remain the same. For FDA2,

POF = 1− f H(t)−1

1 .
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(xi −G(t))2
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G(t) = |sin(0.5πt)|
F(t) = 102sin(0.5πt), t = 1

nt

⌊

τ
τt
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xI ∈ [0,1];xII ∈ [−1,1]
(15)
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As suggested by [5], the function parameters|XII| and|XIII| were set to:|XI|= 5
and|XII|= 25. Function FDA3 has a convex shaped POF and both the values in the
decision variable space, as well as the objective space, change. Therefore it is called

a Type II DMOOP. For FDA3,POF = (1+G(t))(1−
√

f1
1+G(t) ).
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H(t)

where:

H(t) = 0.75sin(0.5πt)+1.25, t = 1
nt
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xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)
(16)

As suggested by [15], the dimension was set ton= 10. Function dMOP1 has a
convex POF where the values in the objective space change, but the values in the
decision space remain the same. Therefore, it is a Type III problem, withPOF =

1− f H(t)
1 .
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g(xII ) = 1+9∑xi∈xII
(xi −G(t))2

h( f1,g) = 1− f1
g

H(t)

where:
H(t) = 0.75sin(0.5πt)+1.25,

G(t) = sin(0.5πt)t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)
(17)

The dimension,n, was set 10 (as suggested by [15]). Function dMOP2 has a
convex POF where the values in both the decision space and objective space change.

Therefore, dMOP2 is a Type II problem, withPOF = 1− f H(t)
1 .

dMOP3=



















































Minimize: f (x, t) = ( f1(xI, t),g(xII , t) ·h(xIII , fi(xI, t),g(xII , t), t))

f1(xI) = xr

g(xII ) = 1+9∑xi∈xII \xr(xi −G(t))2

h( f1,g) = 1−
√

f1
g

where:

G(t) = sin(0.5πt), t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0,1]; r =
⋃

(1,2, . . . ,n)
(18)
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As suggested by [15], the dimension,n, was set to 10. Function dMOP3 has a
convex POF where the values in the objective space change, but the values in the
decision space remain the same, and is therefore a Type I DMOOP, but the spread
of thePOF changes over time. For dMOP3,POF = 1−√

f1.

The following two functions, HE1 and HE2, are based on the function ZDT3 [9],
and adapted to be dynamic.

HE1=



















































Minimize: f (x, t) = ( f1(xI, t),g(xII , t) ·h(xIII , fi(xI, t),g(xII , t), t))

f1(xI) = xi

g(xII ) = 1+ 9
n−1 ∑xi∈xII

xi

h( f1,g) = 1−
√

f1
g − f1

g sin(10πt f1)

where:

t = 1
nt

⌊

τ
τt

⌋

; xi ∈ [0,1]

xI = (x1); xII = (x2, . . . ,xn)

(19)

HE2=























































Minimize: f (x, t) = ( f1(xI, t),g(xII , t) ·h(xIII , fi(xI, t),g(xII , t), t))

f1(xI) = xi

g(xII ) = 1+ 9
n−1 ∑xi∈xII

xi

h( f1,g) = 1−
√

f1
g

H(t)
− f1

g

H(t)
sin(10π f1)

where:

H(t) = 0.75sin(0.5πt)+1.25; t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)

(20)

The dimension,n, was set to 30 (as suggested by [9]) for both HE1 and HE. Both
functions have a discontinuous POF. For HE1,POF = 1−√

f1 − f1sin(10πt f1),

and; for HE2,POF = 1−√
f 1H(t)− f H(t)

1 sin(0.5π f1).

4.2 Performance Metrics

This section discusses the performance metrics that were used to measure the per-
formance of the various algorithms. Each metric is calculated every time just before
a change occurs in the environment. The average of all these values are then cal-
culated for each of the runs. However, if it is unknown when a change will occur,
the performance metrics can be calculated over all iterations instead of only the
iterations just before a change occurs in the environment.

To determine the algorithm with the best performance for a specific function,
the algorithm’s overall rank is calculated. For each of the performance metrics the
algorithm is ranked according to its performance with regards to the specific metric.
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The algorithm’s average rank value is calculated and then the algorithm is ranked
accordingly. Two average ranks are calculated, namely: (a)the sum of all ranks
divided by the number of performance metrics (indicated in Tables 1- 8 asR1); and
(b) the sum of all ranks (but the ranks of performance metricsthat rely on the true
POF, namely HV R, VD and MS counted double) divided by the adjusted number
of performance metrics (indicated in Tables 1- 8 asR2).

4.2.1 Spacing

Measuring how evenly the non-dominated solutions are distributed along the found
POF (POF∗) can be done using the metric of spacing [23], defined as:

S
i
=

1
nc

nc

∑
j=1

Si
j , S=

1
nPF

[

1
nPF

nPF

∑
i=1

(di −d)2

]
1
2

, d =
1

nPF

nPF

∑
i=1

di (21)

wherenc is the number of changes that occurred in the environment,nPF is the
number of non-dominated solutions found at timet anddi is the Euclidean distance,
in the objective space, between non-dominated solutioni and its nearest solution in
POF∗.

4.2.2 Hypervolume Ratio

The hypervolume hypervolume (HV) or S-metric [9] computes the size of the re-
gion that is dominated by a set of non-dominated solutions, based on a reference
vector. According to Liet al., comparing the HV averaged over a number of runs
may not be as meaningful when dealing with dynamic environments [24]. There-
fore, they suggest using the HV ratio (HV R) to overcome this problem, since the
HV of the found POF (POF∗) is computed in relation to the HV of the true POF
(POF) [24]. Mathematically,HVR is defined as:

HVR=
1
nc

nc

∑
i=1

HVR(t), HVR(t) =
HV(POF∗(t))
HV(POF(t)

(22)

Prior knowledge aboutPOF is required to calculate theHVR, POF and the value
of the metric will depend on the distribution of sampling points onPOF and the
selection of the reference vector. For this research the reference vector is selected as
the maximum value for each objective.

4.2.3 Accuracy

A measure of accuracy that measures the quality of the solutions as a relation be-
tween the HV ofPOF∗ and the maximum HV that has been found so far, was
introduced by Ćamaraet al. [14]. Mathematically, it is defined as:
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acc=
1
nc

nc

∑
i=1

acc(t), acc(t) =
HV(POF∗(t))

HVmax(POF∗(t))
(23)

4.2.4 Stability

The effect of the changes in the environment on the accuracy (acc defined above)
of the algorithm can be measured by the measure of stability that was introduced by
Cámaraet al. [14]. Mathematically, stability is defined as:

stab=
1
nc

nc

∑
i=1

stab(t), stab(t) = max{0,acc(t −1)−acc(t)} (24)

4.2.5 Variable Space Generational Distance

The static generational distance (GD) metric was adapted for dynamic environments
by Goh and Tan [15]. It measures the distance betweenPOF∗ andPOF, i.e. the
proximity of POF∗ to POF. The variable space GD (VGD) metric calculates the
GD just before a change occurs in the environment, and is mathematically as:

VD(t) =
1
τ

τ

∑
t=0

VD(t)I(t)

VD(t) =
1

nPOF∗(t)

√

√

√

√nPOF∗(t)

nPOF∗(t)

∑
i=1

di(t)2

I(t) =

{

1, if t%τt = 0
0, otherwise

(25)

wherenPOF(t)∗ is the number of non-dominated solutions inPOF∗ at timet anddi

is the Euclidean distance between thei-th solution ofPOF∗ and the nearest solution
solution ofPOF. Goh and Tan calculatedi in the decision space [15]. However, for
this research it is calculated in the objective space.

