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ABSTRACT 

Feeding patterns and distribution of herbivores animals are known to be influenced by quality and quantity 

of forage such as grass. Modelling indicators of grass quality and biomass are critical in understanding such 

patterns and for decision makers such as park managers and farmers to efficiently plan and manage their 

rangelands. This study focused on predicting grass biomass using remote sensing and environmental 

variables. Since some of these variables were highly correlated, multivariate techniques such as partial least 

squares (PLS) and ridge regression were used to predict grass biomass in the Kruger National Park and the 

surrounding areas. The results indicated that both the environmental and remote sensing indicators had 

potential to predict grass biomass. Ridge regression showed better results since it explained about 41% of 

variation in the grass biomass, compared to the PLS model which explained approximately 33% variation. 

1. INTRODUCTION 

The health and quantity of rangeland resources such as grass are the primary drivers influencing the 

distribution and movement of herbivores (Drent and Prins, 1987; McNaughton, 1988; Ben-Shahar and Coe, 

1992). Indicators of grass quantity and quality are particularly known to influence the feeding patterns of 

wildlife and livestock (Drent and Prins, 1987; McNaughton, 1988, 1990; Olff et al., 2002). Grass quantity is 

also referred to as biomass while quality often refers to foliar concentration of nutrients such as nitrogen, 

calcium and phosphorus. Techniques and platforms that can be used to model these key factors are essential 
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in developing in-depth understanding about the feeding patterns of herbivores (Ramoelo, 2012a). Such 

understanding is imperative for effective assessment, planning and management of ecological ecosystems.  

Remote sensing platforms and various modelling or prediction techniques have previously been applied 

so as to improve knowledge about spatially-explicit resource distribution, quality and quantity. Some studies 

have been conducted to examine the role of climatic factors in grass production and quality (Thennissen, 

1993; Skidmore et al 2011). It is often a challenge to model ecological ecosystems due to the dynamics and 

heterogeneity that exist in such ecosystems. It is therefore important that the modelling of such a complex 

ecosystem integrates with a wide range of factors that impact on grass biomass and health.  

Studies have been undertaken to assess factors associated with grass quality (Knox et al., 2011, Ramoelo 

2012a), and to our knowledge, little has been done to integrate remote sensing data and physical processes 

that affect grass quality and biomass.  This study was undertaken to examine relevance of some statistical 

techniques in predicting grass quantity based on remote sensing indicators and environmental factors such as 

topography, climate, and land use. 

2. METHODS 

2.1. Study area 

The study area is located in the north-eastern part of South Africa and covers Kruger National Park (KNP) 

and the soundings, including protected and privately-owned Sabi Sands Game Reserve (SGR), state-owned 

KNP, as well as communal land in the Bushbuckridge area. The private game reserve maintains various 

grazing activities by wild herbivores, namely, elephants, rhinos and impala.  Meanwhile, communal 

rangelands support livestock grazing of mainly cattle, goats and sheep. 

2.2. Data 

The study area consisted of eight experimental sites across the land use gradient including the KNP, SGR 

and the communal areas. In order to capture grass biomass variability across these sites, transects were 

placed through various topographic surfaces such as valleys and crests. Forty nine (49) plots of about 30 m x 

30 m were selected and subdivide into 3 to 4 subplots (0.5 m x 0.5 m), resulting in 189 individual sampling 

locations (sample size). The samples of the predominant grass species were then collected and dried at 80
0
C 

for 24 hours. Each dried sample was weighed and measured in grams per square meter (g/m
2
). The spatial 

locations of the samples were recorded using the Leica®’s differential geographic positioning system 

(DGPS).  

Hyperspectral measurements of grass canopies that were taken using the Analytical Spectral Device 

(ASD) spectrometer; were used to derive the vegetation indices used in this study. The indices included the 

simple ratio (SR), the normalized difference vegetation index (NDVI) and the red edge position computed 



 3 

through linear extrapolation (REPLI) (Cho et al., 2006). A few hyperspectral bands or absorption features 

associated with chlorophyll and nitrogen located in the different parts of the electromagnetic spectrum were 

also used. The nitrogen is known to influence biomass (Mutanga and Skidmore, 2004). 

Topographic information including slope and aspect were computed from the digital elevation model 

(DEM) using ArcGIS software, while climatic indicators such as temperature and precipitation were sourced 

from the World Climatic database (www.worldclim.com). The geological data were obtained from the 

Council for Geoscience.  

2.3. Prediction Models 

Partial least squares (PLS) and ridge regression were considered in this study since, the aim was to predict 

grass biomass (dependent variable) from a number of predictor variables where some were collinear. 

Further, even though the relationships between these variables and biomass were not well understood, 

examining whether or not grass biomass could be predicted from the available data was critical in 

developing such understanding.  

