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ABSTRACT

Forecast performance by coupled ocean–atmosphere or one-tiered models predicting seasonal rainfall totals

over South Africa is compared with forecasts produced by computationally less demanding two-tiered systems

where prescribed sea surface temperature (SST) anomalies are used to force the atmospheric general circulation

model. Two coupled models and one two-tiered model are considered here, and they are, respectively, the

ECHAM4.5–version 3 of the Modular Ocean Model (MOM3-DC2), the ECHAM4.5-GML–NCEP Coupled

Forecast System (CFSSST), and the ECHAM4.5 atmospheric model that is forced with SST anomalies pre-

dicted by a statistical model. The 850-hPa geopotential height fields of the three models are statistically

downscaled to South African Weather Service district rainfall data by retroactively predicting 3-month seasonal

rainfall totals over the 14-yr period from 1995/96 to 2008/09. Retroactive forecasts are produced for lead times of

up to 4 months, and probabilistic forecast performance is evaluated for three categories with the outer two

categories, respectively, defined by the 25th and 75th percentile values of the climatological record. The

resulting forecast skill levels are also compared with skill levels obtained by downscaling forecasts produced by

forcing the atmospheric model with simultaneously observed SST in order to produce a reference forecast set.

Downscaled forecasts from the coupled systems generally outperform the downscaled forecasts from the two-

tiered system, but neither of the two systems outscores the reference forecasts, suggesting that further im-

provement in operational seasonal rainfall forecast skill for South Africa is still achievable.

1. Introduction

The seasonal-to-interannual variability of rainfall and

temperature anomalies over southern Africa is predict-

able (e.g., Klopper et al. 1998; Landman and Goddard

2002; Reason and Rouault 2005, Tennant and Hewitson

2002). This knowledge led to the development of objective

operational seasonal forecasting systems for South Africa,

but only as recently as the 1990s (e.g., Jury 1996; Jury et al.

1999; Landman and Mason 1999; Mason 1998). Although

the prediction problem over southern Africa was also

addressed by modelers from outside the region (e.g.,

Barnston et al. 1996), the South African–based institutions

that started with prediction system development include

the South African Weather Service (SAWS) and the

Universities of the Witwatersrand, Pretoria, Cape

Town, and Zululand. Although most of these efforts

have initially been largely fragmented, the institutions

in South Africa involved with the operational running
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of global circulation models started in 2003 to display

their forecasts on the Global Forecasting Centre for

Southern Africa web site (www.gfcsa.net). Since then,

major advancements regarding seasonal forecast de-

velopment have occurred at a number of institutions

in South Africa, including perhaps most notably the

SAWS’s designation as a Global Producing Centre for

Long-Range Forecasts by the World Meteorological

Organization. Since 2008, operational forecasts from

local and international centers have been objectively

combined into downscaled multimodel forecasts for the

Southern African Development Community (SADC;

Landman and Beraki 2012; Landman et al. 2009a).

Estimation of the evolution of SST anomalies, which

are often relatively predictable, and subsequently employ-

ing them in atmospheric general circulation models

(AGCMs), provides a means of generating forecasts of

seasonal-average weather (Graham et al. 2000; Goddard

and Mason 2002). Such a so-called two-tiered procedure

to predicting the outcome of the rainfall season has been

employed in South Africa for a number of years (e.g.,

Landman et al. 2001). The advent of fully coupled

ocean–atmosphere models (e.g., Stockdale et al. 1998),

or one-tiered systems, promised improved seasonal

forecasts since in theory coupled general circulation

models (CGCMs) should eventually outperform two-

tiered systems because the former is able to describe the

feedback between the ocean and atmosphere while the

latter assumes that the atmosphere responds to SST but

does not in turn affect the oceans (Copsey et al. 2006).

This notion will be tested here by specifically focusing on

the seasonal rainfall predictability over South Africa. If

verification results to be presented here indicate that

some of the current coupled models have at least caught

up with AGCMs regarding operational forecast per-

formance over the region, then South Africa, as one of

the leading modeling countries in Africa, should direct

more of their seasonal modeling efforts toward the use

and even further development of coupled models for

operational seasonal forecasting.

Coupled ocean–atmosphere models have been tested

as seasonal forecasting systems since the 1990s (Barnett

et al. 1993). Such coupled systems allow feedback be-

tween the predicted SST and the overlying atmosphere

(Graham et al. 2005; Saha et al. 2006). However, pre-

dicting southern African climate variability using so-

called two-tiered systems where only the atmosphere

has been modeled while specifying the boundary con-

ditions such as sea surface temperatures (SSTs), is an

approach that has been used more extensively than

coupled models both abroad (e.g., Goddard and Mason

2002) and locally (e.g., Reason and Jagadheesha 2005).