4.2.6 Maximum Spread

Goh and Tan adapted the maximum spread (MS) metric for dynamic environ-
ments [15]. MS measures how wellPOF∗ covers thePOF, i.e. how well the non-
dominated solutions ofPOF∗ are spread alongPOF. MS for dynamic environments
calculates the MS just before a change occurs in the environment, and is defined
mathematically as:
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MS(t) =
1
τ

τ

∑
t=0

MS(t)I(t)

MS(t) =

√

√

√

√

√

1
M

M

∑
i=1





min
[

POF∗
i (t),POFi(t)

]

−max
[

POF∗
i (t),POFi(t)

]

POFi(t)−POFi(t)





I(t) =

{

1, if t%τt = 0
0, otherwise

(26)

whereM is the number of objectives,nPOF(t)∗ is the number of non-dominated so-
lutions in POF∗ at time t, POF∗

i andPOF∗
i refer to the maximum and minimum

of the i-th objective of non-dominated solutions inPOF∗ andPOFi andPOFi refer
to the maximum and minimum of thei-th objective of non-dominated solutions in
POF respectively.

4.3 Comparison

The performance of DVEPSO is compared against three other state-of-the-art DMOO
algorithms, namely:

• DNSGA-II-A algorithm, an NSGA-II algorithm adapted for DMOO and pro-
posed by Debet al. [25]. If a change in the environment is detected, a percentage
of individuals are randomly selected and replaced with newly created individuals.

• DNSGA-II-B algorithm, an NSGA-II algorithm that selects a percentage of in-
dividuals randomly and replaces them with individuals thatare mutated from
existing individuals when a change is detected. DNSGA-II-Bwas proposed by
Debet al. [25].

• dCOEA algorithm, a dynamic competitive-cooperative coevolutionary algorithm
proposed by Goh and Tan [15].

The source code of the dCOEA algorithm was obtained from the first author
of [15]. The source code of the static NSGA-II algorithm was obtained from [26]
and was adapted for DMOO according to [25].

4.4 Statistical Analysis

A Kruskal-Wallis test was performed for each function for each τt to determine
whether there is a difference in performance with respect tothe performance met-
rics. If this test indicated that there was a difference, pairwise Mann-Whitney U tests
were performed.
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5 Results

This section discusses the results that were obtained from the experiments. The val-
ues of the performance metrics that were obtained, are presented in Tables 1- 8. In
all tables,DVEPSOc, DVEPSOd, DVEPSOpe, DVEPSOp, DVEPSOr , DVEPSOre

andDVEPSOu refer to the clamping, deflection, per element re-initialisation, peri-
odic, random, re-initialisation and unconstrained approaches respectively (refer to
Section 3.3 for the definitions of these approaches).

5.1 Managing Boundary Constraints

This section discusses the results that were obtained by thevarious boundary con-
straint management approaches. The values of the performance metrics are pre-
sented in Tables 1- 8.

When comparing the POF that was found by the various approaches to the true
POF, the VD and MS metrics provide a good indication of the algorithms’ perfor-
mance. These tables show that for a change frequency of 10,DVEPSOc, DVEPSOpe

andDVEPSOd obtained the best overallVD value for two, one and one function(s)
respectively,DVEPSOp, DVEPSOu and DVEPSOre each obtained the bestMS
value for one function andDVEPSOr , DVEPSOd andDVEPSOu obtained the best
rank over all performance measures for one, two and two function(s) respectively.

For a change frequency of 25,DVEPSOr obtained the best overallVD value
for three functions,DVEPSOp, DVEPSOd andDVEPSOpe each obtained the best
MSvalue for one function, andDVEPSOpe, DVEPSOc, DVEPSOu andDVEPSOre

each obtained the best overall rank for one function.
For a change frequency of 50,DVEPSOpe, DVEPSOu andDVEPSOr obtained

the bestVD value for two, one and one function(s) respectively,DVEPSOu and
DVEPSOr obtained the bestMS value for one function each andDVEPSOu ob-
tained the best overall rank for three functions.

Figure 1 illustrates the found POF of the various boundary handling approaches
for FDA2. Figure 1 shows that good results were obtained byDVEPSOc, DVEPSOr ,
DVEPSOu and DVEPSOpe, but DVEPSOd and DVEPSOp struggled to find the
POF.

The results obtained by the various boundary handling techniques for dMOP2
can be seen in Figure 2. Good results were obtained by all approaches, but the
approximated POFs ofDVEPSOp andDVEPSOpe had a worse spread or coverage
than the other DVEPSO approaches.

Table 9 presents the overall rank that the various algorithms obtained for each
performance measure, as well as their overall rank for the various frequencies of
change. Table 9 shows that with regards to the various boundary constraint man-
agement approaches, for a change frequency of 10 the best overall rank for VD
were obtained byDVEPSOr and DVEPSOc, the bestMS rank was obtained by
DVEPSOr and the best overall rank of all DVEPSO approaches was obtained by
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Table 1 Performance Measure Values for FDA1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.4 0.00043 0.99658 0.9967 0.00154 0.06593 0.9761 2 2

10 DVEPSOd 99.4 0.00074 0.99361 0.99373 0.00217 0.12731 0.92471 6 6

10 DVEPSOpe 99.2 0.00051 0.99589 0.99601 0.00133 0.08515 0.92806 3.5 3.5

10 DVEPSOp 99.5 0.00053 0.99538 0.9955 0.00163 0.08932 0.95041 3.5 3.5

10 DVEPSOr 99.5 0.00043 0.99701 0.99713 0.00116 0.07035 0.94377 1 1
10 DVEPSOre 99.4 0.00053 0.9953 0.99541 0.00143 0.07855 0.89446 5 5

10 DVEPSOu 99.3 0.00077 0.99391 0.99403 0.00191 0.14115 0.91986 7 7

10 DNSGAII-A 22.8 0.00494 0.97425 0.97436 0.00339 0.83219 0.78693 10 10

10 DNSGAII-B 21.1 0.00612 0.95019 0.9503 0.00543 1.13392 1.19478 9 9

10 dCOEA 33.7 0.00132 0.90528 0.90538 0.01328 1.131842.48561 8 8

25 DVEPSOc 99.9 0.0008 0.99857 0.99858 0.00034 0.18913 0.91448 3 4

25 DVEPSOd 99.9 0.00042 0.98439 0.9763 0.00397 0.12891 0.86929 6 8

25 DVEPSOpe 99.9 0.00046 0.99928 0.99016 0.00032 0.12982 0.907671 1
25 DVEPSOp 99.9 0.00045 0.98084 0.97189 0.00485 0.10817 0.89605 9 9

25 DVEPSOr 99.8 0.00047 0.99856 0.98944 0.00049 0.10446 0.90257 4.5 3

25 DVEPSOre 99.9 0.00057 0.99922 0.9901 0.00035 0.13211 0.86428 4.5 5

25 DVEPSOu 98.5 0.00068 1.00377 0.99409 0.0013 0.24299 0.88969 7 6

25 DNSGAII-A 37.8 0.00056 0.99903 0.98891 0.00014 0.29491 0.9446 8 7

25 DNSGAII-B 38.3 0.00046 0.99913 0.98901 0.00014 0.28079 0.94903 2 2

25 dCOEA 39.8 0.00053 0.96001 0.95028 0.00428 1.324082.93453 10 10

50 DVEPSOc 100.0 0.00039 0.99865 0.99866 0.00035 0.19331 0.93334 6 7

50 DVEPSOd 99.8 0.00048 0.96771 0.96395 0.00616 0.17621 0.87048 10 10

50 DVEPSOpe 99.9 0.00044 0.99915 0.99456 0.0004 0.09639 0.86153 7 6

50 DVEPSOp 99.9 0.00037 0.97749 0.97285 0.00541 0.14417 0.83086 9 9

50 DVEPSOr 100.0 0.00046 0.99888 0.9941 0.00038 0.24311 0.89013 8 8

50 DVEPSOre 100.0 0.00033 0.99917 0.99439 0.00041 0.1331 0.87969 4 4

50 DVEPSOu 99.9 0.00033 1.00125 0.9957 0.00126 0.15148 0.91074 2 1.5
50 DNSGAII-A 40.0 0.00032 0.99985 0.99419 3.016x10−05 0.1716 0.98858 2 1.5
50 DNSGAII-B 40.0 0.00033 0.99986 0.9942 2.245x10−05 0.17261 0.98778 2 3

