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Abstract. This work details the development of a computational toat ttan accurately
model strongly-coupled fluid-structure interaction (FBidblems, with a particular focus on
thin-walled structures undergoing large, non-linear def@ations. The first part of the work
investigates improving the efficiency with which a stable @bust in-house code models thin
structures undergoing dynamic fluid-induced bending defdions. Variations of the exist-
ing finite volume formulation as well as linear and higheder finite element formulations
are implemented. The governing equations for the solid dorage formulated in a total
Lagrangian or undeformed conguration and large geometiyaaon-linear deformations are
accounted for. As will be demonstrated, the finite volumeagmgh exhibits similar disad-
vantages to the linear Q4 finite element formulation wheremgoing bending. An enhanced
finite volume approach is discussed and compared with fitet@ent methods. The second
part of this work is concerned with fluid-structure intenact (FSI) modelling. It considers
the implementation and coupling of a higher-order finitensdmt structural solver with an
existing in-house fluid-flow solver. The coupling betweextlind and structural domains is
rigorously assessed. The developed technology is vatidateugh the simulation of repre-
sentative two-dimensional strongly-coupled problemsyhbith rigorous mesh and temporal
independence studies are also conducted. The resultses-thimensional FSI test-cases are
also presented.
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1. INTRODUCTION

Computational mechanics is a growing discipline which usesputational methods
to obtain approximate solutions to problems governed byptiveiples of mechanics. With
the massive advances in computer technology over the pastdeades, computational me-
chanics has become an important tool in analysing complggipdl phenomena, and has had
a significant influence on science and technology.

Since the 1960s, the finite element method has mainly beaehfasenodelling the
mechanics of solids [1]. The finite volume method [2] hasitradally been more dominant
in the field of fluid mechanics but has also become increagipgpular for use in solid me-
chanics [3, 4, 5, 6, 7, 8]. Both schemes can be considered gédseof weighted residuals
where they differ in the choice of the weighting function.efinite element Galerkin method
uses shape functions as the weighting functions, while thtefyolume method results by
choosing the weighting function as unity. Finite elementhods are typically formulated in
a total Lagrangian or undeformed configuration. In contfaste volume methods are tradi-
tionally based on an Eulerian or updated mesh configuratwirch is not optimal for solid
mechanics problems.

Fluid-structure interaction (FSI) constitutes a brancltahputational mechanics in
which there exists an intimate coupling between fluid andcstiral or solid domains; the
behaviour of the system is influenced by the interaction obaing fluid and a flexible solid
structure. There are a wide variety of FSI problems encoadt® many areas of aerospace,
biomedical, mechanical and civil engineering. Examplesugh problems include the predic-
tion of wing flutter in aircraft [9] and arterial modelling the human body [10]. Though much
effort has been spent over recent years in developing FSElinagl technology, significant
scope for improvement still exists in terms of industridévance and impact.

The purpose of this study is to furnish a computational tbat tan accurately model
strongly-coupled FSI problems, with a particular focus lmn-4walled structures undergoing
large, non-linear deformations.

2. GOVERNING EQUATIONS

The fluid-structure interaction system consists of a homegas isotropic elastic solid
region and a viscous incompressible isothermal fluid domEne set of equations describing
each domain is now detailed.

2.1. Solid equations

The partial differential equations that describe a homegeas isotropic elastic solid
undergoing large geometrically non-linear deformatiom giwen by Cauchy’s first equation
of motion (balance of linear momentum) [11], which in a tdtagrangian formulation or with
respect to the undeformed configuration is

P
X,

+ fi = pots, (1)



where F;;, fi, p, anda; are the first Piola-Kirchoff stress (a stress measure wretditas
forces in the deformed configuration with areas in the untleéal configuration), body force,
density and acceleration, respectively angdare the coordinates of a point on the solid body
in the undeformed configuration.

In order to solve the elastic boundary value problem, Equé(l), a relationship be-
tween stress and displacement is required. This relati@btgined indirectly through the
strain.

Assuming an isotropic hyperelastic St-Venant-Kirchofftenml model, the Green-
Lagrange strainf’;;, which is a strain measure in the undeformed configuratsrelated to
the stress by

Sij = CijklEz‘j, (2)

wheresS;; is the second Piola-Kirchoff stress afig; is the fourth order elasticity tensor.
For convenience, we can represent the stress and stramrdensEquation (2) as
vectors and the fourth order elasticity tensor as a matrix:
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andF is the Young’s modulus andis the Poisson’s ratio of the material.

