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33 Target Tracking Using 
a 2D Radar

Hermann Le Roux

33.1  INTRODUCTION

This chapter briefly outlines a few mathematical techniques to track targets in 3D using a 2D 
radar. 2D radars are relatively cheap and efficient sensors that often form the first line of defence 
in airspace control. In military applications they are often used as early-warning devices because 
they can detect approaching enemy aircraft or missiles at great distances. In case of an attack, 
early detection of the enemy is vital for a successful defence against attack. Depending on the 
threat evaluation of tracked aircraft the tracking process is passed along to 3D search radars or 
fire control tracking radars once it comes into range of those sensors. A key component in the 
above hierarchy is the threat evaluation component. It relies on many factors such as angle of 
incidence towards defended assets, time to approach to defended asset, speed of target and so 
forth. The normal 2D radar provides range and azimuth but the altitude of the target is omitted. 
This can be an important consideration as aircraft altitude limits the attack profiles a target 
can fly [1].

33.2  HEIGHT ESTIMATION

The current literature regarding height estimation restricts itself to computations involving two or 
more 2D radars where the height can be completely determined by simple geometric computa-
tions. In this section we present some mathematical methods to infer aircraft altitude from two 
updates given by a single 2D radar [2]. A single 2D radar source cannot directly determine the 
altitude of aircraft, thus naturally, the method presented here is either coupled with a number of 
assumptions and limitations or is a mere approximation. The terms height and altitude are used 
interchangeably. Height often refers to the height of an aircraft above ground level, and altitude 
the height of the aircraft above mean sea level. The proposed techniques do not consider terrain, 
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738 Mobile Intelligent Autonomous Systems

terrain height, or height above mean sea level, but rather the difference in height of the sensor and 
observed aircraft.

It should also be noted that if the aircraft is flying perfectly tangential to the radar beam, then the 
radial speed component is zero and it is impossible to estimate its altitude. Conversely, however, it 
is more accurate to determine the altitude an aircraft flying at great speeds at a 45° angle to the radar 
beam, than a slow flying aircraft that is flying towards the radar. The aircraft speed is instrumental 
in determining the aircraft altitude. The accuracy to which these speeds are known is directly pro-
portional to the accuracy to which the altitude can be determined. Knowledge of aircraft speed can 
be obtained in a variety of ways. For example, due to the volatile nature of their payload, the speed 
at which bombers fly is usually controlled by doctrine, similarly cruise missiles fly at known speeds. 
We will make use of the three known flight profiles depicted in Figure 33.1 as examples. The 
defended asset as well as the sensor is located at the origin.

In the discussion that follows we will make use of two sequential sensor readings at time t1 and 
t2. The given data sets will consist of a slant range and azimuth reading, denoted (r1, θ1) and (r2, θ2). 
If the aircraft speed, denoted v2, is known then we can easily determine the distance travelled 
between time t1 and time t2 as u2 = v2 (t2 − t1). In the figures (Figure 33.2) that follow we will, with-
out loss of generality, assume that r1 ≥ r2.

33.2.1  Using Doppler Measurements

Modern 2D radar sensors allow Doppler measurements of one (radial) component of the velocity of 
the aircraft it is observing. In other words, Doppler measurements do not give us the velocity vector, �
v2, but only the magnitude of its radial component, denoted v̂2, at time t2. From the measured radial 

Long toss

High dive

Pitch and dive

FIGURE 33.1  Flight profile examples.
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739Target Tracking Using a 2D Radar

speed v̂2 we can easily determine the radial distance travelled w v t t2 2 2 1= −ˆ ( ) and from that the total 
distance travelled is easily obtainable:

	
u r r w w2 1

2
2 2

2
2
2= − + +( )

	
(33.1)

It is clear from Figure 33.3 that the height can still not be directly calculated, even with Doppler 
measurements at hand, since the relations between these known values are valid at any height. In 
short, without any height-dependent data, there is no general way to directly compute the height.