50 dCOEA 39.9 0.00026 0.99965 0.994 0.00017 0.1515 0.95904 5 5

DVEPSOc. For a change frequency of 25 the best overall rank forVD were ob-
tained byDVEPSOcl andDVEPSOr , the best overall rank forMSwas obtained by
DVEPSOr , and the approach that ranked the best over all performance measures
wasDVEPSOcl . For a change frequency of 50 the best overall rank forVD was ob-
tained byDVEPSOpe, the best overall rank forMSwas obtained byDVEPSOr , and
the approach that ranked the best over all performance measures wasDVEPSOu. It
is interesting to note thatDVEPSOr consistently provided the best overallMSvalue.
Furthermore,DVEPSOc andDEVPSOr obtained the best rank forVD for change
frequencies of 10 and 25. Therefore, for the lower change frequencies of 10 and
25,DVEPSOc andDVEPSOr outperformed the other approaches and for a change
frequency of 50DVEPSOu performed the best of the DVEPSO approaches.
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Table 2 Performance Measure Values for FDA2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 63.3 0.00367 0.99525 0.99191 0.00049 0.43937 0.87783 7.5 7

10 DVEPSOd 73.4 0.00118 0.99533 0.97848 0.00049 0.45824 0.90878 7.5 8

10 DVEPSOpe 63.0 0.00391 0.99905 0.98157 0.00029 0.43234 0.88916 5 3

10 DVEPSOp 68.5 0.002 0.99846 0.98098 0.00034 0.451470.91258 3 2

10 DVEPSOr 68.6 0.00372 0.99634 0.9789 0.00043 0.44453 0.90914 6 5

10 DVEPSOre 63.3 0.00297 0.99554 0.97812 0.00037 0.45008 0.87382 9.5 9

10 DVEPSOu 71.5 0.00283 1.00171 0.98418 0.00019 0.44998 0.907571 1
10 DNSGAII-A 39.4 0.00044 1.0044 0.98681 9.565x10−06 0.71581 0.77096 4 6

10 DNSGAII-B 39.6 0.00042 1.00441 0.98683 9.206x10−06 0.71681 0.77866 2 4

10 dCOEA 38.4 0.00051 1.00209 0.98454 0.00122 0.70453 0.61923 9.5 10

25 DVEPSOc 78.5 0.0023 0.99644 0.99421 0.00037 0.43181 0.86647 7 7

25 DVEPSOd 77.2 0.00204 0.99354 0.98997 0.00058 0.43196 0.86884 9.5 8.5

25 DVEPSOpe 76.7 0.00221 0.99882 0.99493 0.00024 0.43695 0.85983 4 4

25 DVEPSOp 79.3 0.00166 0.99701 0.9893 0.0004 0.4421 0.89688 6 4

25 DVEPSOr 78.0 0.00114 0.9968 0.98855 0.00036 0.42211 0.87893 2.5 1
25 DVEPSOre 78.5 0.00251 0.99684 0.98859 0.00028 0.42642 0.82876 9.5 8.5

25 DVEPSOu 76.0 0.00145 1.00077 0.99249 0.00021 0.43903 0.86418 5.0 4

25 DNSGAII-A 39.7 0.00043 1.00314 0.99484 7.579x10−06 0.72841 0.78969 2.5 6

25 DNSGAII-B 39.7 0.00051 1.00314 0.99484 6.707x10−06 0.7268 0.83159 1 2

25 dCOEA 39.9 0.00099 1.00265 0.99436 0.00017 0.74606 0.78319 8 10

50 DVEPSOc 93.7 0.00031 0.99961 0.9979 0.00017 0.50599 0.95397 3 3

50 DVEPSOd 93.3 0.00028 0.99491 0.99166 0.00173 0.49882 0.94 4.5 5

50 DVEPSOpe 93.1 0.00031 1.001 0.99732 7.344x10−05 0.4994 0.95325 2 2

50 DVEPSOp 94.0 0.00031 0.99524 0.99158 0.00161 0.51161 0.93862 9 9

50 DVEPSOr 93.0 0.00032 1.00035 0.99668 0.00012 0.50096 0.92995 8 7

50 DVEPSOre 93.7 0.00036 0.99904 0.99537 0.00012 0.49984 0.95716 6.5 4

50 DVEPSOu 91.4 0.00031 1.00155 0.99787 9.68x10−05 0.49669 0.95937 1 1
50 DNSGAII-A 40.0 0.0005 1.00287 0.99918 2.804x10−06 0.67584 0.75404 4.5 6

50 DNSGAII-B 40.0 0.00039 1.00287 0.99918 2.778x10−06 0.67736 0.74332 6.5 8

50 dCOEA 40.0 0.00207 1.00268 0.999 4.575x10−05 0.69043 0.86612 10 10

5.2 Comparison

This section discusses the results that were obtained by thevarious DMOO algo-
rithms. The results are presented in Tables 1- 8.

These tables show that for a change frequency of 10,dCOEAandDNSGAII-A
each obtained the best overallVD value for 2 functions and with regards to theMS
value,DNSGAII-A anddCOEAobtained the best overall value for two and three
functions respectively.

For a change frequency of 25,dCOEAobtained the best overallVD value for two
functions andDNSGAII-A andDNSGAII-B each obtained the best overallVD value
for one function;dCOEAandDNSGAII-A obtained the bestMSvalue for two and
three functions respectively; anddCOEA, DNSGAII-A andDNSGAII-B obtained
the best overall rank for one, two and two functions respectively.
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Table 3 Performance Measure Values for FDA3

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 100.0 0.00109 1.00221 0.99889 0.00013 0.95943 0.83848 4 1.5
10 DVEPSOd 100.0 0.00084 1.963x10+44 0.00773 0.00334 0.98365 0.827822 3

10 DVEPSOpe 100.0 0.00095 1.00169 5.124x10−48 7.62x10−52 0.99045 0.80762 7.5 8

10 DVEPSOp 100.0 0.00084 5.822x10+40 2.977x10−07 2.96x10−07 1.0308 0.86383 2 4

10 DVEPSOr 100.0 0.00087 1.00164 5.124x10−48 8.014x10−52 0.99326 0.82882 7.5 7

10 DVEPSOre 100.0 0.00091 1.0017 5.124x10−48 7.63x10−52 0.99818 0.8472 6 6

10 DVEPSOu 100.0 0.00081 4.767x10+45 0.00068 0.00068 0.97488 0.816792 1.5
10 DNSGAII-A 32.8 0.00318 0.99967 7.171x10−50 2.796x10−53 1.32639 1.09947 9 9.5

10 DNSGAII-B 27.3 0.00498 0.99796 7.158x10−50 5.576x10−53 1.31649 1.18386 10 9.5

10 dCOEA 39.3 0.00076 1.00182 7.186x10−50 1.503x10−53 1.08503 1.30535 5 5

25 DVEPSOc 100.0 0.00076 1.00045 0.99981 2.746x10−05 1.0931 0.95493 1.5 2

25 DVEPSOd 100.0 0.00087 7.955x10+41 0.01251 0.0025 1.14336 1.02693 5 4

25 DVEPSOpe 100.0 0.00069 1.00037 1.053x10−45 2.484x10−50 1.08436 0.91634 6.5 6

25 DVEPSOp 100.0 0.00071 4.334x10+41 0.00046 0.00045 1.10933 0.96636 4 5

25 DVEPSOr 100.0 0.00066 1.00036 1.053x10−45 2.646x10−50 1.11311 0.99296 6.5 7

25 DVEPSOre 100.0 0.00069 1.00037 1.053x10−45 2.5x10−50 1.10671 0.95784 8 8

25 DVEPSOu 100.0 0.0008 1.508x10+35 1.588x10−10 1.586x10−10 1.10233 0.97723 1.5 1
25 DNSGAII-A 38.2 0.00124 1.00039 1.053x10−45 4.373x10−50 1.27408 1.1752 10 9.5