One reason is that coupled systems effectively require

twice the computer processing power than two-tiered

systems do. Therefore, two-tiered systems are of par-

ticular importance to centers like SAWS, which has the

infrastructure to run global atmospheric models opera-

tionally but which do not necessarily have the capabil-

ities to run coupled models in real time. In fact, only

a few of the global producing centers for long-range

forecasts use these models for operational seasonal fore-

casting. Since it has been suggested that model perfor-

mance may be a function of spatial resolution (Meehl

et al. 2006; Hurrel et al. 2009) and ensemble size (Brown

and Murphy 1996), other reasons for using two-tiered

instead of coupled systems for operational forecasting

include that the former system allows for the operational

production of higher-resolution seasonal forecasts as well

as larger ensemble forecasts since they are computation-

ally less expensive than the latter. Moreover, when skillful

SST forecasts are used, two-tiered systems may perform at

least equally well as the current coupled systems (Troccoli

et al. 2008). However, coupled models are widely ac-

knowledged to represent the state of the art of seasonal

forecasting, and it has been shown through the Devel-

opment of a European Multimodel Ensemble System for

Seasonal-to-Interannual Prediction (DEMETER) project

(Palmer et al. 2004) that fully coupled systems can predict

both the evolution of SSTs and atmospheric conditions at

elevated levels of skill. In fact, southern African mid-

summer rainfall variability has been shown to be suffi-

ciently predictable by using the coupled model output

from the DEMETER project, especially during El Niño

and La Niña seasons (Landman and Beraki 2012).

2. Data, models, and methods

a. Rainfall data

The district rainfall dataset of the South African

Weather Service (Van Rooy 1972) is used to calculate

3-month seasonal rainfall totals for 93 evenly distributed

locations across South Africa. The 3-month seasons

considered are September–November (SON), October–

December (OND), etc. through to February–April

(FMA). This 8-month period covers the austral summer

rainfall seasons over South Africa. This rainfall dataset

consists of monthly values from 1921 to the present and

the geographical description of the district boundaries

are presented in Van Heerden et al. (1988). Figures

presented in this paper only show the centroids of the

districts in order not to clutter the figures.

b. The archived data of the general circulation models

The global model data used in this study are obtained

from the data library of the International Research
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Institute for Climate and Society (IRI; http://iridl.ldeo.

columbia.edu/). The AGCM data used are produced by

the ECHAM4.5 (Roeckner et al. 1996) and consists of

two sets. The first set (available from January 1950 to the

present) is produced by forcing the ECHAM4.5 with

observed SST and consists of 24 ensemble members. The

second set (available from 1957 to July 2008), also con-

sisting of 24 ensemble members, is produced by forcing

the model with SST anomalies that are forecast using

constructed analogs (Van den Dool 1994). Forecast data

from two coupled models are also used and their ocean

models are, respectively, the version 3 of the Modular

Ocean Model (MOM3; Pacanowski and Griffies 1998)

directly coupled to the ECHAM4.5 (DeWitt 2005), and a

slab mixed layer (denoted ECHAM4.5-GML–CFSSST)

for the tropical western Pacific, Indian, and Atlantic

Oceans with prescribed SST forecasts from the National

Centers for Environmental Prediction’s (NCEP) Cou-

pled Forecast System (CFS; Saha et al. 2006) in the cen-

tral and eastern tropical Pacific. Each of these coupled

model forecast sets consists of 12 ensemble members, and

the data are available from January 1982 to the present.

There are four forecast lead times considered here. For

the two-tiered and the ECHAM4.5-GML–CFSSST sys-

tems, forecasts are produced near the beginning of the

month, and for the ECHAM4.5–MOM3-DC2 system they

are near the end of the month (the ECHAM4.5–MOM3-

DC2 data cutoff has since been moved to the second of the

month). The convention used here to describe the lead

times is as follows. A 1-month lead time for the former two

model systems implies that there are about 3 weeks from

the issuance of the forecast to the beginning of the forecast

season. For example, a 1-month lead-time forecast for the

DJF season is produced at the beginning of November, 2-

month lead-time forecasts in early October, 3-month lead-

time forecasts in early September, and 4-month lead-time

forecasts in early August. For the ECHAM4.5–MOM3-

DC2 system used here, there are at least 4 weeks between

the production of the forecast and the first month of

the forecast season. For example, DJF forecasts at a

1-month lead time are produced near the end of Octo-

ber, 2-month lead-time forecasts at the end of Septem-

ber, 3-month lead-time forecasts at the end of August,

and 4-month lead-time forecasts at the end of July. This

convention implies that the forecast lead times of the

ECHAM4.5–MOM3-DC2 system are slightly longer

than the corresponding lead times of the other model

systems.

c. Model output statistics

The general circulation models used here are config-

ured with an effective horizontal resolution of 100–300 km.

Being unable to represent local subgrid features, rainfall

over southern Africa is often overestimated by models, but

it has been demonstrated that such biases over southern

Africa can be minimized through statistical postprocessing

of the forecast data by improving on the raw rainfall output

of the model (Landman and Goddard 2002; Landman et al.

2009b). Moreover, the postprocessing will also have as a

result model forecast data directly applicable at a point of

interest, such as at the centroids of the rainfall districts

across South Africa employed here. Such empirical re-

mapping of GCM fields to regional rainfall has already

been successfully employed (e.g., Landman and Goddard

2002; Shongwe et al. 2006). Model output statistics (MOS)

equations are developed here because they can compen-

sate for systematic deficiencies in the global models directly

in the regression equations (Wilks 2006) and have already

been successfully employed in a study of AGCM versus

coupled model performance (Ndiaye et al. 2011). Since

MOS uses predictor values from the global models in both

the development and forecast stages, these model errors

are subsequently reduced. Still, the selection of the ap-

propriate model field to be downscaled may require care-

ful consideration. Candidate fields could include the raw

model rainfall output, geopotential height fields and

moisture field at standard pressure levels, thickness fields,

etc. (Landman et al. 2001; Landman and Goddard 2002).