Considering only two-dimensional cases, two possibdig&ist to simplify the anal-
ysis. These are conditions of plane stress and plane sffamplane stress condition exists
when the body is very thin, i.e. in the limit where the third@insion approaches zero. Under
such conditions Equation (3) simplifies to:

522 = ﬁ v 1 0 EQQ . (5)
Sha J1o o0 1-v By

The plane strain condition exists when the body is very thiek in the limit where
the third dimension approaches infinity. Equation (3) noadmees:
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The first Piola-Kirchoff stress?;;, in Equation (1) is then obtained by multiplying the
second Piola-Kirchoff stressy;;, with the deformation gradient;;,:

Pj = FiSi;. (7)



The deformation gradient relates quantities in the unadeéar configuration to their
counterparts in the deformed configuration:

o0x;
(9—Xk’
where X, andzx; are the coordinates of the solid in the undeformed and defdrronfigura-
tions, respectively.

Finally, to close the governing equations, the relatiop$l@tween strain and the dis-
placement field is given by

Fi, = (8)

1
Ei; = §(Hij + Hj; + HyiHyj), 9)
whereH,; is the displacement gradient defined as
du;
Hy = — 10
e (10)

J

andu; is the total displacement of the solid, therefefe= u; + X;.

2.2. Fluid equations

The fluid flow is governed by the Navier-Stokes equations. dnegal, these equa-
tions are expressed in an Eulerian or spatial frame of neéereas opposed to a Lagrangian
or material description for the solid, which entails a fixgal region with fluid flowing
through it. For fluid-structure interaction problems thédsdeforms and displaces the fluid
domain and a mixture or combination of the two reference &smeferred to as an arbitrary-
Lagrangian-Eulerian (ALE) reference frame, results fertiotion of the FSI interface. This
approach was first described by Hirt et al. [12] and later &stbpy many others and is now
widely used for FSI applications [13]. A dynamic mesh movahagorithm that deforms the
fluid mesh is therefore required and is described later.

Assuming a viscous, incompressible and isothermal flugletiuations governing the
fluid flow are given by the continuity and Navier-Stokes eqpre:

al)i .
il (11)
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wherep, v;, p, 0;; and f; are the fluid density, fluid velocity, pressure, stress ardylforces
respectively,r; are the fixed Eulerian coordinates andis the mesh velocity. The term
(v;—vj) is an ALE convective velocity that results from a differebetween the fluid velocity
and the mesh velocity.

To close the fluid governing equations, a constitutive retefior the stress is required.
Assuming a Newtonian fluid, the relationship between staesisrate of strain is given by

8vi 8’Uj
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wherey is the fluid viscosity.



3. GEOMETRICALLY NON-LINEAR STRUCTURES

At the commencement of this study, a stable and robust isdoade, Elemental, was
available [14]. With reference to FSI, the solver makes dseampact edge-based vertex-
centred finite volume method (FVM) to model both fluid and stwwe in a strongly-coupled
partitioned manner. While this approach has been demaadtta be effective for the fluid
domain, thin structures require many elements throughhils&riess to ensure accuracy.

To improve the efficiency with which Elemental models thirustures undergoing
bending deformations, variations of the existing finitewné method, as well as linear and
higher-order standard Galerkin finite element methods (FEM] are implemented. The
various methods are compared with each other and the opippabach chosen.

3.1. Discretisation

The standard Galerkin finite element method for discregsaif the solid governing
equations is described in many handbooks [15, 16]. Insteadjescribe the finite volume
method below.

Assuming the body forceg;, to be negligible and expressing the acceleratignas
the rate of change of velocity;, gives

Ov; OBy

Poor ~ ax;”

The equation is cast into integral or weak form by integigabmer an arbitrary spatial
subdomairV, in the reference (undeformed) configuration:

(14)
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The control volume)/,, is fixed in time, therefore differentiation and integratiof
the temporal term are interchangeable. In additigns constant, so the left-hand-side of the
equation simplifies to

d 0P,
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Applying the divergence theorem of Gauss, the spatial devie may be written in
terms of fluxes as:

d
po%\/v vidVO = % Bj . njdAo (17)

whereA,, is the surface enclosing, andn = (n,ns) is the outward pointing unit-vector
normal toA,,,.