25 DNSGAII-B 39.1 0.0011 1.00041 1.053x10−45 3.612x10−50 1.27814 1.17337 9 9.5

25 dCOEA 39.9 0.00052 1.00044 1.053x10−45 3.221x10−50 1.22933 1.37518 3 3

50 DVEPSOc 100.0 0.00103 1.01768 0.98517 0.00231 0.70117 0.98572 6 6

50 DVEPSOd 100.0 0.00098 5.573x10+41 0.02758 0.00885 0.68577 0.97358 5 5

50 DVEPSOpe 100.0 0.00076 1.00645 6.998x10−45 1.587x10−47 0.67082 0.98334 2.5 4

50 DVEPSOp 100.0 0.00115 1.969x10+43 0.00167 0.00167 0.68958 0.98313 4 2

50 DVEPSOr 100.0 0.00077 1.00532 8.548x10−47 2.067x10−49 0.66911 0.9844 2.5 3

50 DVEPSOre 100.0 0.00092 1.00664 8.559x10−47 1.935x10−49 0.70841 0.97215 10 10

50 DVEPSOu 100.0 0.00088 4.341x10+41 3.674x10−05 3.674x10−05 0.68476 0.98049 1 1
50 DNSGAII-A 40.0 0.00137 1.02952 8.753x10−47 3.248x10−50 1.15409 0.99744 7 7

50 DNSGAII-B 40.0 0.00141 1.02976 8.755x10−47 2.781x10−50 1.16742 0.99743 8.5 8

50 dCOEA 40.0 0.00065 1.01787 8.654x10−47 2.083x10−49 0.75373 0.9469 8.5 9

For a change frequency of 50,dCOEAandDNSGAII-B obtained the bestVD
value for two and three functions respectively;DNSGAII-A andDNSGAII-B ob-
tained the bestMSvalue for four and one function(s) respectively; andDNSGAII-A
andDNSGAII-B obtained the best overall rank for four and three functions respec-
tively.

Figure 3 illustrates the found POF of the various DMOO algorithms for FDA2.
Figure 3 shows thatDVEPSOwas tracking the changing POF well over time, but
DNSGAII-A anddCOEAstruggled to track the changing POF once it changed from
convex to concave.

Although all DMOO algorithms tracked the changing POF of dMOP1 very well
over time, Figure 4 shows thatDNSGAII-A and dCOEA struggled to track the
changing POF of dMOP2 over time. However,DVEPSOhad no problem track-
ing the changing POF of dMOP2. TheVD value that is obtained by theDVEPSO
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Table 4 Performance Measure Values for dMOP1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.9 0.00407 0.99962 0.99962 0.00035 0.26344 0.87907 2 3

10 DVEPSOd 99.9 0.00452 0.99821 0.99796 7.232x10−05 0.29477 0.89326 8 9.5

10 DVEPSOpe 99.9 0.00484 0.9991 0.99885 0.00046 0.29445 0.89736 7 6

10 DVEPSOp 99.9 0.00405 0.9983 0.99805 6.998x10−05 0.28384 0.89884 5 5

10 DVEPSOr 99.9 0.00431 0.99841 0.99816 0.00083 0.29631 0.90964 9 8

10 DVEPSOre 99.9 0.00365 0.99921 0.99896 0.00041 0.23362 0.88294 4 4

10 DVEPSOu 99.9 0.00386 0.99866 0.99817 0.00086 0.23642 0.86045 6 7

10 DNSGAII-A 38.8 0.00577 0.99991 0.99933 3.603x10−05 0.15212 0.9834 1 1
10 DNSGAII-B 38.7 0.00497 0.99991 0.99933 5.904x10−05 0.15351 0.93976 3 2

10 dCOEA 39.8 0.00045 0.99582 0.99524 0.00253 0.03892 0.86235 10 9.5

25 DVEPSOc 100.0 0.00361 0.9936 0.99343 0.00148 0.68678 0.76746 4 4

25 DVEPSOd 100.0 0.00352 0.99097 0.97202 0.00091 0.77566 0.75222 8 8

25 DVEPSOpe 100.0 0.00395 0.99877 0.96826 0.00055 0.71365 0.73278 6 6.5

25 DVEPSOp 100.0 0.00351 0.99056 0.96029 0.00105 0.70929 0.74939 9 9

25 DVEPSOr 100.0 0.00358 0.99347 0.96311 0.00177 0.80396 0.76349 10 10

25 DVEPSOre 100.0 0.00386 0.99892 0.9684 0.00049 0.72382 0.72943 6 6.5

25 DVEPSOu 100.0 0.00361 1.0082 0.94919 0.00276 0.72882 0.75882 6 5

25 DNSGAII-A 39.3 0.0004 0.9998 0.93468 7.896x10−06 0.15351 0.97874 1 1
25 DNSGAII-B 39.3 0.0004 0.99976 0.93464 1.998x10−05 0.13231 0.9755 2 2

25 dCOEA 40.0 0.0003 0.99887 0.93381 0.00064 0.0686 0.95086 3 3

50 DVEPSOc 100.0 0.00136 0.97142 0.9714 0.00117 1.43242 0.56964 7 9.5

50 DVEPSOd 100.0 0.00146 0.97285 0.91286 0.00368 1.48468 0.58482 9 9.5

50 DVEPSOpe 100.0 0.00164 0.9977 0.90593 0.00074 1.27847 0.5732 6 6

50 DVEPSOp 100.0 0.00112 0.97275 0.88327 0.00248 1.40793 0.6043 8 7

50 DVEPSOr 100.0 0.00148 0.97523 0.88553 0.00208 1.4258 0.60255 10 8

50 DVEPSOre 100.0 0.00194 0.99825 0.90643 0.00068 1.26249 0.56443 5 5

50 DVEPSOu 100.0 0.00126 1.01387 0.91444 0.00885 1.60305 0.66245 4 4

50 DNSGAII-A 40.0 0.00034 0.99967 0.89645 1.349x10−05 0.11787 0.98323 2 2

50 DNSGAII-B 40.0 0.00032 0.99967 0.89646 1.246x10−05 0.121 0.98338 1 1
50 dCOEA 40.0 0.00023 0.99942 0.89624 0.00021 0.09572 0.97838 3 3

approaches for dMOP1 is high compared to the evolutionary algorithms. The
DVEPSOapproaches find much more solutions than the evolutionary algorithms,
and most of the these solutions are on or very close to the truePOF. However, a
few outlier solutions in the archive of theDVEPSOapproaches lead to the highVD
values, even though they have tracked the changing POF.

