Nanomedicine for Improved Efficacy of Tuberculosis Drugs – Pharmacokinetic importance

Emerging Researcher Symposium

Dr. Rose Hayeshi 10 October 2012

Outline

- Challenges in TB treatment
- Nanomedicine as proposed solution
- Results
- Conclusions

Challenges for TB therapy

- One-third infected worldwide with 1.4 M deaths in 2010
- TB is a leading killer in SA
- Worsening due to Treat. failure & HIV co-infection
- South Africa is among the high burden TB and MDR-TB countries worldwide
- Lengthy treatment (6-9 months)
- Daily handful dose
- Patient non-compliance

14 Tablets everyday for 2 years

TB burden in South Africa

- South Africa accounted for 25% new and relapse cases of TB in Africa in 2010
- TB incidence rates stable/falling in all high incidence countries except in South Africa

TB drug pipeline not promising

TB drug pipeline (TB global alliance)

http://www.tballiance.org/pipeline/pipeline.php

Novartis cancer drug pipeline

rai tis carreer arab pip	
PHASE III or PIVOTAL	
Midostaurin ^h	
Everolimus HCC ²	
Everolimus HER2+ Breast Cancer	
Everolimus Lymphoma	
INC424 ^e Polycythemia Vera*	
Pasireotide ^f Acromegaly	
Pasireotide ^f	
Midostaurin ^h	
Panobinostat ^C Multiple Myeloma	
Dovitinib ^d	
LDE225 Basal Cell Carcinoma	
New molecule New indication	

 90% chance of rejection in early-stage phase I clinical trials; 50% chance in phase II;

Phase III drugs in TB pipeline can only replace 1 or 2 of the current drugs

http://www.novartisoncology.com/research-innovation/pipeline.jsp

WWW.CSir.CO.Za © CSIR 2012 Slide 5 our future through science

Proposed solution to the challenges of TB treatment

- More efficient drugs and drug delivery system with improved pharmacokinetics ->
 - Address non compliance,
 - Minimise toxicity,
 - Reduce emergence of drug resistance
 - Shorten treatment time
- Nanoparticle based drug delivery system (nanomedicine)

Pharmacokinetics (PK)

 Pharmacokinetics is the quantification of absorption, distribution, metabolism and excretion (ADME)

Dictates availability of drug molecule at site of action

WWW.CSIr.CO.Za © CSIR 2012 Slide 7 our future through science

Nanomedicine

- Application of nanotechnology in health
- Nanosized drug delivery systems for treatment

Journal of Leukocyte Biology Volume 78, September 2005

Kinetics of nanoparticles influenced by...

- Size
 - Higher drug loading
 - Solubility
 - Large surface area
 - Allows intracellular uptake
 - nm size range particles more efficiently taken up than microparticles
- Charge
 - Surface charge influences plasma protein binding and cellular uptake
- Surface chemistry
 - PEG on surface increases blood circulation time

Pharmacokinetic advantages of nanomedicine

- Enhanced drug stability
- High carrying capacity
- Hydrophilic/hydrophobic substances
- Enhance absorption and bioavailability
- Reduce clearance
 - Minimised first pass metabolism
 - Increase in drug half life→ prolonged effect
- Through slow release can reduce dosage and dose frequency
- Selective uptake by tissues (passive targeting)
- Delivery through lymphatic system
- Target specific tissue and cells (active targeting)

Objectives

- Improve the PK of anti-TB drugs
 - Sustained release
 - Improve solubility and half-life
- Reduce dose frequency
 - Polymer degradation: Sustained release over days
- Reduce dose
 - Deliver drug at site of action
- Reduce treatment time and cost
 - 6-9 months: potentially 2 months
 - Current drugs cost: 1% of the total treatment management

Nanoparticles encapsulating anti-TB drugs (Nanodrug)

- Successfully nano encapsulated 4 of the first line anti-TB drugs
 - Isoniazid (INH), Rifampicin (RIF), Pyrazinamide (PZA) and Ethambutol (ETB)
 - Poly (lactide-co-glycolide) (PLGA) polymer
 - · Double emulsion solvent evaporation spray drying technique

Properties:

- 250 nm average size
- Highly reproducible production
- Scalable (known pharmaceutical process equipment)
- Narrow size distribution (polydispersity < 0.1-0.3)
- Controllable surface charge
- Modified surface
 - Increase circulation time: PEG
 - Enhance particle uptake: Chitosan

Plasma circulation and biodistribution

Biodistribution of Rhodamine labelled PLGA nanoparticles coated with 1% PEG or Pluronics F127. 7 days after oral administration.

SPLEEN

KIDNEY

Pharmacokinetics in unchallenged mice

- Sustained release of RIF and INH from PLGA nanoparticles
- Increase in drug half-life
- Potential for dose frequency reduction

How does altered PK affect efficacy?

WWW.csir.co.za © CSIR 2012 Slide 15 our future through science

Effects of the Nanodrug on Mycobacaterium tuberculosis replication

- Nanodrug once a week vs conventional drug daily
- Treatment with nanoencapsulated TB drugs once a week, comparable to daily treatment with conventional drugs

WWW.CSir.CO.Za © CSIR 2012 Slide 16 our future through science

Pulmonary pathology

Untreated control

Nanoparticle control

RIF/INH/PZA daily

Nano RIF/INH/PZA once a week

WWW.CSIR.CO.ZA © CSIR 2012 Slide 17 our future through science

Increased circulation and slow release

Biodistribution of Rhodamine labelled PLGA nanoparticles coated with 1% PEG or Pluronics F127. 7 days after oral administration.

Slow release leading to increase in half-life

WWW.csir.co.za © CSIR 2012 Slide 18 our ful

Conclusion

- Nanoencapsulated anti-TB drugs as effective as conventional drugs at fraction of dose
- Implications of nanomedicine to improve TB drugs,
 - Reduction in the dose frequency,
 - Promoting patient compliance to treatment
 - Targeting next step to reduce dose
- Generic technology
 - Can be applied to malaria, HIV and other poverty related diseases affecting Africa

Acknowledgements

- CSIR conference organising committee
- Dr. Muazzam Jacobs, University of Cape Town for the efficacy study
- CSIR Encapsulation and Delivery group
- Prof. Anne Lenaerts, CSU
- Local and international collaborators
- Department of Science and Technology, South Africa

Thank you