In the standard edge-based vertex-centred finite volumbadethe dependent vari-
ables are stored at nodes around which control volumes astracted. In 2D, these control
volumes are constructed by joining the midpoints of edg#is @lement centroids and in such
a way that only one node lies within each control volume. Tdéteo$ surfaces forming the
control volumes are referred to as a dual-mesh. This is slsolvematically for a node: in



Figure 1 [17]. In the figure),, is the control volume associated with noge Its bounding
surfaceA,, is composed of a number of surfaces which are defined basdtmrassociated
edges. For exampled,,, is the surface segment intersecting the eligg which connects
nodesm andn.
The surface integrals in Equation (17) are now calculatethindge-wise manner, i.e.
the surface integral is expressed as the sum over all thesedgaecting the control volume:
d
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whereC}.,,.,, is the edge coefficients connecting arbitrary internal sed@ndn andB;.,,,,, is
the edge coefficient for an edge that lies along the volumadany.
Discretising and integrating the temporal term on the |efeg
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whereAr is the pseudo-timestep size.
To introduce the primary variable, displacement, into thaation, we simply note
that velocity is the temporal rate of change of displacement

du;
dt
The set of equations is solved via a single-step Jacobiiteracheme [15] which is
implemented such as to ensure a matrix-free and robust@olBecond-order-accurate tem-
poral discretisation is achieved via dual-time-steppij,[with both consistent and lumped
mass matrices, and with a Jacobi pseudo-time iterationadetimployed for solver purposes.
The matrix-free approach makes the scheme particularlirsuéled for distributed memory
parallel hardware architectures.

Figure 1. Schematic of the construction of a dual-mesh



3.2. Resaults

To evaluate the finite volume and finite element methods inettiog bending, we
consider a thick beam in pure bending (Figure 2). The beamcleasped at one end and
subjected to a moment at the free end. The material propersied were a Young’s modulus
E = 210 GPa and Poisson’s ratio = 0. The lengthl = 6 mm, heighth = 1 mm and the
plane stress assumption were used. The standard vertereadn/M was found to suffer
from shear locking or sensitivity to element aspect rati@wbubjected to bending (see Fig-
ure 3), which is a well-documented problem with the linearkgM [16]. To address this, an
enhanced finite volume approach which uses and elemergailaisplacement gradients [19]
for the shear components of strain and node-based gradioerntsee normal components, was
implemented. This hybrid FVM approach is shown to be ingassio element aspect ratio,
as can be seen in Figure 3.

A comparison between the FVM and FEM on a geometrically mo@ak structure in
bending is shown in Figure 4. Although the hybrid FVM exlsldistinct advantages over the
Q4 FEM, the higher-order Q8 FEM produced the most desiradelts.
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Figure 2. Cantilever beam in pure bending
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Figure 3. Graph depicting shear-locking mechanism pregetite Q4 FEM and standard
vertex-centred FVM when subjected to bending
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Figure 4. Comparison of FVM and FEM on a geometrically naoredir beam in bending

4. FLUID-STRUCTURE INTERACTION

The second part of this study looks at the implementatiorcangling of the Q8 FEM
solid mechanics solution procedure with the existing flilos solver in Elemental. A hybrid
finite volume-finite element FSI scheme is developed.

4.1. Fluid-solid interface treatment

The fluid-structure interaction system can be describeceimrerpl or broad terms as
follows: the fluid flow provides a traction or load onto theustiure. This results in a dynamic
response or deformation of the structure which in turn &éféee geometry of the fluid domain
and the fluid flow. In order to solve this intimately coupledt®m, the following coupling
conditions for the traction, displacement and velocitycheebe satisfied at the fluid-solid
interface:

ti =pn; — alfjnj (21)
ul = u (22)
Uif = =0 (23)

wheren; is the related unit vector pointing outward from the fluid dom the superscripts
f ands refer to the fluid and solid respectively. Equation (21) esgnts momentum con-
servation or force equilibrium at the interface, while Egmas (22) and (23) enforce the



kinematic or geometric continuity and no-slip conditioespectively. Through the use of
dual-timestepping, the transfer of information betwees fthid and solid is done at solver
sub-iteration level and strong-coupling is effected tlgtothe procedure described next.

4.2. M esh movement and solution procedure

The movement of the fluid mesh is handled via an interpolgti@ctedure. In this
approach the closest internal and external boundary nademvéry internal fluid node are
identified and the distances between the boundary nodesharidternal node computed at
the beginning of the analysis. The movement of internal fhodes is then determined by
means of an interpolation function that uses the displaoésre the closest boundary nodes.
The reader is referred to [20] for further details.