Variables such as large-scale circulation are more accu-

rately simulated by models than rainfall and should there-

fore be used instead in a MOS system to predict seasonal

rainfall totals (Landman and Goddard 2002). The reason

why model rainfall is not as accurately simulated by coarse-

resolution models in which topography is poorly resolved is

that rainfall fields are noisy, even when totaled over a sea-

son (Landman and Beraki 2012). As has been done before

and is documented in the references above, the models’

850-hPa geopotential height fields have been selected as

predictors in the MOS equations.

The MOS equations are developed by using the ca-

nonical correlation analysis (CCA) option of the Climate

Predictability Tool (CPT) of the IRI (http://iri.columbia.

edu). The forecast fields from each global model used in

the MOS are restricted over a domain that covers an area

between the equator and 458S and from 158W to 608E.

Empirical orthogonal function (EOF) analysis is performed

on both the predictor (the models’ 850-hPa geopotential

height fields) and predictand sets (district rainfall—the

option of the CPT is used that transforms the rainfall data

into an approximate normal distribution) prior to CCA,

and the number of EOF and CCA modes to be retained

in the CPT’s CCA procedure is determined using cross-

validation skill sensitivity tests. The predictor and pre-

dictand fields are first standardized, resulting in correlation

matrices on which the EOF analysis is performed.

APRIL 2012 L A N D M A N E T A L . 491



To minimize the artificial inflation of forecast skill,

the downscaled forecast performance of the individual

models should be verified over a test period that is in-

dependent of the training period and should involve

evaluation of predictions compared to their matching

observations excluding any information following the

forecast year. Such a system mimics a true operational

forecasting environment where no prior knowledge of

the coming season is available. For DJF rainfall, the

MOS models are first trained with information from

1982/83 and leading up to and including 1994/95, resulting

in a first training set of 13 yr. The seasonal rainfall of the

next year (1995/96) is subsequently predicted using the

trained models. The various MOS models are subse-

quently retrained using information leading up to and

including 1995/96, resulting in 14 yr on which the MOS

equations are trained, to predict for 1996/97 conditions.

This procedure is continued until the 2008/09 DJF rainfall

is predicted using MOS systems trained with data from

1982/83 to 2007/08, resulting in 14 yr (1995/96–2008/09) of

independent forecast data. The length of the training

period may have an effect on the robustness or stability of

the MOS equations. However, although forecast skill

may not be constant in time, the dominant modes of

variability included in the MOS equations should remain

similar for a variety of training periods (Landman and

Goddard 2002; Landman and Beraki 2012).

d. Verification

In estimating the skill in predicting seasonal rainfall

totals over South Africa, the observed and predicted

fields are separated into three categories defining above-

normal, near-normal, and below-normal seasonal rain-

fall totals. However, these categories are not equiprobable

here since the above- and below-normal threshold values,

respectively, represent the 75th and 25th percentile values

of the climatological record. The decision to use these

thresholds instead of the usual equiprobable three-category

design as defined by the 33rd and 67th percentile values

of the climatological record is because users of seasonal

forecast information may be more interested in the pre-

diction of extreme seasons. Such a category description

has been used before in verifying DEMETER models

(Palmer et al. 2004) predicting Niño-3.4 SST (Troccoli

et al. 2008), and it has also been shown that the prediction

of extreme rainfall seasons over southern Africa has skill

(Landman et al. 2005).

The distribution of individual ensemble members is

supposed to be able to indicate forecast uncertainty.

However, only a finite ensemble is available (12 or 24

members depending on the available global model data),

suggesting that the forecast distribution may be poorly

sampled and also differently sampled owing to the

differences in the available ensemble sizes, and so the

uncertainty associated with the forecasts has to be esti-

mated. Probabilistic MOS forecasts for each of the 14

retroactive years are obtained here from the error var-

iance of the cross-validated predictions using the en-

semble mean (Troccoli et al. 2008) for each of the various

training periods. To minimize the chance of obtaining

biased results, cross validation is performed using a large

5-yr-out window, which means that 2 yr on either side of

the predicted year are omitted. A new set of cross-vali-

dation forecasts is produced for each of the 14-yr fore-

casts since the cross-validation period is progressively

increased by 1 yr at each forecast step.

Seasonal climate is inherently probabilistic, and so the

district rainfall forecasts are also judged probabilisti-

cally. Two of the main attributes of interest for proba-

bilistic forecasts are discrimination (are the forecasts

discernibly different given different outcomes?) and

reliability (is the confidence communicated in the fore-

cast appropriate?). The forecast verification measures

presented here for testing of the aforementioned attri-

butes are the relative operating characteristic (ROC;

Mason and Graham 2002) and the reliability diagram

(Hamill 1997; Wilks 2006). ROC applied to probabilistic

forecasts indicates whether the forecast probability was

higher when an event such as a flood or drought season

occurred compared to when it did not occur. ROC

scores for the rainfall categories represent the respective

areas beneath the ROC curve that are produced by

plotting the forecast hit rates against the false alarm

rates. If the area would be #0.5, the forecasts have no

skill, and for a maximum ROC score of 1.0, perfect

discrimination has been obtained. The forecasts are

considered reliable if there is consistency between the

predicted probabilities of the defined rainfall categories

and the observed relative frequencies of the observed

rainfall being assigned to these categories.