Table 9 presents the overall rank that the various algorithms obtained for each
performance measure, as well as their overall rank for the various frequencies of
change. Table 9 shows that for a change frequency of 10 the best overall rank forVD
were obtained byDVEPSOc andDVEPSOr and the best overall rank forMS was
obtained byDNSGAII-A. DNSGAII-B obtained the best rank over all performance
measures andDVEPSOc obtained the best rank over all performance measures when
the measures that use the true POF count more towards the overall rank average.
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Table 5 Performance Measure Values for dMOP2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.9 0.00073 0.99962 0.99951 0.00027 0.07904 0.97647 2 2

10 DVEPSOd 99.9 0.00062 1.00667 0.98227 0.00042 0.07402 0.97937 1 1
10 DVEPSOpe 99.9 0.00083 0.99915 0.9732 0.00039 0.09291 0.97288 5 7

10 DVEPSOp 99.9 0.00067 1.00603 0.97887 0.00045 0.07467 0.9744 3 3

10 DVEPSOr 99.9 0.00076 0.99891 0.97127 0.00047 0.08269 0.97518 6.5 6

10 DVEPSOre 99.9 0.00067 0.99903 0.97138 0.00046 0.0855 0.97567 4 4

10 DVEPSOu 99.9 0.0008 1.00709 0.95911 0.00197 0.08911 0.9689 6.5 5

10 DNSGAII-A 33.5 0.00095 0.99321 0.93715 0.00064 0.904151.45643 8 8

10 DNSGAII-B 28.7 0.00212 0.99216 0.93616 0.00068 1.03746 1.43973 9.5 9.5

10 dCOEA 33.7 0.00112 0.98988 0.93401 0.00213 0.81297 1.40996 9.5 9.5

25 DVEPSOc 100.0 0.00078 0.998 0.9978 0.00097 0.17631 0.91634 3 4

25 DVEPSOd 100.0 0.00085 0.99396 0.96988 0.00188 0.1772 0.93172 6 5

25 DVEPSOpe 100.0 0.00076 0.99874 0.96992 0.00056 0.18783 0.94799 2 2

25 DVEPSOp 100.0 0.00085 0.99719 0.96842 0.00163 0.17535 0.91477 6 6.5

25 DVEPSOr 100.0 0.00054 0.99767 0.96888 0.00096 0.17112 0.93158 4 3

25 DVEPSOre 100.0 0.00079 0.99867 0.96986 0.00064 0.17207 0.932781 1
25 DVEPSOu 100.0 0.00099 1.0045 0.96771 0.00241 0.18725 0.91586 9 9

25 DNSGAII-A 39.9 0.00043 0.98884 0.95201 0.00101 0.937681.63537 8 6.5

25 DNSGAII-B 39.9 0.00041 0.98885 0.95203 0.001 0.94214 1.63414 6 8

25 dCOEA 39.8 0.0004 0.98775 0.95096 0.00144 0.93822 1.61199 10 10

50 DVEPSOc 100.0 0.00016 0.97296 0.97124 0.00629 0.19285 0.84654 9 10

50 DVEPSOd 100.0 0.00017 1.05717 0.71632 0.01254 0.1688 0.85856 2.5 4

50 DVEPSOpe 100.0 0.00016 0.99637 0.62876 0.00077 0.16929 0.85865 4 6.5

50 DVEPSOp 100.0 0.00017 1.13016 0.61318 0.01325 0.20012 0.88857 6 5

50 DVEPSOr 100.0 0.00016 0.98452 0.49138 0.0024 0.16467 0.87944 6 8

50 DVEPSOre 100.0 0.00018 0.99619 0.4972 0.00065 0.14661 0.85065 6 6.5

50 DVEPSOu 100.0 0.00016 1.23115 0.61117 0.04407 0.15933 0.87335 2.5 2

50 DNSGAII-A 40.0 0.00032 0.99845 0.45172 0.00014 0.15645 0.9955 8 3

50 DNSGAII-B 40.0 0.00032 0.99863 0.45181 0.00012 0.14069 0.99639 1 1
50 dCOEA 39.8 0.00027 0.98953 0.44769 0.00229 0.15248 0.95434 10 9

For a change frequency of 25 the best overall rank forVD were obtained
by DVEPSOcl and DVEPSOr , the best overall rank forMS was obtained by
DNSGAII-A and the approach that ranked the best over all performance measures
wasDNSGAII-B. For a change frequency of 50 the best overall rank forVD were
obtained byDNSGAII-B anddCOEA. The best overall rank forMSwas obtained by
DNSGAII-A and the approach that ranked the best over all performance measures
wasDNSGAII-A.

With regards to the overall rank presented in Table 9 over allfrequencies of
change, the DVEPSO approaches performed the best with regards toVD and the dy-
namic NSGA-II approaches performed the best with regards toMSand the overall
rank. The DVEPSO approaches obtained the best overall rank forVD on eleven oc-
casions, and the dynamic NSGA-II approaches anddCOEAon six occasions each.
With regards toMS, the DVEPSO approaches obtained the highest rank on 8 oc-
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Table 6 Performance Measure Values for dMOP3

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 5.1 0.07368 0.9973 0.99735 0.00045 1.35206 1.91012 2.5 2

10 DVEPSOd 5.1 0.0789 0.91942 0.91945 0.01367 1.38248 1.93216 10 10

10 DVEPSOpe 5.2 0.07884 0.99545 0.99548 0.00108 1.38861 1.93614 4 4

10 DVEPSOp 5.1 0.07866 0.91629 0.91632 0.01296 1.37957 1.92784 9 9

10 DVEPSOr 5.0 0.07815 0.99515 0.99519 0.00125 1.3581 1.90401 8 7

10 DVEPSOre 5.1 0.08445 0.99547 0.9955 0.00107 1.38452 1.93409 5 5.5

10 DVEPSOu 5.2 0.07905 0.99403 0.99406 0.00232 1.381361.94846 6.5 5.5

10 DNSGAII-A 36.7 0.00075 0.99744 0.99745 0.00086 0.84372 1.54286 1 1
10 DNSGAII-B 28.2 0.00146 0.97038 0.97039 0.00558 0.94898 1.27303 6.5 8

10 dCOEA 36.9 0.00078 0.99611 0.99612 0.00159 0.74777 1.34982 2.5 3

25 DVEPSOc 5.5 0.07858 0.98458 0.98515 0.00178 1.43742 2.08363 7 5

25 DVEPSOd 5.5 0.07596 0.88596 0.88644 0.01572 1.45526 2.12036 9 10

25 DVEPSOpe 5.5 0.08177 0.98197 0.9825 0.002 1.484672.14814 8 8

25 DVEPSOp 5.5 0.07608 0.89117 0.89164 0.01617 1.45777 2.1446 10 9

25 DVEPSOr 5.8 0.07085 0.98163 0.98215 0.00206 1.42254 2.10335 4 4

25 DVEPSOre 5.5 0.07123 0.98211 0.98263 0.00191 1.44345 2.12769 3 3

25 DVEPSOu 5.5 0.07527 0.98564 0.98583 0.00289 1.46414 2.10228 6 6

25 DNSGAII-A 40.0 0.00038 0.99017 0.99018 0.0014 0.90791 1.6252 2 2

25 DNSGAII-B 40.0 0.00035 0.9741 0.97411 0.00812 0.89235 1.49494 5 7

25 dCOEA 39.9 0.00042 0.99104 0.99106 0.00116 0.88038 1.52265 1 1

50 DVEPSOc 8.9 0.01957 0.99372 0.99612 0.00105 0.60082 0.83513 5 6

50 DVEPSOd 9.6 0.01643 0.86685 0.86849 0.0281 0.5848 0.86028 6 5

50 DVEPSOpe 9.3 0.01741 0.99347 0.99535 0.00123 0.59723 0.84383 4 4

50 DVEPSOp 9.0 0.01997 0.86521 0.86588 0.03018 0.60588 0.83987 9 9

50 DVEPSOr 9.2 0.01932 0.99301 0.99365 0.00154 0.58804 0.83986 7 7

50 DVEPSOre 8.9 0.02124 0.99359 0.99423 0.00114 0.61199 0.84182 8 8

50 DVEPSOu 8.7 0.02248 0.98684 0.98649 0.00439 0.61941 0.83323 10 10

50 DNSGAII-A 40.0 0.00032 0.99982 0.99912 3.1x10−05 0.11419 0.99401 1 1
50 DNSGAII-B 40.0 0.00029 0.99561 0.99491 0.00422 0.09471 0.97185 3 3

50 dCOEA 39.9 0.00025 0.99942 0.99871 0.00028 0.12694 0.968 2 2

casions, the dynamic NSGA-II approaches on eleven occasions anddCOEAon 4
occasions. The dynamic NSGA-II approaches obtained the best overall rank on 15
occasions, the DVEPSO approaches on 12 occasions anddCOEAon no occasion.

