
DEVELOPMENT OF A PARTITIONED FINITE VOLUME-FINITE ELEMENT
FLUID-STRUCTURE INTERACTION SCHEME FOR STRONGLY-COUPLED
PROBLEMS

R. Suliman1, O.F. Oxtoby1, A.G. Malan2, S. Kok3

1 Advanced Computational Methods, Aeronautics Systems, Council for Scientific and Indus-
trial Research, Pretoria, 0002, South Africa
(rsuliman@csir.co.za)

2 Department of Mechanical Engineering, University of Cape Town, Cape Town, 7700, South
Africa

3 Advanced Mathematical Modelling, Modelling and Digital Science, Council for Scientific
and Industrial Research, Pretoria, 0002, South Africa

Abstract. This work details the development of a computational tool that can accurately
model strongly-coupled fluid-structure interaction (FSI)problems, with a particular focus on
thin-walled structures undergoing large, non-linear deformations. The first part of the work
investigates improving the efficiency with which a stable and robust in-house code models thin
structures undergoing dynamic fluid-induced bending deformations. Variations of the exist-
ing finite volume formulation as well as linear and higher-order finite element formulations
are implemented. The governing equations for the solid domain are formulated in a total
Lagrangian or undeformed conguration and large geometrically non-linear deformations are
accounted for. As will be demonstrated, the finite volume approach exhibits similar disad-
vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced
finite volume approach is discussed and compared with finite element methods. The second
part of this work is concerned with fluid-structure interaction (FSI) modelling. It considers
the implementation and coupling of a higher-order finite element structural solver with an
existing in-house fluid-flow solver. The coupling between the fluid and structural domains is
rigorously assessed. The developed technology is validated through the simulation of repre-
sentative two-dimensional strongly-coupled problems, onwhich rigorous mesh and temporal
independence studies are also conducted. The results of three-dimensional FSI test-cases are
also presented.

Keywords: fluid-structure interaction, finite volume, finite element



1. INTRODUCTION

Computational mechanics is a growing discipline which usescomputational methods
to obtain approximate solutions to problems governed by theprinciples of mechanics. With
the massive advances in computer technology over the past few decades, computational me-
chanics has become an important tool in analysing complex physical phenomena, and has had
a significant influence on science and technology.

Since the 1960s, the finite element method has mainly been used for modelling the
mechanics of solids [1]. The finite volume method [2] has traditionally been more dominant
in the field of fluid mechanics but has also become increasingly popular for use in solid me-
chanics [3, 4, 5, 6, 7, 8]. Both schemes can be considered as methods of weighted residuals
where they differ in the choice of the weighting function. The finite element Galerkin method
uses shape functions as the weighting functions, while the finite volume method results by
choosing the weighting function as unity. Finite element methods are typically formulated in
a total Lagrangian or undeformed configuration. In contrast, finite volume methods are tradi-
tionally based on an Eulerian or updated mesh configuration,which is not optimal for solid
mechanics problems.

Fluid-structure interaction (FSI) constitutes a branch ofcomputational mechanics in
which there exists an intimate coupling between fluid and structural or solid domains; the
behaviour of the system is influenced by the interaction of a moving fluid and a flexible solid
structure. There are a wide variety of FSI problems encountered in many areas of aerospace,
biomedical, mechanical and civil engineering. Examples ofsuch problems include the predic-
tion of wing flutter in aircraft [9] and arterial modelling inthe human body [10]. Though much
effort has been spent over recent years in developing FSI modelling technology, significant
scope for improvement still exists in terms of industrial relevance and impact.

The purpose of this study is to furnish a computational tool that can accurately model
strongly-coupled FSI problems, with a particular focus on thin-walled structures undergoing
large, non-linear deformations.

2. GOVERNING EQUATIONS

The fluid-structure interaction system consists of a homogeneous isotropic elastic solid
region and a viscous incompressible isothermal fluid domain. The set of equations describing
each domain is now detailed.