A general explanation of how these two techniques predict a response is given below.  

A generalised form of a predictive model (least squares regression) can be defined as follows: 

  ,  

where  represents a matrix of dependent variables, is a matrix of predictor variables and   is a 

normally distributed error term. The least squares solution for the estimation of  is expressed as 

follows:  

 

If the number of variables in  exceeds the number of objects (sample size) or variables in  are 

highly correlated, then   becomes near singular or the inverse does not exist or becomes 

unstable. This means that the estimation of  (which is known to be unbiased and has a minimum 

variance) becomes sensitive to a number of errors. These errors compromise the credibility of the 

prediction model.  

In this situation, partial least squares solves this problem by extracting uncorrelated  and  scores 

and regressing on   

1.         

2. (Chong and Jun, 2005) 

In equation 1 and 2, the , , , , and  are 

respectively used for predictors, - scores, - loadings, a response, and regression coefficients of .  

The k-th element of column vector  explains the relation between  and , the k-th column vector of 

. 
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Ridge regression, also known as regularization tries to address the problem of collinearity or 

excessive number of variables by adding a diagonal matrix  to  where  is a  

identity matrix.  The +1 term in the   identity matrix is included to adjust for an 

intercept while no such term is included in the PLS,  since PLS is performed on the centred matrices.   

The ridge regression estimator can be denoted by the following expression.  

   (Hoerl and Kennard, 1970) 

Where λ represents a penalization constant larger than zero.  Lambda can be chosen by either using a 

cross-validation (CV) method or a generalized  cross-validation (GCV) criterion, amongst other 

methods.  

In short, ridge regression improves estimation of  by penalizing or standardizing the coefficients 

thereof and thereby minimizing its variance. 

3. RESULTS AND DISCUSSION 

Prior to showing and discussing the results from PLS and ridge regression methods which were used to 

predict grass biomass, it would be important to show existence of multi-collinearity using the standard 

regression method. The results from multiple regression showed that variables such as the spectral bands, 

NDVI, Altitude, Geology, and Landuse, had VIF values larger than a threshold of 10. Further, the 

correlation matrix for all the continuous predictors showed that all the bands were highly correlated with 

each other (correlation coefficients ranging from 0.84 to 0.87). Variables such as altitude, NDVI and 

precipitation were also highly correlated with coefficients in the range between 0.747 and 0.825. Stepwise 

regression analysis was also performed to address multi-collinearity and to assess the variables that had a 

significant contribution in the estimation of grass biomass. Altitude, geology and landuse were selected in 

the final stepwise regression, explaining about 34% of the variation in grass biomass.  

This section continues with a summary of the prediction results from partial least squares and ridge 

regression methods.  Partial least squares capabilities were also used to check for important variables in the 

prediction of grass biomass. This is particularly important when seeking to understand the role of the each of 

the explanatory variables in the prediction of grass biomass.  

PLS Results 
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Figure 1: Variable very important projection (VIP) 

for prediction using PLS 
Figure 2: Absolute coefficients for predictor variables 

from PLS 

Figure 1 shows all the variables used in predicting grass biomass and their relative importance in the PLS 

regression model.  This is based on the statistic known as the very important projection (VIP) developed by 

(Wold, 1993), which measures the contribution of each predictor in the PLS model. A rule of thumb is used 

to evaluate the contribution of each variable in the model and to determine whether any variable could be a 

candidate for elimination or not. This rule implies that when a predictor has a Wold’s value (VIP value) 

smaller than a threshold value of 0.8, that predictor could be considered for elimination. 

A decision on whether to eliminate or keep the predictor in the model using VIP is, however, usually 

made in conjunction with (or validated by) the results from the centred and scaled parameter estimates 

statistic (shown in Figure 2). Essentially, if a predictor has a relatively smaller coefficient (in absolute value 

terms) and that coefficient is close to zero, and has a small VIP value (< 0.8), then that variable may be 

eliminated from the model.  

According to the results shown in Figure 1, predictors including the geological classes (Geology1=granite 

soils and Geology2=grabbo soils), the land-use classes in the private reserves (Landuse2) and the communal 

areas (Landuse3), precipitation, temperature and NDVI appeared to be contributing more in the prediction of 

grass biomass since their VIP values were above the threshold of 0.8. Variables such as the land use class in 

the KNP (landuse1), aspect, and the remote sending indicators (REPLI, SR, spectral bands 1510 and 2240) 

were observed to contribute less in the prediction of grass quantity.  Meanwhile variables like the slope and 

the spectral reflectance (B2300 and B2350) were approximately on the boarder mark (threshold region of 

0.8) with regard to the Wold’s value. This could indicate that the strength of these predictors is almost 

average in grass biomass estimation.  