33.2.2 S pecial Case

If we make an assumption that the aircraft is flying radially towards/away from the radar at level 
height and known speed (Figure 33.4), then we can compute the height with simple trigonometry as
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(33.2)
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FIGURE 33.2  Radar tracking in 2D.
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FIGURE 33.3  Radar tracking in 2D with Doppler data.
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740 Mobile Intelligent Autonomous Systems

We will refer to this method as the AASC (Altitude Approximation via Simple Case) method to 
find an approximation to h1 without knowing whether or not the assumptions of radial, straight flight 
hold true. The accuracy of this approximation is entirely dependent on the flight profile of the air-
craft as illustrated in Figure 33.5. The model is usable without Doppler data as long as we have an 
accurate estimate of the speed of the aircraft, or more precisely u2 so it seems natural to proceed 
with a sensitivity analysis to see how sensitive this model is to changes in the given u2.

Assume that the aircraft is flying level and radially towards the sensor. We have 0 < h = h1 = h2 < r1 
and θ = θ1 − θ2 = 0. Thus

	
u u r r h r h r h= = + − − − −2 1

2
2
2 2

1
2 2

2
2 22 2

	
(33.3)

Differentiation yields
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(33.4)

from which it is clear that

	

∂
∂ → ∞ → ∂

∂ → →h
u

h
h
u

h ras and as0 0 1

This implies that as the aircraft’s height approaches zero, the estimated value of h will become 
infinitely sensitive to changes in u and as the aircraft’s height approaches its range, the estimated 
height h will become infinitely insensitive to changes in u.

33.3  VERTICAL ACTIVITY ESTIMATION

Understanding the vertical activity of an aircraft enables airspace control to predict aircraft intent 
which means more accurate situation awareness. The problem of estimating the behaviour of an 
aircraft is well known with applications in airspace control and threat evaluation.

The existing literature typically makes use of two or more separate radars to compute aircraft 
altitude. The advantages are immediately obvious as an aircraft can be tracked in 3D and the flight 
path can be compared to known flight profiles to offer a strong basis for threat evaluation.

r2

r1t2

t1u2

θ1 = θ2

FIGURE 33.4  Simple case.
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741Target Tracking Using a 2D Radar

33.3.1  Using Doppler Measurements

Vertical manoeuvres are easily and accurately recognizable when we have Doppler data available. 
Furthermore, it will give us a method to track the target in 3D.

If we have a relatively accurate estimation for h1, then we can compute h2 by solving the 
equation

	 − = − − −w r r r2 2 1 1 2 1 2 1 1 2cos( )cos( )cos( ) sin( )sin( )θ θ � � � � 	 (33.5)

for �2 once we know the value of �1 as illustrated in Figure 33.6. For simplicity, we define

	

c c c c r h

c r
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FIGURE 33.5  Height approximation using the AACT method.
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(33.7)

We do not have enough information to calculate the projected angle α2 so we define two functions 
covering all possible projection angles.

	 h2:1 (h) = r2 sin (�2:1)  and  h2:2 (h) = r2 sin (�2:2)

where �2:1 and �2:2 is computed as above with h1 = h. We start by correcting the given initial height h if 
the error in range γ ( ) ( )h r r h= −1 1  is too big (e.g., >0.001). We do this by adjusting the fixed height h to

	
h h h

h h
h h= −

+
±{ γ

γ
γ γ( )

( ): ( ( )) .isaminimum

and continue to do so until γ(h) ≤ 0.001.
Accuracy can further be increased by making this threshold smaller but at a computational cost. The 

absolute difference in height d h h2 2 1= −  can be computed by projecting coordinates onto a plane of 
fixed height h and using the Euclidean distance u h2 ( ) between the projected coordinates to compute

	
d h u u h2 2 2( ) ( ).= −

	
(33.8)

Using this, we define the following two conditions which will assist us in deciding whether the 
aircraft gained or lost altitude.
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(33.9)