2.1. Solid equations

The partial differential equations that describe a homogeneous isotropic elastic solid
undergoing large geometrically non-linear deformation are given by Cauchy’s first equation
of motion (balance of linear momentum) [11], which in a totalLagrangian formulation or with
respect to the undeformed configuration is

∂Pij

∂Xj

+ fi = ρoai, (1)



wherePij, fi, ρo and ai are the first Piola-Kirchoff stress (a stress measure which relates
forces in the deformed configuration with areas in the undeformed configuration), body force,
density and acceleration, respectively andXj are the coordinates of a point on the solid body
in the undeformed configuration.

In order to solve the elastic boundary value problem, Equation (1), a relationship be-
tween stress and displacement is required. This relation isobtained indirectly through the
strain.

Assuming an isotropic hyperelastic St-Venant-Kirchoff material model, the Green-
Lagrange strain,Eij , which is a strain measure in the undeformed configuration, is related to
the stress by

Sij = CijklEij , (2)

whereSij is the second Piola-Kirchoff stress andCijkl is the fourth order elasticity tensor.
For convenience, we can represent the stress and strain tensors in Equation (2) as

vectors and the fourth order elasticity tensor as a matrix:
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(3)

whereb is a constant defined as

b =
E(1 − ν)

(1 + ν)(1 − 2ν)
(4)

andE is the Young’s modulus andν is the Poisson’s ratio of the material.
Considering only two-dimensional cases, two possibilities exist to simplify the anal-

ysis. These are conditions of plane stress and plane strain.The plane stress condition exists
when the body is very thin, i.e. in the limit where the third dimension approaches zero. Under
such conditions Equation (3) simplifies to:
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The plane strain condition exists when the body is very thick, i.e. in the limit where
the third dimension approaches infinity. Equation (3) now becomes:
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The first Piola-Kirchoff stress,Pij, in Equation (1) is then obtained by multiplying the
second Piola-Kirchoff stress,Skj, with the deformation gradient,Fik:

Pij = FikSkj . (7)



The deformation gradient relates quantities in the undeformed configuration to their
counterparts in the deformed configuration:

Fik =
∂xi

∂Xk

, (8)

whereXk andxi are the coordinates of the solid in the undeformed and deformed configura-
tions, respectively.

Finally, to close the governing equations, the relationship between strain and the dis-
placement field is given by

Eij =
1

2
(Hij + Hji + HkiHkj), (9)

whereHij is the displacement gradient defined as

Hij =
dui

dXj

(10)

andui is the total displacement of the solid, thereforexi = ui + Xi.

2.2. Fluid equations

The fluid flow is governed by the Navier-Stokes equations. In general, these equa-
tions are expressed in an Eulerian or spatial frame of reference, as opposed to a Lagrangian
or material description for the solid, which entails a fixed spatial region with fluid flowing
through it. For fluid-structure interaction problems the solid deforms and displaces the fluid
domain and a mixture or combination of the two reference frames, referred to as an arbitrary-
Lagrangian-Eulerian (ALE) reference frame, results for the motion of the FSI interface. This
approach was first described by Hirt et al. [12] and later adopted by many others and is now
widely used for FSI applications [13]. A dynamic mesh movement algorithm that deforms the
fluid mesh is therefore required and is described later.

Assuming a viscous, incompressible and isothermal fluid, the equations governing the
fluid flow are given by the continuity and Navier-Stokes equations:

∂vi

∂xi

= 0 (11)

ρ
∂vi

∂t
+ ρ(vj − v∗

j )
∂vi

∂xj

+
∂p

∂xi

−
∂σij

∂xj

− ρfi = 0 (12)

whereρ, vi, p, σij andfi are the fluid density, fluid velocity, pressure, stress and body forces
respectively,xi are the fixed Eulerian coordinates andv∗ is the mesh velocity. The term
(vj−v∗

j ) is an ALE convective velocity that results from a differencebetween the fluid velocity
and the mesh velocity.

To close the fluid governing equations, a constitutive relation for the stress is required.
Assuming a Newtonian fluid, the relationship between stressand rate of strain is given by

σij = µ

(

∂vi

∂xj

+
∂vj

∂xi

)

, (13)

whereµ is the fluid viscosity.