Figure 2 carries similar information to that contained in Figure 1 as it also indicates the degree of 

relationship (measured in terms of scaled coefficients) between the grass biomass and its predictors.  The 

scaled coefficients for the predictors vary roughly between 0.02 and 0.10 (in absolute value terms) and this 

implies that the variables which are close to zero may have relatively smaller contribution in the prediction 

of grass quantity than those away from zero.  
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Figure 2 shows that temperature and aspect play a relatively small role in grass biomass estimation, with 

temperature having the smallest coefficient of all the variables. If we compare these results with those 

shown in Figure 1, we notice that for instance, temperature had a relatively larger VIP value and accordingly 

considered to have a contribution in grass biomass estimation while it was considered to be the least 

important in Figure 2. From this, it is difficult to make a decision on whether or not the temperature 

significantly contributes to the estimation of grass biomass.  Further, we generally observed that these two 

figures did not maintain a clear and similar pattern in illustrating the contributory ability of each of the 

variables in the model. Hence, further investigation might be beneficial in understanding the contribution of 

each of the variable in this model. 

Table 1: Summary of the correlation loadings from the PLS regression model 

PLS factors Predictor (X) R-square (%) Response (Y) R-square (%) 

1 30.30% 28.00% 

2 24.60% 4.90% 

Table 1 summarises the correlations between the predictors and grass biomass over the first two 

components. In the first component, the amount of variation explained by predictors in terms of the sum of 

squares is about 30% compared to that explained by grass biomass (28%). 

Table 2: PLS analysis of grass biomass with cross-validation 

 

Factors Responses Cross-validation 
Number of PLS factors Current Total Current  Total Root mean PRESS P  

0         1.08 <.0001 

1 30.29 30.29 28.01 28.01 0.93 0.04 

2 24.63 54.92 4.89 32.90 0.91 0.19 

3 7.64 62.56 3.54 36.43 0.90 0.26 

4 2.82 65.38 2.11 38.54 0.88 0.82 

5 3.42 68.80 1.01 39.55 0.90 0.15 

6 8.38 77.17 0.60 40.14 0.89 0.55 

Table 2 shows that the first six PLS factors account for approximately 40% of variation in the response 

variable (grass biomass) and over 77% of predictor variation.  The absolute minimum PRESS is 0.88 

obtained for 4 factors, but the model does not fit significantly better than the model with 2 factors. The 2 

factor model is the simplest model with a satisfactory fit (p-value = 0.19) and should therefore be used in 

further analysis. This model (2 factor model) explained about 54% of the predictor variation and nearly 33% 

of the response variation. 

Table 3: Parameter estimates from ridge 

regression 

Variable Parameter estimate Pr > |t| 

Intercept -373.81 0.719 

Table 4: Summary of the fit of the ridge regression 

model 

 R-sq (%) Adjusted R-sq (%) 

Ridge regression 40. 98%  36.20% 
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Geology2 -54.81 0.000 

Altitude 29.88 0.159 

Landuse2 28.15 0.041 

Landuse3 -25.27 0.991 

Slope 21.00 0.024 

Aspect 18.61 0.327 

Precipitation -31.91 0.305 

Temperature -6.98 0.233 

NDVI -39.77 0.366 

REPLI 17.40 0.111 

SR -6.28 0.427 

B1510 30.47 0.001 

B2240 -16.73 0.080 

B2300 -29.06 0.062 

B2350 -24.36 0.960 
 

In summary, Table 3 shows the results from the ridge regression where a ridge parameter of 14 estimated 

from the generalized cross-validation method was used.  The results indicate that predictors such as a 

geological class representing the (grabbo soils), land use class in the private reserves (Sabi Sands) gradient, 

slope, and the spectral bands B1510, B2240 and B2300 were significantly important in the prediction of 

grass biomass. 

Table 4 gives a summary of the results from ridge regression and indicates that the ridge regression model 

explained about 41% of the variation in grass biomass using the predictor variables listed in Table 2. 

4. CONCLUSION 

The objective of this study was to assess the potential of predicting grass biomass using environmental 

factors such as precipitation, aspect, temperature, land use, geology, altitude and slope as well as the remote 

sensing variables like NDVI, simple ratio, and some spectral bands. Partial least squares and ridge 

regression techniques were used to compute grass biomass predictions from these variables. The ridge 

regression explained nearly 41% of variation in the response compared to the partial least squares model 

which explained 32% of variation in the response.  Even though some variables were deemed as being 

significant in the prediction of grass biomass, an understanding of how each variable contributed in the 

estimation of grass quantity was not developed. This challenge presents an opportunity for further research.  

From these results, we can conclude that there is some potential in using the environmental factors and 

remote sensing information to predict grass biomass. In particular, topographic factors such as geology 

(granite and grabbo soils), land use classes, and slope could be very useful in assessing grass quantity. 
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