The vertical manoeuvre can be approximate if two acceptable conditions are found at a given 
fixed height h (~h1). The method fails when there is no solution for �2 in the calculation of h2:1 (h) and 
h2:2 (h) or when the conditions are very close. This can be handled by using the previous change in 
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FIGURE 33.6  Calculation of change in altitude.
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altitude h1 − h0 and in such, assuming that the vertical manoeuvre graph is smooth. We have 
h2 ~ h + δ2(h) where
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(33.10)

The vertical manoeuvre graphs for our three examples using this method to calculate the change 
in altitude are illustrated in Figure 33.7. The numbers displayed in the legends of the error graphs 
are of the form Calculated: Average Error (m) [Maximum Error (m)]. The errors in the beginning 
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FIGURE 33.7  Vertical manoeuvre graphs.
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are due to rounding errors in the calculation of d2 giving a false indication that there was a small 
change in altitude when the aircraft was actually in straight flight. The whole method was set up 
with a threshold of 1 mm which suggests that we should ignore changes in altitude smaller than this 
threshold. By doing this, we end up with average and maximum errors of less than 0.0001 mm. 
Moving the sensor away from the defended asset will affect the calculation of the vertical manoeu-
vre in the sense that the occasional error (not present in the standard setup) might arise. These errors 
refer to instances where the algorithm gave an increase in altitude when there was actually a decrease 
and vice versa. This is entirely dependent on the flight profile through. Table 33.1 displays the aver-
age error, maximum error and error probability (or number of errors for specific scenarios) when 
moving the sensor within a 1 km radius away from the defended asset. Table 33.1 is further expanded 
to include the standard and extreme scenarios where maximums are found. Figure 33.8 illustrates 
this for a special case. All the errors were due to the system having no solution and caused by using 
the previous update based on the assumption of continuous flight. Table 33.2 displays the average 
error, maximum error and error probability (indicating how likely the vertical manoeuvre calculation 

TABLE 33.1
Numerical Values of the Various Error-Metrics (Change in Altitude Calculation)

Scenario

Sensor Offset Radius Change in Altitude Errors

Range [m] Dir [°] Altitude [m] Avg Max Errors

Pitch and dive 0–1000 0–360 0–1000 0.000003 0.001094 0.000000

Standard 0 0 0 0.000000 0.000034 0

Max average 330 260 110 0.000015 0.001047 0

Max single 600 110 280 0.000010 0.001094 0

High dive 0–1000 0–360 0–1000 0.000000 0.001126 0.000000

Standard 0 0 0 0.000000 0.000001 0

Max average 110 110 670 0.000005 0.001126 0

Max single 110 110 670 0.000005 0.001126 0

Long toss 0–1000 0–360 0–1000 0.000003 50.764000 0.000008

Standard 0 0 0 0.000000 0.000001 0

Max average 720 0 180 0.357493 50.764000 1

Max single 260 0 90 0.357493 50.764000 1

300.0

50
Calculated Calculated : 0.357493 [50.763999]
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FIGURE 33.8  Vertical manoeuvre approximation.
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algorithm is to fail) for the three given profiles as the sensor moves further away from the defended 
asset. All vertical activity errors are still due to the system having no solution.

33.4  CONTINUOUS TRACKING

As aforementioned, this gives us a method to track a target in 3D from the data sets (r1, θ1, v̂1) and 
(r2, θ2, v̂2) accumulated from two consecutive sensor updates at time t1 and t2, respectively. We will 
refer to this method as the AACT (Altitude Approximation via Continuous Tracking) method. The 
method to approximate the change in altitude h2 − h1 at time t2 described in the previous section 
takes as input an initial value h (~h1) which is used as initial approximation. The algorithm will 
adjust this height before trying to compute the change in altitude to yield better conditions μ1(h) and 
μ2(h). This is done by using the given range r1 at time t1 to find a more accurate approximation h ~ h1 
by mapping onto the range sphere.