3. South African rainfall variability as a response to
Indian Ocean coupling

SST anomalies of the Indian Ocean are related to

southern African austral summer rainfall variability (e.g.,

Mason 1995). Anomalously warm SSTs in the central and

tropical western Indian Ocean are often associated with

drier than average conditions over southern Africa,

a conclusion that has been supported by AGCM simu-

lations (e.g., Goddard and Graham 1999). In addition to

the link of the Indian Ocean to droughts, southern Africa

has also experienced extremes of above-average seasonal

rainfall: a specific pattern of SST in the southwestern

Indian Ocean, with warm anomalies in the subtropical

southwestern Indian Ocean and anomalously cold SSTs
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farther north, has been found to play a crucial role in

causing extremely wet summer conditions over southern

Africa (Washington and Preston 2006).

Over the past few decades the Indian Ocean has

exhibited a rapid rise in SST. Rising SST should lead to

decreasing sea level pressure (SLP) over the area of

heating. But SLP increased in the Indian Ocean over the

same period, and the increases in SLP overlie increases

in SST (Copsey et al. 2006). However, it has been found

that common atmospheric model errors with relation

to decreasing modeled SLP can result when fixing the

SST as a representation of ocean–atmosphere coupling

in the Indian Ocean, suggesting that the response of

some AGCMs to Indian Ocean warming may not pro-

vide a reliable guide to reality (Copsey et al. 2006), while

air–sea coupling in the Indian Ocean is required for

simulating Indian monsoon–ENSO relationships and for

studying the influence of the Indian Ocean on ENSO

variability (Yeh et al. 2007). In this paper we are com-

paring skill levels from AGCMs and coupled models,

and so it would be of interest to see how these two sys-

tems simulate the relationship between Indian Ocean

SLP and South African rainfall.

The SLP area considered is 108–308S, 458–808E (Copsey

et al. 2006) and covers the larger part of the SST area of

superimposed anomalies used in Washington and Preston

(2006) cited above. Similar to how the 850-hPa heights

over southern Africa are being used as the predictors in

the MOS equations described above, for this part of the

study the SLP fields over the above-mentioned Indian

Ocean areas of, respectively, the ECHAM4.5 AGCM

and the ECHAM4.5–MOM3-DC2 are used as predic-

tors of DJF South African district rainfall. If the SLP of

the coupled model is a better predictor of DJF rainfall

than the SLP of the AGCM, then one could also assume

that the coupled model should be better able to simulate

the low-level circulation over the southwestern Indian

Ocean that contributes to the country’s midsummer

rainfall variability than the AGCM can and, hence,

further justifies the notion that AGCM versus coupled

model performance over South Africa should be in-

vestigated. Two sets of MOS equations, one each for

the AGCM and coupled models, are subsequently devel-

oped for DJF rainfall forecasts produced at a 1-month

lead time, and cross validated (5-yr-out window) over the

27-yr period from 1982/83 to 2008/09. The 5-yr-out design

is long enough to minimize the effect trends in the data

may have on forecast skill. MOS performance over the

27-yr period is described here in terms of the Kendall rank

correlation coefficient, which is commonly referred to as

Kendall’s tau (Wilks 2006). Kendall’s tau is a measure of

rank correlation, and is considered a robust (to deviation

from linearity) and resistant (to outlying data) alternative

to Pearson’s or ‘‘ordinary’’ correlation. Figure 1 shows

FIG. 1. Differences in Kendall’s tau values between the 1-month lead-time CGCM-MOSslp

(ECHAM4.5–MOM3-DC2) and the AGCM-MOSslp (ECHAM4.5 forced with statistically

predicted SSTs) predicting DJF rainfall. The SLP area used as a predictor is located over the

Indian Ocean between 108–308S and 458–808E. Positive Kendall’s tau differences indicate

where the coupled model outperforms the atmospheric model. The black dots indicate the

centroid positions of the 93 rainfall districts.
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the difference in skill (Kendall’s tau) between the CGCM-

MOSslp and the AGCM-MOSslp. Positive differences

indicate where the coupled model outperforms the at-

mospheric model. Here, 75 of the 93 districts (81%) show

positive Kendall’s tau differences, which suggests that the

coupled model’s Indian Ocean SLP is a better predictor of

South Africa’s midsummer rainfall variability than is the

SLP of the atmospheric model. However, Monte Carlo

testing for local significance (Wilks 2006) shows that only

a small number of districts is associated with statistically

significant differences: 17 of the 93 at the 90% level, 8 at

the 95% level, and only 1 district at the 99% level show

significantly different Kendall’s tau values.

Differences in Kendall’s tau are therefore small. Clearly,

modeled Indian Ocean SLP as a predictor of South

African midsummer rainfall is therefore not significantly

sensitive to whether the SLP fields are obtained from

the AGCM or from the coupled model. By using instead

the two models’ 850-hPa geopotential height fields

(equator–458S and 158W–608E) as MOS predictors in a

27-yr, 5-yr-out cross-validation experiment, we show area-

averaged Kendall’s tau values that are higher than those

found from the MOS with SLP fields as predictors (for

the AGCM, the improvement is from 0.15 to 0.25, and

for the coupled model it is from 0.23 to 0.26). Moreover,

the coupled model’s height fields as a midsummer rainfall

predictor marginally outperform the AGCM equivalent.