3. GEOMETRICALLY NON-LINEAR STRUCTURES

At the commencement of this study, a stable and robust in-house code, Elemental, was
available [14]. With reference to FSI, the solver makes use of a compact edge-based vertex-
centred finite volume method (FVM) to model both fluid and structure in a strongly-coupled
partitioned manner. While this approach has been demonstrated to be effective for the fluid
domain, thin structures require many elements through the thickness to ensure accuracy.

To improve the efficiency with which Elemental models thin structures undergoing
bending deformations, variations of the existing finite volume method, as well as linear and
higher-order standard Galerkin finite element methods (FEM) [15] are implemented. The
various methods are compared with each other and the optimalapproach chosen.

3.1. Discretisation

The standard Galerkin finite element method for discretisation of the solid governing
equations is described in many handbooks [15, 16]. Instead,we describe the finite volume
method below.

Assuming the body forces,fi, to be negligible and expressing the acceleration,ai, as
the rate of change of velocity,vi, gives

ρo

∂vi

∂t
=

∂Pij

∂Xj

. (14)

The equation is cast into integral or weak form by integrating over an arbitrary spatial
subdomainVo in the reference (undeformed) configuration:

∫

Vo

ρo

∂vi

∂t
dVo =

∫

Vo

∂Pij

∂Xj

dVo. (15)

The control volume,Vo, is fixed in time, therefore differentiation and integration of
the temporal term are interchangeable. In addition,ρo is constant, so the left-hand-side of the
equation simplifies to

ρo

d

dt

∫

Vo

vidVo =

∫

Vo

∂Pij

∂Xj

dVo. (16)

Applying the divergence theorem of Gauss, the spatial derivative may be written in
terms of fluxes as:

ρo

d

dt

∫

Vo

vidVo =

∮

Am

Pij · njdAo (17)

whereAm is the surface enclosingVo andn = (n1, n2) is the outward pointing unit-vector
normal toAm.

In the standard edge-based vertex-centred finite volume method, the dependent vari-
ables are stored at nodes around which control volumes are constructed. In 2D, these control
volumes are constructed by joining the midpoints of edges with element centroids and in such
a way that only one node lies within each control volume. The set of surfaces forming the
control volumes are referred to as a dual-mesh. This is shownschematically for a nodem in



Figure 1 [17]. In the figure,Vm is the control volume associated with nodem. Its bounding
surfaceAm is composed of a number of surfaces which are defined based on their associated
edges. For example,Amn is the surface segment intersecting the edgeΥmn which connects
nodesm andn.

The surface integrals in Equation (17) are now calculated inan edge-wise manner, i.e.
the surface integral is expressed as the sum over all the edges connecting the control volume:

ρo

d

dt

∫

Vo

vidVo =
∑

Υmn∩Vm

Pij · Cj:mn +
∑

ΥB
mn∩Vm

Pij · Bj:mn. (18)

whereCj:mn is the edge coefficients connecting arbitrary internal nodesm andn andBj:mn is
the edge coefficient for an edge that lies along the volume boundary.

Discretising and integrating the temporal term on the left gives:

ρo

vτ+∆τ
i − vτ

i

∆τ
Vo =

∑

Υmn∩Vm

Pij · Cj:mn +
∑

ΥB
mn∩Vm

Pij · Bj:mn. (19)

where∆τ is the pseudo-timestep size.
To introduce the primary variable, displacement, into the equation, we simply note

that velocity is the temporal rate of change of displacement, u,

dui

dt
= vi. (20)

The set of equations is solved via a single-step Jacobi iterative scheme [15] which is
implemented such as to ensure a matrix-free and robust solution. Second-order-accurate tem-
poral discretisation is achieved via dual-time-stepping [18], with both consistent and lumped
mass matrices, and with a Jacobi pseudo-time iteration method employed for solver purposes.
The matrix-free approach makes the scheme particularly well-suited for distributed memory
parallel hardware architectures.