5.3 Statistical Analysis

This section discusses the statistical analysis that was done on the performance met-
rics values. Kruskal-Wallis tests were performed to determine whether there was a
statistical significant difference between the values obtained by the various DMOO
algorithms for a performance metric for a specific function at a specificτt . The p-



24 Mardé Helbig and Andries P. Engelbrecht

Table 7 Performance Measure Values for HE1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 13.5 0.01173 0.66388 0.85439 0.01399 1.55763 0.78202 7 9

10 DVEPSOd 12.6 0.01359 0.73684 0.67688 0.01324 1.51808 0.77148 8 6

10 DVEPSOpe 13.1 0.01518 0.68747 0.61666 0.00955 1.522 0.76341 10.0 10

10 DVEPSOp 13.3 0.01196 0.78513 0.70427 0.01191 1.53101 0.77698 4.5 4.5

10 DVEPSOr 14.4 0.0108 0.67781 0.608 0.00835 1.53891 0.76821 6 7.5

10 DVEPSOre 13.5 0.01411 0.70286 0.63047 0.01085 1.54639 0.78341 9 7.5

10 DVEPSOu 13.8 0.01429 0.89687 0.7716 0.01334 1.56948 0.78503 4.5 4.5

10 DNSGAII-A 40.0 0.00058 0.96747 0.80366 0.00827 0.13607 0.8044 1 1
10 DNSGAII-B 40.0 0.00033 0.90325 0.75031 0.00317 0.13917 0.42739 2 2

10 dCOEA 28.6 0.00326 0.92802 0.77089 0.01347 0.18269 0.60639 3 3

25 DVEPSOc 19.9 0.0069 0.66264 0.88732 0.01299 1.54781 0.77076 6.5 5.5

25 DVEPSOd 24.2 0.00558 0.8044 0.75121 0.02017 1.55831 0.76052 9.5 10

25 DVEPSOpe 18.3 0.00837 0.69068 0.63844 0.00961 1.51748 0.75548 9.5 9

25 DVEPSOp 21.1 0.0075 0.83401 0.74319 0.01696 1.53058 0.76397 8 7

25 DVEPSOr 25.0 0.00543 0.68311 0.60386 0.00915 1.57137 0.76668 4.5 5.5

25 DVEPSOre 19.9 0.00543 0.71364 0.63085 0.00988 1.57552 0.76542 6.5 8

25 DVEPSOu 17.3 0.009 0.87798 0.77612 0.01192 1.52789 0.77961 4.5 4

25 DNSGAII-A 40.0 0.00058 0.96607 0.85399 0.01143 0.15803 0.79656 1 1
25 DNSGAII-B 40.0 0.00038 0.90938 0.80388 0.00648 0.16232 0.47371 2 2

25 dCOEA 39.7 0.0011 0.94994 0.83974 0.0125 0.18167 0.725813 3

50 DVEPSOc 34.2 0.00367 0.71493 0.91246 0.01146 1.59845 0.76024 5 8.5

50 DVEPSOd 34.7 0.00401 0.87724 0.79065 0.01461 1.56689 0.7584 9 8.5

50 DVEPSOpe 29.0 0.00409 0.72615 0.64561 0.00899 1.56256 0.76148 6.5 5

50 DVEPSOp 29.4 0.00489 0.89416 0.79499 0.01309 1.54536 0.75448 10 6.5

50 DVEPSOr 33.4 0.00357 0.71771 0.63811 0.00863 1.5742 0.75946 6.5 10

50 DVEPSOre 34.2 0.00342 0.75603 0.67218 0.00934 1.56573 0.76762 4 4

50 DVEPSOu 32.4 0.00416 0.89113 0.7923 0.01105 1.56451 0.75721 8 6.5

50 DNSGAII-A 40.0 0.00058 0.96827 0.86088 0.01083 0.19626 0.78734 1 1
50 DNSGAII-B 40.0 0.00041 0.91908 0.81715 0.00778 0.19108 0.46374 3 3

50 dCOEA 40.0 0.00072 0.96564 0.85854 0.00961 0.18173 0.78317 2 2

values that were obtained from the Kruskal-Wallis tests arepresented in Tables 10-
17. In these tables,p-values that are statistically significant are displayed inbold.

When thep-value of the Kruskal-Wallis test indicated that there was astatistical
significant difference, Mann-Whitney U tests were performedto determine between
which DMOO algorithms’ performance metric values there were a statistical signif-
icant difference. Both the Kruskal-Wallis tests and the Mann-Whitney U tests were
performed using the statistical software package R [27] andtesting for a confidence
level of 95%. Due to a lack of space all results of the Mann-Whitney U tests are not
presented. However, Tables 18- 25 in the appendix present the results of the Mann-
Whitney U tests for the VD performance metric. In all these tables “-” indicates that
there was no statistically significant difference and “x” indicates that according to
the Mann-Whitney U test, there was a statistically significant difference between the
specific performance metric values.
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Table 8 Performance Measure Values for HE2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 24.4 0.01986 0.48235 0.54748 0.01305 1.52451 0.98783 4.5 3.5

10 DVEPSOd 29.8 0.0115 0.46427 0.51349 0.0134 1.55614 1.02734 6.5 7

10 DVEPSOpe 27.8 0.0132 0.47364 0.52271 0.01315 1.52684 1.01328 4.5 5

10 DVEPSOp 28.1 0.01271 0.46458 0.51271 0.01325 1.56867 1.01558 10 10

10 DVEPSOr 23.3 0.02176 0.46844 0.51697 0.01302 1.53622 1.024 8.5 8

10 DVEPSOre 24.4 0.01208 0.46198 0.50984 0.01338 1.557971.03365 8.5 9

10 DVEPSOu 23.9 0.01354 0.47324 0.52226 0.01305 1.5348 1.01992 6.5 6

10 DNSGAII-A 40.0 0.00062 0.99071 0.94744 0.00213 0.20337 0.91933 2 2

10 DNSGAII-B 40.0 0.00061 0.99095 0.9474 0.00206 0.203310.92084 1 1
10 dCOEA 27.4 0.00452 0.9062 0.89176 0.01591 0.23457 0.69253 3.5

25 DVEPSOc 43.5 0.00478 0.6976 0.7411 0.00911 1.50652 0.89599 5 5

25 DVEPSOd 42.7 0.01078 0.98233 0.45845 0.00316 1.5213 0.90232 4 4

25 DVEPSOpe 34.1 0.01208 0.71057 0.18521 0.00214 1.48753 0.88314 9 9

25 DVEPSOp 39.5 0.00823 0.98768 0.25744 0.00207 1.49003 0.89328 3 3

25 DVEPSOr 32.0 0.01914 0.69406 0.18091 0.00235 1.50608 0.88741 10 10

25 DVEPSOre 43.5 0.01553 0.74847 0.19509 0.00181 1.51314 0.89228 8 8

25 DVEPSOu 33.6 0.01342 0.9345 0.24358 0.00187 1.52096 0.89767 7 7

25 DNSGAII-A 40.0 0.00065 0.9896 0.25794 0.00022 0.26994 0.88562 2 2

25 DNSGAII-B 40.0 0.00061 0.9896 0.25794 0.00022 0.26682 0.88501 1 1
25 dCOEA 39.4 0.00131 0.95101 0.24789 0.00204 0.2783 0.74454 6 6

50 DVEPSOc 33.2 0.0145 0.66815 0.89051 0.00519 1.75131 1.16669 9 10

50 DVEPSOd 24.4 0.02218 0.9366 0.72392 0.00342 1.71371 1.14846 7 7

50 DVEPSOpe 28.0 0.02009 0.68452 0.48548 0.00278 1.71787 1.18569 8 8

50 DVEPSOp 32.3 0.01708 0.94995 0.67374 0.00244 1.73754 1.1905 4 3.5

50 DVEPSOr 20.3 0.01837 0.67025 0.47536 0.00298 1.746091.1989 10 9

50 DVEPSOre 33.2 0.01405 0.72528 0.51439 0.00193 1.72075 1.1981 5 5

50 DVEPSOu 25.9 0.01376 0.86189 0.61128 0.00301 1.71865 1.17589 6 6

50 DNSGAII-A 40.0 0.00063 0.9985 0.70817 0.00048 0.19138 0.91808 1 1
50 DNSGAII-B 40.0 0.00062 0.99847 0.70815 0.00048 0.17538 0.91793 2 2

50 dCOEA 40.0 0.00146 0.97275 0.68991 0.00346 0.25389 0.81778 3 3

Table 10 shows that for FDA1 there is a statistical significant difference between
almost all of the algorithms for a change frequency of 10 and for almost half of
the algorithm combinations for a change frequency of 50. However, for a change
frequency of 25 there is no statistical significant difference when comparing the
evolutionary algorithms against each other, but there is a statistical significant dif-
ference for almost all combinations when comparing the evolutionary algorithms
against the DVEPSO approaches.