The improved performance of the models can be attrib-

uted to the fact that the predicting height fields are

directly located over the subcontinent instead of some

distance away from the continent, as is the case with the

Indian Ocean SLP predictors. In addition, the main

source of the predictable signal over southern Africa as

captured in global models originates from the equatorial

Pacific Ocean (Landman and Beraki 2012). Coupled

models seem to emphasize the significance of the equa-

torial Pacific Ocean as the main source of South African

rainfall predictability, and considering the results pre-

sented here that modeled Indian Ocean SLP seems to

play a secondary role in the prediction of South African

midsummer rainfall, the models’ ability to predict the

seasonal rainfall seem likely to be remotely forced, pos-

sibly by the equatorial Pacific. The Pacific Ocean signal

may be translated through the Indian Ocean, but this

notion is not strongly supported by the modeling results

presented here even though the extent and intensity of

drought over southern Africa over the past 30–40 yr is

possibly associated with a reinforced influence of El Niño

through warmer tropical and subtropical Indian Ocean

SSTs (Reason 1999; Rouault and Richard 2005). The

mechanism through which the signal from the Pacific

Ocean, or from any other location, is modeled to arrive

over South Africa lies outside the scope of this paper. The

results presented thus far suggest that there is a need to

at least find out how the performance of an AGCM as

a rainfall predictor for South Africa compares with that of

coupled models, since both coupled and uncoupled ap-

proaches could be used (Jha and Kumar 2009) to in-

vestigate the observed coupled system over the region.

The probabilistic forecast performance of the two sys-

tems (AGCM and CGCM) will be compared later in this

paper in terms of their ability to discriminate between wet

and dry seasons and not only on their respective associ-

ations with observed seasonal-to-interannual variability,

as was done in this section.

4. Retroactive forecast skill

The following sections will outline the findings when

verifying the three sets of MOS forecasts of the various

model systems over the 14-yr retroactive period from

1995/96 to 2008/09.

a. Relative operating characteristics

Only the verification results for the above- and below-

normal categories are presented here since there is

usually little skill to be derived from predicting the near-

normal category (Van den Dool and Toth 1991). In fact,

ROC scores for the near-normal category, notwith-

standing the fact that this category is defined here to

contain 50% of the climatological record, are less or

around 0.5 for all models, lead times, and seasons (not

shown). Figure 2 shows the ROC scores obtained by

retroactively predicting (a) wet and (b) dry seasons over

the 14 retroactive years (1995/96–2008/09). Most of the

predictability is found during the middle of the forecast

period when tropical influences start to dominate the

atmospheric circulation across South Africa, with almost

no predictability evident during austral spring when the

seasonal rainfall of South Africa is mostly influenced

by transient weather systems. The seasonal forecast veri-

fication statistics of the IRI are displayed on their Climate

Forecast Verification pages (http://iri.columbia.edu). These

statistics are based, at the time of the writing of this pa-

per, entirely on AGCM forecasts including ECHAM4.5

forecasts, and they show that the season of highest rainfall

predictability over South Africa is found during NDJ.

This peak in prediction skill is also seen in the top panel of

Fig. 2 (ECHAM4.5 AGCM skill), giving support to the

verification result presented here. However, the coupled

models, especially the ECHAM4.5–MOM3-DC2 model,

provide additional predictability during DJF (Fig. 2). All

of the models are associated with maximum skill at the

shortest lead time.

Higher skill is found here in predicting for wet seasons

as opposed to dry seasons. A possible explanation for
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the higher skill during wet seasons follows. Forecast

models for southern Africa seem to be most skillful

during ENSO years and are particularly skillful at pre-

dicting above-normal rainfall totals during La Niña

seasons (Landman and Beraki 2012). During the 14-yr

test period, at the end of each of the predicted calendar

years, the Oceanic Niño Index (ONI) was ,20.5 for 7 of

the 14 yr, and .10.5 for only 4 of the 14 yr. There were

therefore more years during which the DJF Niño-3.4

index suggested cold event years than warm event

years, and cold event years are also more likely to be

associated with observed wet conditions over southern

Africa as opposed to warm event years associated with

observed dry seasons over southern Africa, similar to

what has been found for Australian rainfall variability

(Power et al. 2006).

The ROC score panels in Fig. 2 show that, in general,

the coupled models outperform the AGCM over South

Africa. The superior performance of the coupled sys-

tems is further demonstrated by the Brier skill score

(BSS) and ranked probability skill score (RPSS) (Wilks

2006) as calculated over the 14-yr test period and given

as percentages, with both scores based on climatology as

the reference forecast: at a 1-month lead time, the BSS

value for the above- (below-) normal category is 18.0

(21.3) for the ECHAM4.5–MOM3-DC2 system, while

the BSS value for the above- (below-) normal category is

20.8 (25.7) for the ECHAM4.5 AGCM. The RPSS

values for the CGCM and AGCM are, respectively, 7.3

and 22.1. These results are especially meaningful given

the smaller ensemble size (12 versus 24) of the coupled

models and the slightly longer lead times (65 weeks

versus 63 weeks) associated with the ECHAM4.5–

MOM3-DC2. Although the coupled model hindcasts are

generally better able to discriminate wet and dry seasons,

the ROC differences are not very large (about 0.1–0.15

for wet seasons during midsummer) suggesting that both

systems are providing useful forecast information. A best

practice may then be to utilize the attributes from both

systems in a multimodel ensemble approach for opera-

tional seasonal forecasting purposes (Li et al. 2008).