The AACT method uses this idea to continuously track a target in 3D by (at the nth sensor update) 
provide: (i) an estimate δn for the change in altitude hn − hn−1 by using the approximated height hn−1 
(computed at the previous sensor update) as input and (ii) an estimate for the height hn. We will take h0 
as the AASC height whilst one may just as well take it as some other constant value (Figure 33.5). 
Moving the sensor away from the defended asset does affect the average AACT height errors for a 
specific flight profile but this is entirely dependent on the actual profile. Table 33.3 displays the average 
error, maximum error when moving the sensor within a 1 km radius away from the defended asset. 
The standard and extreme scenarios where maximums are found are also given. Table 33.4 displays 
the average error and maximum error for the AACT method for the three given profiles as the sensor 
moves further away from the defended asset. In the case of the above three scenarios we are better off 
when the sensor is 5km away from the defended asset but this might not always be the case.

33.4.1 T urning Manoeuvres

More complex turning manoeuvres in the flight path will naturally increase the error probability 
when detecting vertical manoeuvres and a bad first AASC approximation might cause a scenario to 

TABLE 33.2
Numerical Values of the Various Error-Metrics (for Given Profiles)

Scenario Radius

Change in Altitude Errors

Avg Max Err Prob

Pitch and dive 0–1000 0.00000289 0.00109412 0.00000000

1000–2000 0.00000288 0.00112229 0.00000000

2000–3000 0.00000291 0.00126226 0.00000000

3000–4000 0.00000307 6.53600000 0.00000278

4000–5000 0.00000365 9.44600000 0.00000278

High dive 0–1000 0.00000005 0.00112551 0.00000000

1000–2000 0.00000005 0.00113658 0.00000000

2000–3000 0.00000056 20.73200000 0.00000556

3000–4000 0.00000017 0.00154998 0.00000000

4000–5000 0.00000039 0.00150087 0.00000000

Long toss 0–1000 0.00000302 50.76400000 0.00000833

1000–2000 0.00000019 0.00151653 0.00000000

2000–3000 0.00000049 0.00151914 0.00000000

3000–4000 0.00000403 50.76400000 0.00001111

4000–5000 0.00000439 50.76400000 0.00000833
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have an average AACT height error that is above the average for the standard flight profile. The vari-
ous results are shown in Figures 33.9 and 33.10, and Table 33.5.

33.4.2 P ractical Aspects

It should be noted that the accuracy of the method to calculate a vertical manoeuvre is dependent on 
the accuracy to which we can measure (r1, θ1) and (r2, θ2) and w2. It is well known that 2D radars 

TABLE 33.3
Numerical Values of the Various Error-Metrics (Altitude Approximation/for 
Three Scenarios)

Scenario

Sensor Offset Radius AACT Errors

Range [m] Dir [°] Altitude [m] Avg Max

Pitch and dive 0–1000 0–360 0–1000 0.025447 1.014586

Standard 0 0 0 0.000020 0.000036

Max average 990 350 0 0.252607 1.014428

Max single 980 10 0 0.252499 1.014586

High dive 0–1000 0–360 0–1000 0.002799 0.014047

Standard 0 0 0 0.000001 0.000001

Max average 980 60 0 0.004149 0.013457

Max single 960 10 0 0.004039 0.014047

Long toss 0–1000 0–360 0–1000 0.038625 0.546741

Standard 0 0 0 0.000019 0.000020

Max average 990 350 0 0.242730 0.546741

Max single 990 10 0 0.242729 0.546741

TABLE 33.4
Numerical Values of the Various Error-Metrics or the 
AACT Method/Altitude Approximation