Amn

Amn1
Amn2

Amp

AmpBApmB
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Figure 1. Schematic of the construction of a dual-mesh



3.2. Results

To evaluate the finite volume and finite element methods in modelling bending, we
consider a thick beam in pure bending (Figure 2). The beam wasclamped at one end and
subjected to a moment at the free end. The material properties used were a Young’s modulus
E = 210 GPa and Poisson’s ratioν = 0. The lengthl = 6 mm, heighth = 1 mm and the
plane stress assumption were used. The standard vertex-centred FVM was found to suffer
from shear locking or sensitivity to element aspect ratio when subjected to bending (see Fig-
ure 3), which is a well-documented problem with the linear Q4FEM [16]. To address this, an
enhanced finite volume approach which uses and elemental-based displacement gradients [19]
for the shear components of strain and node-based gradientsfor the normal components, was
implemented. This hybrid FVM approach is shown to be insensitive to element aspect ratio,
as can be seen in Figure 3.

A comparison between the FVM and FEM on a geometrically non-linear structure in
bending is shown in Figure 4. Although the hybrid FVM exhibits distinct advantages over the
Q4 FEM, the higher-order Q8 FEM produced the most desirable results.

M

Figure 2. Cantilever beam in pure bending

Figure 3. Graph depicting shear-locking mechanism presentin the Q4 FEM and standard
vertex-centred FVM when subjected to bending



Figure 4. Comparison of FVM and FEM on a geometrically non-linear beam in bending

4. FLUID-STRUCTURE INTERACTION

The second part of this study looks at the implementation andcoupling of the Q8 FEM
solid mechanics solution procedure with the existing fluid-flow solver in Elemental. A hybrid
finite volume-finite element FSI scheme is developed.

4.1. Fluid-solid interface treatment

The fluid-structure interaction system can be described in general or broad terms as
follows: the fluid flow provides a traction or load onto the structure. This results in a dynamic
response or deformation of the structure which in turn affects the geometry of the fluid domain
and the fluid flow. In order to solve this intimately coupled system, the following coupling
conditions for the traction, displacement and velocity need to be satisfied at the fluid-solid
interface:

tsi = pni − σ
f
ijnj (21)

u
f
i = us

i (22)

v
f
i = v∗

i = vs
i (23)

whereni is the related unit vector pointing outward from the fluid domain, the superscripts
f ands refer to the fluid and solid respectively. Equation (21) represents momentum con-
servation or force equilibrium at the interface, while Equations (22) and (23) enforce the



kinematic or geometric continuity and no-slip conditions respectively. Through the use of
dual-timestepping, the transfer of information between the fluid and solid is done at solver
sub-iteration level and strong-coupling is effected through the procedure described next.

4.2. Mesh movement and solution procedure

The movement of the fluid mesh is handled via an interpolationprocedure. In this
approach the closest internal and external boundary nodes for every internal fluid node are
identified and the distances between the boundary nodes and the internal node computed at
the beginning of the analysis. The movement of internal fluidnodes is then determined by
means of an interpolation function that uses the displacements of the closest boundary nodes.
The reader is referred to [20] for further details.

The solution procedure for the coupled FSI problem involvessolving the discretised
fluid and solid governing equations and updating the mesh in an iterative manner that effects
strong coupling, as follows:

1. The fluid governing equations, Equations (11) to (13), aresolved for an iteration. This
solution provides tractions that are applied to the solid domain.

2. The solid discrete equations, Equations (19) and (20), are then solved for an iteration,
which provides velocities and displacements at the boundary of the FSI interface. The
boundary velocities are applied to the fluid mesh, which results in an ALE convective
velocity in the fluid domain.

3. The mesh is moved if the displacement of a solid mesh boundary node exceeds 30% of
the element size or the residuals of the fluid and solid discrete equations have decreased
by at least four orders of magnitude.

4. The steps above are repeated until convergence, i.e. the residuals of fluid and solid
discrete equations are calculated and if greater than the convergence tolerance, Steps 1
to 3 are repeated. If the residuals have decreased by at leastfive orders of magnitude,
the real-timestep is terminated and the next timestep is entered by proceeding to Step 1.