The reason for the difference in skill between the

CGCMs and AGCM could be attributed to the skill of

the SST forecasts forcing the AGCM. How would the

coupled models’ skill, in terms of discriminating wet–dry

seasons from the rest, compare with the skill of the

AGCM given perfectly predicted SSTs? This question is

addressed by assuming that it would be possible to

predict the forcing SST perfectly over the 4-month lead

times considered here. Figure 3 shows ROC score dif-

ferences between the three forecast systems and At-

mospheric Model Intercomparison Project (AMIP)

style simulations (Gates 1992) of the ECHAM4.5

AGCM over the six 3-month seasons considered. Pre-

dicting for wet seasons, the AGCM would have been

able to produce higher ROC scores than the scores

found when forcing the AGCM with constructed analog

SSTs, and given perfect SSTs, the AGCM would out-

score the coupled models too. For dry seasons, however,

most of the advantage of perfectly predicted SST is

found only during the DJF season. Therefore, with im-

proved SST forecasts, the ECHAM4.5 AGCM could

perform at least as well as its coupled versions. The use

of AGCMs as an operational forecasting tool for South

African rainfall variability is likely to continue for quite

FIG. 2. (a) ROC scores obtained by retroactively predicting wet

seasons (75th percentile values of the climatological record)

probabilistically over 14 yr (1995/96–2008/09). The x axes show the

3-month rainfall seasons for which the forecasts are made, and the y

axes show the forecast lead times in months. The ROC scores of the

forecasts downscaled from (top) the ECHAM4.5 AGCM forced

with statistically predicted SSTs, (middle) the ECHAM4.5-GML–

CFSSST coupled model, and (bottom) the ECHAM4.5–MOM3-

DCs coupled model. (b) As in (a), but for predicting dry seasons

(25th percentile values of the climatological record).
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a while longer, because they are cheaper to run than

coupled models and can, by utilizing the same available

computational resources, be used for higher-resolution

runs and for the generation of more ensemble members

than would be the case for coupled models. In South

Africa, some modeling effort is being directed toward

the development of improved global SST forecasts

through multimodel ensembles (Landman et el. 2011)

for the purpose of forcing locally run AGCMs for op-

erational forecast production. The current SST forecasts

are presented as maps on the web site of the South

African Risk and Vulnerability Atlas (SARVA; http://rava.

qsens.net/themes/climate_template/seasonal-forecasts), as

output files on the servers of the Council for Scientific

and Industrial Research (CSIR; ftp.csir.co.za), and are

already being used for operational forecast production at

the University of Cape Town in South Africa (http://

www.gfcsa.net/CSAG/fcstSSTs/) and at the South Afri-

can Weather Service.

b. Reliability

In general, the highest ROC scores are obtained from

the downscaled forecasts of the ECHAM4.5–MOM3-

DC2 coupled model, and DJF is the season of highest

predictability. The remainder of the verification discussion

will be for this model and season. Figure 4 shows the re-

liability diagram at a 1-month lead time (i.e., forecasts

produced near the end of October for South African DJF

rainfall totals). In addition to the reliability curves for

the 25th (drought) and 75th (wet) percentile thresholds,

weighted least squares regression lines for the two cate-

gories are also presented. The weighting is relative to how

frequently forecasts are issued at a given confidence level.

Regression lines along the diagonal of the reliability dia-

gram imply perfect reliability, while regression lines above

(below) the diagonal imply that observed wet–dry DJF

rainfall seasons tend to occur more (less) frequently than

predicted. The most common slope of the weighted re-

gression lines found for seasonal forecasting are shallower

than the diagonal line (Landman and Beraki 2012;

Troccoli et al. 2008), implying that seasonal forecasts are

generally overconfident (a regression line steeper than the

FIG. 3. (a) ROC score differences between the probabilistic

retroactive forecasts and AMIP-style probabilistic simulations of

wet seasons (75th percentile values of the climatological record)

over the 14 test years (1995/96–2008/09). The x axes show the 3-month

rainfall seasons for which the forecasts and simulations are made,

and the y axes show the forecast lead times in months. The ROC

score differences between the simulations and the forecasts down-

scaled from (top) the ECHAM4.5 AGCM forced with statistically

predicted SSTs, (middle) the ECHAM4.5-GML–CFSSST coupled

model, and (bottom) the ECHAM4.5–MOM3-DCs coupled model.

(b) As in (a), but for predicting and simulating dry seasons (25th

percentile values of the climatological record).

FIG. 4. Reliability diagram and frequency histogram for above-

(.75th percentile) and below- (,25th percentile) normal DJF rainfall

1-month lead forecasts produced by downscaling the ECHAM4.5–

MOM3-DC2 coupled model to South African rainfall districts. The

thick blue (red) curve and the blue (red) bars represent the wet (dry)

category. The thin blue (red) line is the weighted least squares re-

gression line of the wet (dry) reliability curve.
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diagonal indicates underconfidence). The histograms in

the reliability diagram of Fig. 4 show the frequencies with

which wet–dry forecasts occur in probability intervals of

10%, starting at 5%, and reveals how strongly and fre-

quently the issued forecast probabilities depart from the

climatological probabilities. Dry (wet) seasons are associ-

ated here with the bottom (top) 25% of climatology.

The reliability of the DJF forecasts as revealed by Fig.