Scenario Radius

AACT Errors

Avg Max

Pitch and dive 0–1000 0.02544727 1.01458580

1000–2000 0.00496901 0.03094935

2000–3000 0.00304537 0.01616566

3000–4000 0.00226141 0.01117682

4000–5000 0.00183988 0.00870827

High dive 0–1000 0.00279944 0.01404736

1000–2000 0.00210260 0.00998633

2000–3000 0.00170983 0.00788764

3000–4000 0.00146634 0.00655928

4000–5000 0.00129752 0.00570002

Long toss 0–1000 0.03862496 0.54674133

1000–2000 0.00890965 0.03202178

2000–3000 0.00527871 0.01690597

3000–4000 0.00377008 0.01177279

4000–5000 0.00294581 0.00909983
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have excellent slant range measurements but poor azimuth readings. The data displayed in Table 33.6 
shows the effect of randomly introduced errors in azimuth readings. The errors we have encoun-
tered here w.r.t. calculation of vertical manoeuvres are not only due to the system having no solution 
but due to the algorithm failing as a result of the errors in azimuth readings. As one would naturally 
expect, average errors and error probability goes up as the azimuth error bias does.

33.5  ALTERNATIVE METHOD

The solution suggested in Ref. [3] can be used when no Doppler data is available. It makes use of 
two separate motion models that independently estimate the behaviour of the tracked entity. The 
relative errors between predictions of these models and observations made by the 2D radar are then 
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FIGURE 33.9  Height approximation using the AACT method: some results.
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FIGURE 33.10  Height approximation using the AACT method: some more results.

TABLE 33.5
Additional Flight Profiles

Scenario

Change in Altitude Errors AACT Errors

Avg Max Err Prob Avg Max

Pitch and dive 0.00248889 37.47600000 0.00248889 0.03543821 1.03319801

Stars treak 0.00000130 0.00082250 0.00000000 0.01112874 0.03089402
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used to make probabilistic statements on the current vertical behaviour of the aircraft. These models 
are based on inferring changes in the perceived velocity of a tracked target from a 2D radar track. 
The perceived changes may be due to changes in the target acceleration, changes in target altitude, 
or a combination of both. For this method to be useful we need to assume that the aircraft is at a 
fixed initial height h. We will proceed in vector notation to describe the 3D position vectors pn (at 
time tn) obtained by projecting the actual aircraft positions onto a 2D horizontal plane at height h.

Aircraft position pn

Aircraft velocity vn = pn − pn−1

Aircraft acceleration an = vn − vn−1

The first model assumes that the aircraft is flying at a constant altitude. This implies that perceived 
deviations (on the projection plane) from the expected flight path must be due to changes in velocity 
of the target. We can associate a 2D position from a single 2D radar sensor update via the above 
mentioned projection. A second update can then be used to estimate the perceived velocity of the 
target and finally a third update can be used to estimate the change in velocity of the target. We will 
not concern ourselves with the time term as it does not influence the result, provided updates occur 
at a constant rate. These values can then be used to predict position of the target at the next update.

	 p p v an n n n+ = + +1 	 (33.11)

The second model assumes that the estimated aircraft speed stays constant during updates thus all 
perceived deviations from the expected flight path are due to changes in altitude. This model addi-
tionally also assumes that the aircraft was in flying level during the prior update. Two predictions are 
made: one prediction for the case that the aircraft gained altitude and another for the case that the 

TABLE 33.6
Adding Random Azimuth Errors

Scenario
Azimuth 

Error [mrad]