4.3. Results

The developed technology is evaluated via application to benchmark two-dimensional
strongly-coupled large-displacement FSI test problems from literature. A popular test-case
is that of a thin elastic beam attached to a rigid square blockwith fluid flowing over it [21,
22]. The geometry and boundary conditions are shown in Figure 5. The properties of the
incompressible fluid are: densityρf = 1.18 × 10−3 g cm−3 and viscosityµf = 1.82 × 10−4

g cm−1 s−1, while that of the beam are: densityρs = 2.0 g cm−3, Young’s modulusE =

2.0 × 106 g cm−1 s−2 and Poisson’s ratioν = 0.35. The plane stress assumption was used. A
uniform constant fluid velocity,vin = 31.5 cm s−1, or Reynolds number,Re =

ρf Lvin

µf
= 204,

was applied at the inlet while at the exit the pressure was setto zero. The inlet velocity results
in unsymmetric vortices on either side of the beam which eventually build up causing large



Slip boundary condition

Slip boundary condition

pout = 0

vin = 31.5 cm s−1
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Figure 5. Geometry and boundary conditions for the block-tail FSI test-case

Figure 6. Pressure (left) and velocity contours (right) forthe block-tail FSI test-case with the beam oscillat-
ing in its second mode of vibration



oscillations of the beam in its second mode of vibration. Plots of the pressure and velocity
contours are shown in Figure 6.

The time history of the tip displacement of the beam is plotted in Figure 7(a), together
with the results of Hubner et al. [22]. There is a good correlation between the two sets of
results, with the amplitude and frequency differing by lessthan 3% and 4% respectively as
shown in Table 1. A rigorous mesh and temporal independence study was conducted. To
evaluate mesh independence of the fluid two finer meshes of 25 000 and 50 000 fluid elements
were generated. As can be seen in Figure 7(b) and Table 1, a small change in solution is
observed from the 6 000 to the 25 000 element mesh, but a further doubling of the number of
elements results in a negligible difference. Next, to evaluate mesh independence of the solid a
finer solid mesh of80×2 Q8 elements was used and it was found that the results are identical
to the40 × 1 solid mesh case (see Figure 7(c) and Table 1). Finally, temporal independence
was evaluated by using four different timestep sizes varying from 0.005s to 0.0005s. The time
history in Figure 7(d) as well as the result in Table 1 show good convergence and independence
in the results.

This partitioned hybrid FSI scheme was extended to solve twostrongly-coupled 3D
problems. These include a pressure pulse in a flexible tube and a flapping elastic membrane.
Snapshots of these results are shown in Figure 8.

5. CONCLUSIONS

A vertex-centred and novel hybrid finite volume method to model geometrically non-
linear solid mechanics was investigated and compared with the traditional finite element
method in this work. The higher-order Q8 finite element method produced the most desirable
results and was coupled to an existing fluid-flow solver to develop a hybrid finite volume-finite
element fluid structure interaction scheme. The scheme was evaluated on strongly-coupled
benchmark problems, demonstrating full coupling between fluid and structural domains, while
furnishing accurate results.

Fluid mesh Solid mesh Timestep (s)Amplitude (cm) Frequency (Hz)
6 000 40 × 1 0.001 0.78 2.98

6 000 80 × 2 0.001 0.78 2.98

25 000 120 × 1 0.001 0.76 2.97

50 000 160 × 1 0.001 0.76 2.97

6 000 40 × 1 0.0005 0.78 2.97

Hubner et al. [22] 0.8 3.1

Xia et al. [19] 0.81 3.3

Table 1. Comparison of amplitude and frequency for the block-tail test-case in second mode
of vibration with various meshes and timestep sizes
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Figure 7. Tip displacement for the block-tail test-case in second mode of vibration with vari-
ous meshes and timestep sizes



Figure 8. Pressure contours for flapping membrane (top) and pipe displacement and velocity
vectors for pressure pulse propagating in a flexible tube (bottom)
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