The solution procedure for the coupled FSI problem invos@sing the discretised
fluid and solid governing equations and updating the mesh itegative manner that effects
strong coupling, as follows:

1. The fluid governing equations, Equations (11) to (13),sateed for an iteration. This
solution provides tractions that are applied to the solichdim.

2. The solid discrete equations, Equations (19) and (26)treen solved for an iteration,
which provides velocities and displacements at the boynafathe FSI interface. The
boundary velocities are applied to the fluid mesh, whichltesn an ALE convective
velocity in the fluid domain.

3. The mesh is moved if the displacement of a solid mesh boymiale exceeds 30% of
the element size or the residuals of the fluid and solid dis@quations have decreased
by at least four orders of magnitude.

4. The steps above are repeated until convergence, i.eesiduals of fluid and solid
discrete equations are calculated and if greater than teeogence tolerance, Steps 1
to 3 are repeated. If the residuals have decreased by afileastders of magnitude,
the real-timestep is terminated and the next timestep eyedty proceeding to Step 1.

4.3. Results

The developed technology is evaluated via application twbmark two-dimensional
strongly-coupled large-displacement FSI test problemosfliterature. A popular test-case
is that of a thin elastic beam attached to a rigid square bhatk fluid flowing over it [21,
22]. The geometry and boundary conditions are shown in Eigur The properties of the
incompressible fluid are: densipy = 1.18 x 1072 g cm3 and viscosity; = 1.82 x 10~*

g cm ! s71, while that of the beam are: density = 2.0 g cm3, Young’s modulust =

2.0 x 10° g cm! s72 and Poisson’s ratio = 0.35. The plane stress assumption was used. A
uniform constant fluid velocity;, = 31.5 cm s!, or Reynolds numbefze = pfi% — 204,
was applied at the inlet while at the exit the pressure wasagro. The inlet velocity results

in unsymmetric vortices on either side of the beam which &waly build up causing large
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Figure 5. Geometry and boundary conditions for the blodk-al test-case
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Figure 6. Pressure (left) and velocity contours (right)tfa block-tail FSI test-case with the beam oscillat-
ing in its second mode of vibration



oscillations of the beam in its second mode of vibration.t$td the pressure and velocity
contours are shown in Figure 6.

The time history of the tip displacement of the beam is ptbiteFigure 7(a), together
with the results of Hubner et al. [22]. There is a good coti@tabetween the two sets of
results, with the amplitude and frequency differing by ldsn 3% and 4% respectively as
shown in Table 1. A rigorous mesh and temporal independetoucly svas conducted. To
evaluate mesh independence of the fluid two finer meshes d@8&1@d 50 000 fluid elements
were generated. As can be seen in Figure 7(b) and Table 1, ladraage in solution is
observed from the 6 000 to the 25 000 element mesh, but a fudthubling of the number of
elements results in a negligible difference. Next, to estdumesh independence of the solid a
finer solid mesh 080 x 2 Q8 elements was used and it was found that the results arecalen
to the40 x 1 solid mesh case (see Figure 7(c) and Table 1). Finally, teahpalependence
was evaluated by using four different timestep sizes vgrinom 0.005s to 0.0005s. The time
history in Figure 7(d) as well as the result in Table 1 showdhoanvergence and independence
in the results.

This partitioned hybrid FSI scheme was extended to solvestnangly-coupled 3D
problems. These include a pressure pulse in a flexible tuth@ dlapping elastic membrane.
Snapshots of these results are shown in Figure 8.

5. CONCLUSIONS

A vertex-centred and novel hybrid finite volume method to elggeometrically non-
linear solid mechanics was investigated and compared \ughtrtaditional finite element
method in this work. The higher-order Q8 finite element mdthiwduced the most desirable
results and was coupled to an existing fluid-flow solver teetigya hybrid finite volume-finite
element fluid structure interaction scheme. The scheme walsated on strongly-coupled
benchmark problems, demonstrating full coupling betwaed #nd structural domains, while
furnishing accurate results.

Fluid mesh Solid mesh Timestep (s Amplitude (cm) Frequency (Hz

6 000 40 x 1 0.001 0.78 2.98

6 000 80 x 2 0.001 0.78 2.98
25000 120 x 1 0.001 0.76 2.97
50 000 160 x 1 0.001 0.76 2.97
6 000 40 x 1 0.0005 0.78 2.97
Hubner et al. [22] 0.8 3.1

Xia et al. [19] 0.81 3.3

Table 1. Comparison of amplitude and frequency for the bladktest-case in second mode
of vibration with various meshes and timestep sizes
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ous meshes and timestep sizes
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