For FDA2 with a change frequency of 10 and 25, only a few of the DVEPSO ap-
proaches have statistical significant differences when compared to other DVEPSO
approaches, but almost all combinations of comparisons between DVEPSO ap-
proaches and the evolutionary algorithms resulted in statistical significant differ-
ences. This is shown in Table 11.
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Fig. 1 Results of various boundary constraint management approaches solving FDA2, with (a)
DVEPSOc, (b) DVEPSOd, (c) DVEPSOpe, (d) DVEPSOp, (e) DVEPSOr , (f) DVEPSOre and (g)
DVEPSOu. The numbering is from top to bottom on the left, and then from top to bottom on the
right.

Table 12 shows that for FDA3 for a change frequency of 10 and 25there is no
statistical significant difference between theVD values of the DVEPSO approaches,
but almost all comparisons of DVEPSO approaches with an evolutionary algorithm
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Fig. 2 Results of various boundary constraint management approaches solving dMOP2, with (a)
DVEPSOc, (b) DVEPSOd, (c) DVEPSOpe, (d) DVEPSOp, (e) DVEPSOr , (f) DVEPSOre, (g)
DVEPSOu. The numbering is from top to bottom on the left, and then from top to bottom on
the right.

resulted in a statistical significant difference in VD values. For a change frequency
of 50, almost all comparisons resulted in statistical significant differences.
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Table 9 Overall Ranking of Algorithms

τt Algorithm RNS RS RHVR RAcc RStab RVD RMS RO1 RO2

10 DVEPSOc 1 9 8 1 8 1.5 4 3 1
10 DVEPSOd 3 6 9 2 10 9.5 3 10 9

10 DVEPSOpe 4.5 7.5 6 3 4 3.5 9 6 6

10 DVEPSOp 4.5 5 7 8 9 3.5 7 9 4

10 DVEPSOr 6 4 10 10 6 1.5 2 6 7

10 DVEPSOre 2 7.5 5 6.5 3 6.5 10 8 8

10 DVEPSOu 7 10 1 5 7 9.5 5.5 6 2

10 DNSGAII-A 10 3 2 4 1 6.5 1 2 3

10 DNSGAII-B 9 1.5 3 2 2 5 5.5 1 5

10 dCOEA 8 1.5 4 9 5 8 8 4 10

25 DVEPSOc 1 9 8 1 8 1.5 4 3 3

25 DVEPSOd 3 6 9 2 10 9.5 3 10 10

25 DVEPSOpe 4.5 7.5 6 3 4 3.5 9 6 6

25 DVEPSOp 4.5 5 7 8 9 3.5 7 9 9

25 DVEPSOr 6 4 10 10 6 1.5 2 6 5

25 DVEPSOre 2 7.5 5 6.5 3 6.5 10 8 8

25 DVEPSOu 7 10 1 5 7 9.5 5.5 6 4

25 DNSGAII-A 10 3 2 4 1 6.5 1.0 2 2

25 DNSGAII-B 9 1.5 3 6.5 2 5.0 5.5 1.0 1
25 dCOEA 8 1.5 4 9 5 8 8 4 7

50 DVEPSOc 1.5 5 10 1 7 10 8 7 9.5

50 DVEPSOd 1.5 9 7 4.5 10 7 10 8 8

50 DVEPSOpe 5.5 6 8 6.5 5 3 5.5 4 4

50 DVEPSOp 3.5 9 5 9 9 8 9 10 7

50 DVEPSOr 3.5 7 9 10 6 9 4 9 9.5

50 DVEPSOre 5.5 9 6 8 4 5 7 6 6

50 DVEPSOu 9 3 3 2 8 6 5.5 3 3

50 DNSGAII-A 7.5 4 1 3 2 4 1 1 1
50 DNSGAII-B 7.5 2 2 4.5 1 1.5 2 2 2

50 dCOEA 10 1 4 6.5 3 1.5 3 5 5

For dMOP1 with a change frequency of 10 most DVEPSO approaches compared
against each other resulted in statistical significant differences and for a change fre-
quency of 25 and 50 almost half of the DVEPSO approaches comparisons resulted
in statistical significant differences. However, for all three change frequencies all
comparisons between the evolutionary algorithms and the DVEPSO approaches re-
sulted in statistical significant differences and the values obtained byDNSGAII-A
and DNSGAII-B was statistically significantly different, but the comparison be-
tweenDNSGAII-B and dCOEAwas not statistically significantly different. This
is shown in Table 13.

Table 14 shows that for dMOP2 for a change frequency of 10 all comparisons
lead to statistical significant differences and for a changefrequency of 50 only the
comparison betweenDNSGAII-A andDNSGAII-B indicated a statistically signifi-
cant difference. For a change frequency of 25 all comparisons amongst the evolu-
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Fig. 3 Results of various algorithms solving FDA2, with (a) DVEPSO, (b) dCOEA, (c) DNSGAII-
A and (d) DNSGAII-B.

tionary algorithms, and all comparisons between the evolutionary algorithms and the
DVEPSO approaches resulted in statistical significant differences. However, only a
few comparisons amongst the DVEPSO approaches resulted in astatistical signifi-
cant difference.

For dMOP3 no statistical significant difference was found for any comparisons
amongst the DVEPSO approaches for all frequencies of change. For a change fre-
quency of 10, all comparisons amongst the evolutionary algorithms indicated a sta-
tistical significant difference, but not for the change frequencies of 25 and 50. All
comparisons between the evolutionary algorithms and the DVEPSO approaches in-
dicated a statistical significant difference for all frequencies of change for dMOP3.
This is shown in Table 15.

Table 16 shows that for HE1 for a change frequency of 10, all comparisons lead
to a statistical significant difference, except the comparison of DNSGAII-B and
dCOEA. For a change frequency of 25, almost all DVEPSO comparisonsand all
comparisons between DVEPSO and evolutionary computation algorithms lead to a
statistical significant difference and amongst the evolutionary algorithms only the
comparison betweenDNSGAII-B anddCOEAindicatedVD values that were not
statistically significantly different. For a change frequency of 50, all comparisons
between DVEPSO and the evolutionary algorithms, and a few ofthe comparisons
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Fig. 4 Results of various algorithms solving dMOP2, with (a) DVEPSO, (b) dCOEA, (c)
DNSGAII-A and (d) DNSGAII-B.

amongst the DVEPSO approaches, indicated statistically significant different val-
ues.

For HE2 for a change frequency of 10 and 50, amongst the evolutionary algo-
rithms only the comparison betweenDNSGAII-B anddCOEA indicatedVD val-
ues that were not statistically significantly different andfor a change frequency of
25 none of the comparisons amongst the evolutionary algorithms indicated a sta-
tistically significant difference. From the comparisons amongst the DVEPSO ap-
proaches, approximately half indicated a statistical significant difference for change
frequencies of 10 and 50. For a change frequency of 25, none ofthe comparisons
amongst the DVEPSO approaches indicated a statistical significant difference. How-
ever, for all frequencies of change, the comparisons between the evolutionary algo-
rithms and the DVEPSO approaches, indicated a statistical significant difference.