Change in Altitude Errors AACT Errors

Avg Max Err Prob Avg Max

Pitch and dive
Radius : 0–1000

0.0000 0.000003 0.001094 0.000000 0.025447 1.014586

0.1000 0.016568 471.120000 0.002519 0.047542 1.741158

0.2000 0.019945 471.120000 0.008628 0.046481 1.737893

0.3000 0.022500 471.120000 0.016542 0.045727 1.767407

0.4000 0.024488 471.120000 0.025508 0.045189 1.764944

0.5000 0.026517 471.120000 0.034939 0.044771 1.761901

High dive
Radius : 0–1000

0.0000 0.000000 0.001126 0.000000 0.002799 0.014047

0.1000 0.000106 346.184000 0.000194 0.002799 0.014047

0.2000 0.000376 346.184000 0.000411 0.002819 0.278816

0.3000 0.001648 346.184000 0.000683 0.003003 0.499761

0.4000 0.003521 346.184000 0.000753 0.003489 0.499910

0.5000 0.005684 346.184000 0.000961 0.004194 0.499916

Long toss
Radius : 0–1000

0.0000 0.000003 50.764000 0.000008 0.038625 0.546741

0.1000 0.083851 194.536000 0.308378 0.040033 0.546741

0.2000 0.132797 194.536000 0.647572 0.039996 0.546741

0.3000 0.175531 194.536000 0.976175 0.039965 0.546741

0.4000 0.214212 194.536000 1.255950 0.039937 0.546741

0.5000 0.249601 194.536000 1.475436 0.039913 0.546741
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aircraft lost altitude. We iteratively find a new position pn in each of the above cases. We start with a 
constant step size δ0 which will be halved at every iteration and an initial value q0 = pn for the aircraft 
position. We will continue to adjust the position qi by increasing/decreasing its altitude by the current 
step size and mapping it onto the range sphere of the sensor until q p p pi n n n− = −− − −1 1 2  or the step 
size δi is small enough. At termination we update our position pn = qi and make a prediction about 
where the target will be at the next update.

	 p p vn n n+ = +1 	 (33.12)

We can include other predictions here as the aircraft might steepen its ascent or start to level out. 
The predictions of these models are compared with actual observations during the subsequent sen-
sor update. This is done by projecting the prediction to two dimensions representing slant range and 
azimuth. The Euclidean distance between the projected 2D position and the observed position is 
taken to be our measure of error. It is assumed that the smaller the error, the more likely the manoeu-
vre. We will abide by the following set of rules to decide as to which model to follow:

	 1.	 If the sum of all three prediction errors (representing upwards, downwards and 
acceleration-based errors) is less than a threshold value, then the aircraft is considered to 
be in straight flight. This threshold should be in the range of 5–10% of typically observed 
errors.

	 2.	 If the sum of all three prediction errors exceeds an upper threshold, then the aircraft is 
assumed to be flying a complex manoeuvre which cannot be captured by the underlying 
models. This threshold should be around twice the typical observed errors during normal 
manoeuvres.

	 3.	 If the acceleration errors is at least 10% less than the average of the upwards and down-
wards errors, then the aircraft is considered to be accelerating.

	 4.	After ruling out the above three situations, we will assume that the aircraft is flying a verti-
cal manoeuvre. The probability of the manoeuvre being upwards μU or downwards μD is 
given by the ratio of the corresponding errors eU and eD, respectively:

	
µU

D

D U

= +
e

e e 	
(33.13)

	
µD

U

D U

= +
e

e e 	
(33.14)

It is crucial to note that the distinction between upwards and downwards error is typically quite 
small thus not a lot of weight should be given to probabilistic statements with respect to vertical 
manoeuvres being up or down. Unfortunately, this is exactly what is needed to allow accurate con-
tinuous tracking of a target.

33.6  CONCLUSIONS

We have given a method to estimate vertical manoeuvres of an aircraft using a single 2D Radar 
when Doppler data is available and used to track a target in 3D. The average error when tracking a 
target in 3D using this method depends on the actual flight profile, position of the sensor w.r.t the 
defended asset and the accuracy of the data we get from the sensor but on average never exceeded 
0.05 ms−1 for the standard flight profile examples we considered even with an 0.03° error bias in the 
azimuth readings. The maximum error at any given time was never more than 1.8 m. An alternative 
method that can be used when we do not have Doppler data was briefly outlined but this method 
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statistically proven to be right only 50% of the time making it equivalent to throwing a dice when 
we have to decide whether the aircraft gained or lost altitude.
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