4 indicates that when predicting for wet conditions, the

forecasts are generally underconfident, although a high

level of reliability is indicated since the slope of the wet

season regression line is close to the slope of perfect

reliability. The frequency histogram further suggests

some sharpness (forecasts that rarely deviate from the

climatological value–25% here–exhibit no sharpness)

for the prediction of wet conditions since the most fre-

quent forecast category is between 25% and 35%. The

second highest frequency is between 15% and 25%,

suggesting that the forecasts for wet conditions still lack

sharpness. For dry seasons, on the other hand, forecasts

are overconfident, more typical of seasonal forecasts,

and the forecast probabilities generally lack sharpness.

c. Deterministic skill assessment

The previous section presented verification statistics

on the 14 retroactive years of probabilistic forecasts.

Although seasonal forecasts issued operationally are for

the most part of a probabilistic nature, it is often in-

formative to investigate deterministic forecast perfor-

mance. Here, the same 14 yr are used as before. Figure 5

shows the area-averaged and then normalized observed

DJF rainfall index over South Africa, versus 1-month

lead-time retroactive forecasts obtained by downscaling

the ECHAM4.5–MOM3-DC2 predictions to South Af-

rican district level. Three of the four driest years, as

a spatial average, are associated with El Niño events

(1997/98, 2002/03, and 2006/07) and three of the four

wettest years with La Niña events (1995/96, 1999/00, and

2007/08). The signs of the rainfall indices during these

6 yr were captured by the forecasts, emphasizing the

already demonstrated skill found during ENSO years

for South African midsummer rainfall variability, while

the large error seen for the 2001/02 season may be at-

tributed to the fact that most models fare poorly when

predicting southern African midsummer rainfall during

ENSO-neutral years (Landman and Beraki 2012). The

ECHAM–MOM3-DC2 forecast system predicted the

sign of the rainfall anomaly correctly for these ENSO

years, but not the size, especially for the 1997/98 season,

when the model exaggerated the negative anomaly.

This forecast error has also been found with forecast

systems other than those presented here (Landman and

Beraki 2012). Notwithstanding these discrepancies, the

short-term rainfall ‘‘trends’’ from one midsummer season

to the next are captured for 11 out of the 13 cases (the

trends of 1998/99–1999/00 and 2003/04–2004/05 being

the exceptions). This is a hit rate of 85% and suggests

that the prediction of predictands other than seasonal

rainfall totals could supplement existing forecast output

disseminated to the end users of forecast information.

For this example, users may be provided with the like-

lihood of an imminent DJF season to be wetter or drier

than the DJF of the previous year.

The spatial distribution of deterministic skill (again

using Kendall’s tau) for predicting DJF rainfall at a

1-month lead time with the retroactively downscaled

FIG. 5. Area-averaged observed DJF rainfall index (OBS) over

South Africa vs retroactive forecasts (DC2) obtained by down-

scaling the ECHAM4.5–MOM3-DC2 1-month-lead predictions

to district level. The years along the x axis refer to the Decembers

in the DJF seasons. The association between the area-averaged

forecasts and observed values is indicated by the Kendall’ tau value

(significant at 95%) on the graph.
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forecasts of the ECHAM4.5–MOM3-DC2 coupled model

is shown in Fig. 6. The shading on the map represents

calculated confidence levels using a re-randomization

or Monte Carlo test (Wilks 2006) for 90%, 95%, and 99%,

respectively. The threshold values for these confidence

levels are respectively 0.27, 0.34, and 0.47. Highest skill

is found over the northeastern interior of South Africa,

the east coast, and parts of the central and western in-

terior. This pattern of skill is not uncommon for South

Africa and also has been found over various verifica-

tion periods and parameters (Landman et al. 2009b).

Notwithstanding, one may have expected higher skill

estimates given that the coupled model used here is

outscoring the AGCM forecasts on which South African

rainfall prediction skill is most often based. However, as

can be seen in Fig. 7, which shows 5-yr-out cross-validation

results, higher skill is evident when considering the

whole of the 27-yr period for which the raw GCM data

are available for this study. Figure 7 shows that the cross-

validated average Kendall’s tau value for the whole

27-yr period is higher than both the average values over

the initial 13-yr cross-validation period on which the first

MOS equations are based and the cross-validated av-

erage value obtained over the retroactive test period.

This result indicates that the skill levels presented here

over the 14-yr retroactive test period is in all likelihood

an underestimation.

5. Discussion and conclusions

The South African modeling community has over the

past decade or so expended a large amount of resources

to establish the use of AGCMs as operational seasonal

forecast tools. These models have all been developed

outside of South Africa, but have been used extensively

for operational seasonal forecast production as well as

for research by institutions such as the South African

Weather Service [Center for Ocean–Land–Atmosphere

Studies (COLA T30), Kirtman et al. (1997); ECHAM4.5,

Roeckner et al. (1996)], the Universities of Cape Town

[the third climate configuration of the Met Office Uni-

fied Model (HadAM3P), Pope et al. (2000)] and Pretoria

[Commonwealth Scientific and Industrial Research Or-

ganisation (CSIRO), McGregor et al. (1993); Conformal

Cubic Atmospheric Model (CCAM), McGregor (2005)],

and the Council for Scientific and Industrial Research

(CCAM; McGregor 2005). Recently, South African

modelers have also become involved with model de-

velopment (Engelbrecht et al. 2007) and the combi-

nation of forecasts from various sources into

multimodel systems (Landman and Beraki 2012). The

establishment of a large computing infrastructures in

South Africa, such as the Centre for High Performance

Computing (CHPC; http://www.chpc.ac.za/), the super-

computer capabilities of the South African Weather

FIG. 6. Kendall’s tau values calculated between the observed and ECHAM4.5–MOM3-DC2

coupled model 1-month lead-time retroactive DJF rainfall predictions downscaled to district

level. The confidence levels, calculated with a re-randomization or Monte Carlo test, for 90%,

95%, and 99% are, respectively, 0.27, 0.34, and 0.47 (corresponding to the color thresholds of

the map).
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Service, and computer clusters at local universities and

at the Council for Scientific and Industrial Research,

are all making it possible to further advance the mod-

eling of the physical ocean–atmosphere–land–ice system.