Table 10 p-values of Kruskal-Wallis test for FDA1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 0.00045 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

50 0.01745 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.0001837 < 2.2x10−16
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Table 11 p-values of Kruskal-Wallis test for FDA2

τt S HV R Acc Stab VD MS

10 3.509x10−14 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 0.003196 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 5.444x10−12

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 12 p-values of Kruskal-Wallis test for FDA3

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 9.382x10−14 0.01549
25 4.898x10−08 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.0182 0.08228

50 1.864x10−07 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.96x10−08

Table 13 p-values of Kruskal-Wallis test for dMOP1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 14 p-values of Kruskal-Wallis test for dMOP2

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 7.723x10−16

25 0.9811 < 2.2x10−16 < 2.2x10−16 3.127x10−16 2.888x10−08 7.932x10−08

50 2.564x10−15 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.9032 < 2.2x10−16
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Table 15 p-values of Kruskal-Wallis test for dMOP3

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.07x10−12

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.573x10−07 0.1925

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 16 p-values of Kruskal-Wallis test for HE1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.231x10−15 < 2.2x10−16 < 2.2x10−16

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.009434 < 2.2x10−16 1.158x10−06

Table 17 p-values of Kruskal-Wallis test for HE2

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 2.682x10−10

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 3.902x10−15 < 2.2x10−16 0.003448
50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 2.815x10−05 < 2.2x10−16 < 2.2x10−16
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6 Conclusion

This chapter discussed DMOO and issues that should be addressed when solving
DMOOPs. The DVEPSO algorithm was presented and the effect that various bound-
ary handling approaches have on the performance of DVEPSO was investigated. It
could clearly be seen that the deflection and periodic boundary handling approaches
lead to bad performance with especially the FDA2 problem.

The performance of DVEPSO were compared against three otherstate-of-the-art
DMOO algorithms. DVEPSO performed quite well with regards to the VD metric
that measures the closeness of the approximated POF to the true POF and the MS
metric that measures the spread of the found non-dominated solutions. The DNS-
GAII approaches and dCOEA struggled to track the changing POF of the FDA2
and dMOP2 problems, but DVEPSO had no problem to track the changing POF
for these problems. However, the DNSGAII approaches and dCOEA outperformed
DVEPSO with the problems that have a discontiuous POF.
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Appendix

Tables 18- 25 present the results that were obtained with theMann-Whitney U tests
that were performed on the performance metric values. In alltables below,Dd, Dpe,
Dp, Dr , Dre, Du, N-A, N-B andC refers toDVEPSOd, DVEPSOpe, DVEPSOp,
DVEPSOr , DVEPSOre, DVEPSOu, DNSGAII-A andDNSGAII-B respectively. In
all tables “-” indicates that there was no statistically significant difference and “x”
indicates that according to the Mann-Whitney U test, there was a statistically sig-
nificant difference between the specific performance metricvalues.
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Table 18 Results of Mann-Whitney U test for VD metric for FDA1

τt Algorithm Algorithm
Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x – n/a
10 Dr x x – x n/a
10 Dre x x – x – n/a
10 Du x – x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a

25 Dc n/a
25 Dd x n/a
25 Dpe x – n/a
25 Dp x – – n/a
25 Dr x x – – n/a
25 Dre x – – – x n/a
25 Du – x x x x x n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x – – – n/a

50 Dc n/a
50 Dd – n/a
50 Dpe x x xn/a
50 Dp – – x n/a
50 Dr – x – x n/a
50 Dre – – – – x n/a
50 Du – – x – x – n/a
50 N-A – – x – x – – n/a
50 N-B – – x x x x – x n/a
50 C – – x x – x – x – n/a
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Table 19 Results of Mann-Whitney U test for VD metric for FDA2

τt Algorithm Algorithm
Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe – x n/a
10 Dp – – x n/a
10 Dr – – – – n/a
10 Dre – – x – – n/a
10 Du – – – – – – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x – n/a
10 C x x x x x x x – – n/a

25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – x n/a
25 Dre – – – x – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a

50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x x x n/a
50 Dr x – – x n/a
50 Dre – – – x – n/a
50 Du x – – x – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x – – n/a
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Table 20 Results of Mann-Whitney U test for VD metric for FDA3

τt Algorithm Algorithm
Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd – n/a
10 Dpe – – n/a
10 Dp – – – n/a
10 Dr – – – – n/a
10 Dre – – – – – n/a
10 Du – – – – – – n/a
10 N-A – – – – – – – n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a

25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A – – – – – – – n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a

50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x – – n/a
50 Dr x – x – n/a
50 Dre x x x x x n/a
50 Du x x x x x – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x – n/a
50 C x x x x x x x x – n/a
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Table 21 Results of Mann-Whitney U test for VD metric for dMOP1

τt Algorithm Algorithm
Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x – n/a
10 Dp x – – n/a
10 Dr x – – x n/a
10 Dre x x x x x n/a
10 Du x x x x x – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a

25 Dc n/a
25 Dd x n/a
25 Dpe – – n/a
25 Dp – x – n/a
25 Dr x – x x n/a
25 Dre – x – – x n/a
25 Du – – – – x – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x – n/a

50 Dc n/a
50 Dd – n/a
50 Dpe x x n/a
50 Dp – x x n/a
50 Dr – – x – n/a
50 Dre x x – x x n/a
50 Du x x x x x x n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x x – n/a
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Table 22 Results of Mann-Whitney U test for VD metric for dMOP2

τt Algorithm Algorithm
Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x x n/a
10 Dr x x x x n/a
10 Dre x x x x x n/a
10 Du x x x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a

25 Dc n/a
25 Dd – n/a
25 Dpe – x n/a
25 Dp – – x n/a
25 Dr – – x – n/a
25 Dre – – – – – n/a
25 Du x – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x x n/a

50 Dc n/a
50 Dd – n/a
50 Dpe – – n/a
50 Dp – – – n/a
50 Dr – – – – n/a
50 Dre – – – – n/a
50 Du – – – – – – n/a
50 N-A – – – – – – – n/a
50 N-B – – – – – – – x n/a
50 C – – – – – – – – – n/a
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Table 23 Results of Mann-Whitney U test for VD metric for dMOP3

τt Algorithm Algorithm
Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd – n/a
10 Dpe – – n/a
10 Dp – – – n/a
10 Dr – – – – n/a
10 Dre – – – – – n/a
10 Du – – – – – – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a

25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a

50 Dc n/a
50 Dd – n/a
50 Dpe – – n/a
50 Dp – – – n/a
50 Dr – – – – n/a
50 Dre – – – – – n/a
50 Du – – – – – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x – n/a
50 C x x x x x x x – – n/a
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Table 24 Results of Mann-Whitney U test for VD metric for HE1

τt Algorithm Algorithm
Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x x n/a
10 Dr x x x x n/a
10 Dre x x x x x n/a
10 Du x x x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a

25 Dc n/a
25 Dd x n/a
25 Dpe x x n/a
25 Dp x x x n/a
25 Dr x x x x n/a
25 Dre x x x x – n/a
25 Du x x – – x x n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x – n/a

50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x x x n/a
50 Dr x – – x n/a
50 Dre x – – x – n/a
50 Du x – – x – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x – – n/a
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Table 25 Results of Mann-Whitney U test for VD metric for HE2

τt Algorithm Algorithm
Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe – x n/a
10 Dp x – x n/a
10 Dr – x – x n/a
10 Dre x – x – x n/a
10 Du – x – x – x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a

25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a

50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp – x – n/a
50 Dr – x x – n/a
50 Dre x – – – – n/a
50 Du x – – – x – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x x – n/a
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