Moreover, in collaboration with international modeling

partners, the South African modeling community is

certainly geared to continue to make advances in the

development of forecast models (e.g., improved cumu-

lus parameterization) and systems (e.g., multimodel

ensembles). For both the use and for the further develop-

ment of models, a question to be addressed by modelers

is whether or not available resources in South Africa

should be directed more toward ocean–atmosphere

models as opposed to AGCMs only. If coupled GCMs

are beginning to outperform AGCMs, then there is

good reason to use the forecasts from these models

for operational work and even to invest in their im-

plementation on local machines, similar to what has

been done with AGCMs in the past. If the coupled

models are lagging behind, then there is a need to fur-

ther improve on these models since in theory coupled

models should eventually outperform two-tiered sys-

tems because the former are able to describe the feed-

back between the ocean and atmosphere while the latter

assume that the atmosphere responds to SST but does

not in turn affect the oceans.

The main objective of this paper was to investigate

how the operational forecast performance of an AGCM

would compare with the performances of its ocean–

atmosphere coupled versions. First, it was shown that both

modeling systems produce about equally skillful fore-

casts when low-level Indian Ocean circulation is used as

a predictor of midsummer rainfall over South Africa.

This result suggests that the ocean–atmosphere coupling

over the Indian Ocean may not really help to improve on

operational seasonal rainfall forecasts for South Africa.

Furthermore, modeled low-level circulation localized

over the subcontinent improved on the forecasts that are

based on Indian Ocean SLP, suggesting that the rainfall

variability of South Africa may be remotely forced. To

adequately answer questions pertaining to our under-

standing of the mechanisms responsible for southern

Africa’s unique climate variability, one may need to use

the attributes of both AGCMs and coupled models.

Finding out how these modeling systems compare with

each other could then be seen as a first step toward an

improved understanding of how things work.

Verification of the two systems over a 14-yr test period

that mimics a set of operational forecasts has shown that

the coupled models outscored the AGCMs in terms of

their ability to discriminate extreme (25th and 75th

percentile thresholds) rainfall seasons from the rest. For

the test period, all the forecasts are also found to be

much more skillful (in terms of discrimination) during

wet seasons as opposed to dry seasons, and that most of

the predictability resides during midsummer when

tropical influences start to dominate the atmospheric

circulation. In terms of reliability, wet seasons could be

predicted with confidence, but that the forecast proba-

bilities do lack sharpness to some extent. For drought

prediction, the forecasts are generally too confident and

lack sharpness. None of the systems could, however,

provide skillful predictions during spring, which makes

seasonal onset forecasting very challenging, notwith-

standing requests from South African farmers to pro-

vide such information.

Although the skill levels presented here are likely to

be an underestimation, further improvement in skill is

FIG. 7. Area-averaged Kendall’s tau values for 27 (DJFall; 1982/83–

2008/09), 13 (DJF1st; 1982/83–1994/95), and 14 (DJF2nd; 1995/96–

2008/09) years of observed vs ECHAM4.5–MOM3-DC2 coupled

model 1-month lead-time cross-validated DJF rainfall predictions

downscaled to district level. One standard deviation error bars are

shown as is the number of rainfall districts with Kendall’s tau values

with local significance at the 95% level.
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possible by forcing the AGCM with improved SSTs

since it was found that perfectly ‘‘predicted’’ SSTs im-

proved on the AGCM forecasts that subsequently out-

scored the coupled model forecasts, especially during

the period of maximum skill (midsummer). SST fore-

casts can be improved by using and/or combining fore-

casts produced by statistical models (e.g., Landman and

Mason 2001) and through postprocessing of coupled

models (Tippett et al. 2005). In South Africa, the oper-

ational production of global SST forecasts for the pur-

pose of helping to optimize operational AGCM forecasts

is already under way, and the operationally produced SST

are currently employed in local AGCM forecast pro-

duction (e.g., http://www.gfcsa.net/CSAG/fcstSSTs/).

The geographical distribution of skill (maximum skill

over the northeastern and central-western interior, etc.)

and the forecast errors made by other models (e.g., the

large forecast error made for the 1997/98 rainfall season)

have been similar to what has been presented here, so

this paper has not really contributed significantly to

improving on the skill of South African seasonal rainfall

prediction. What this paper has been successful in is

demonstrating the ability of coupled models to simulate

South African rainfall variability and that their atmosphere-

only component can produce forecasts that are just as

skillful on the condition that the AGCM is supplied with

highly skillful SST forecasts. The latter is again possible

through the utilization of SST forecasts from coupled

models, which shows that AGCM forecasts will benefit

from skillful coupled models. The South African modeling

community will therefore have to expend at least part of

their future resources on the implementation, use, and

further development of coupled models and systems.
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